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In this work, we review the main available computational methods of identifying 
biomarkers of complex diseases from high-throughput data. The emerging omics 
techniques provide powerful alternatives to measure thousands of molecules in cells 
in parallel manners. The generated genomic, transcriptomic, proteomic, metabolomic 
and phenomic data provide comprehensive molecular and cellular information for 
detecting critical signals served as biomarkers by classifying disease phenotypic 
states. Networks are often employed to organize these profiles in the identification 
of biomarkers to deal with complex diseases in diagnosis, prognosis and therapy as 
well as mechanism deciphering from systematic perspectives. Here, we summarize 
some representative network-based bioinformatics methods in order to highlight the 
importance of computational strategies in biomarker discovery.
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Disease biomarkers provide tremendously 
valuable information for disease diagnosis and 
prognosis, as well as the prediction of therapy 
and treatment effectiveness [1]. Biomarkers 
distinguishing disease states highlight the 
potentiality of clinical applications in com-
plex diseases [2], such as cancers [3,4], diabe-
tes [5] and neurodegenerative disease [6]. The 
early diagnosis of disease and risk assessment 
by biomarkers provides the precious opportu-
nity of designing rational therapy strategy for 
patients [7]. Prognosis markers track the effec-
tiveness and efficiency of treatment. They 
indicate the body’s responses to the surgical 
procedures and drug efficacy [8]. Biomarker 
identification is then a crucial topic in disease 
prevention and control [4], which has attracted 
attention from laboratories and  clinical 
 medicine as well as the  general  public [9].

Traditionally, biomarker identification 
is often based on body secretions and flu-
ids, such as blood serum, urine, stool and 
saliva [10]. It is often found that genes and 

their products are dysregulated during the 
development of disease [11]. The state tran-
sitions from normal to diseased or aggra-
vated circumstances will be reflected from 
the inflammatory, circulatory, digestive and 
other systems in various aspects of causality, 
passenger and outcome [4]. The internal cells 
from the body systems will trigger present 
(high) or absent (low) expression of certain 
genes [12], RNAs [13,14], proteins [10], metabo-
lites [15] and other small molecules in response 
to disease occurrence and progression. More-
over, the internal cells and differentially gen-
erated molecules will be propagated into the 
bloodstream. The external and internal cells 
and molecules imply the disease phenotypes 
of various development stages and treatment 
conditions [1,2]. In traditional biomarker 
discovery, the molecules, for example, pro-
teins, metabolites and cells, are often used 
as biomarker candidates. In the screening 
 procedure, the candidates are often first 
selected according to some  measurements 
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compared between control and disease samples [10]. 
Recently, gene mutation [16], miRNA [17], cirRNA [18] 
and DNA methylation [19] are also  recognized as 
molecular  signatures of  complex diseases.

In general, accurate identification of biomarkers 
for complex diseases is very difficult [3]. The reasons 
are numerous, but they mainly come down to three. 
First is our limited understanding about disease 
pathogenesis. The pathogenesis of many diseases is 
still not very clear. Recently, these processes are often 
regarded with correlation to multiple factors and 
their interactions, such as gene mutations [20] and epi-
genetic modifications [21]. Moreover, multiple organs 
and tissues will be involved in disease occurrence and 
development, for example, pancreas, liver, adipose 
and some other tissues in Type II diabetes [22,23]. The 
biomarker discovery process of recognizing molecules 
and cells from their differences between control and 
disease states then becomes difficult. Second, bio-
markers should be specific, stable and consistent for 
clinical applications. Subtypes of complex diseases 
and personalized genetic features should be consid-
ered in biomarker identification [24]. The diversity 
of human gene expression in tissues and popula-
tions makes identification much more difficult [25]. 
Third, difficulties underlie the techniques, machines 
and apparatus used for measuring disease samples. 
The noise and complexity in the body leads to bias 
in measured signals [26]. The data preprocessing and 
mining techniques also affect discovery accuracy [27]. 
These issues aggregate the difficulties of biomarker 
identification and limit their clinical applications. 
There is an urgent need to develop novel  techniques 
for detection of more accurate biomarkers.

In the last two decades, more and more high-
throughput techniques have been developed to mea-
sure genome-wide gene mutations [28], epigenomic 
profiling [29], transcriptome-wide gene expression [30], 
proteome-wide proteins [31] with their interactions [32] 
and the metabolome [33] simultaneously. These tech-
niques are revolutionizing biomedicine research para-
digms including biomarker discovery [34,35]. They 
provide data resources and alternative ways to identify 
better biomarkers, which are more stable, specific and 
consistent in the detection of disease signals.

Genes, RNAs, proteins, metabolites and their inter-
nal and external interactions orchestrate the intricate 
systems of facilitating the functionalities of cells [34]. 
For the numerous involved molecules, complex dis-
eases have been regarded as a disorder of these sys-
tems [36]. Networks provide a distinct and rational 
framework of describing these interactions and orga-
nizing the available data simultaneously. Always, the 
molecules cooperate together in a form of network to 

perform their functions [36]. The nodes represent these 
molecules and the edges represent their physical and 
functional relationships [37]. The network provides a 
topological representation of a complex system and the 
data characterizes its specific condition via quantita-
tively measured values of a large number of molecules. 
It is inadequate for the traditional methods to identify 
individual molecules, in other words, isolated nodes 
of genes, RNAs or proteins in the network, as the 
 biomarkers for indicating normal, predisease, disease 
and postdisease states [36].

To leverage the generated big data for biomarker 
discovery, computational methods of identifying 
the network components beyond individual nodes 
become important options to meet the challenging 
request. Here, we focus on these bioinformatics meth-
ods of identifying network-based biomarkers. The 
molecular interactions in various genetic information 
transmissions provide evidences for the complexity of 
molecular cooperation in cells during disease occur-
rence and development [35,36]. The edges linking these 
molecules represent their functional cooperation. 
And they should be identified rationally for detecting 
the critical signals of state changes or indicating the 
maximal possibility of disease recurrence in the near 
future. The subnetworks containing both nodes and 
edges, such as modules and pathways in the network, 
are highly expected to serve as better biomarkers of 
complex  diseases [36,38].

In this paper, we provide a review of computa-
tional methods of identifying biomarkers of complex 
diseases from omics data. We formulate the identi-
fications into network components, in other words, 
nodes, edges, subnetworks and global networks, 
respectively. We first summarize the available high-
throughput databases for building networks in vari-
ous levels from the genotype of gene interactions to 
the phenotype of disease associations. Then, we cat-
egorize the available methods into the identification 
of different network components for classifying phe-
notypic states. The bioinformatics techniques of dis-
criminating these network components in two states, 
for example, control and disease, and multiple pheno-
typic states, for example, normal, early, medium and 
severe stages of disease progression, are summarized 
accordingly. Due to the complexity of data types, we 
simply focus our review on few data types such as 
genome-wide gene expression microarrays and pro-
teome-wide protein interactions. The methods pro-
posed by our own group will be introduced in more 
detail along with overviews of similar methods. Last 
but not least, we share the vision of further improv-
ing biomarker identification from data mining. We 
conclude that combination of computational and 
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experimental methods provides a broader method for 
biomarker discovery.

High-throughput data resources
In the posthuman genomics project era, more and 
more high-throughput data resources are available 
for characterizing complex diseases from multiple 
levels [39]. Table 1 lists some databases with their 
brief introductions. These disease-related omics or 
network datasets provide the possibility of discov-
ering biomarkers applicable in clinical trials. At the 
genetic level, databases such as Online Mendelian 
Inheritance in Man [40] and GWAS Catalog [41] pro-
vide mutations in genome sequences by GWAS, next-
generation sequencing or microarray techniques. The 
RegNetwork [42] collects the TF-miRNA cooperative 
transcriptional and post-transcriptional regulations, 
which facilitate the identification of dysfunctional 
regulations in complex diseases [43]. Gene Expression 
Omnibus (GEO) [44] and ArrayExpress [45] deposit 
the comprehensive gene expression data, which 
highly benefit the disorder detection from transcrip-
tional level. Human Protein Atlas Database [46] and 
PRoteomics IDEntification (PRIDE) [47] record the 
high-throughput expression information of proteins. 
Search Tool for Recurring Instances of Neighbour-
ing Genes (STRING) [48] and BioGrid [49] database 
provide the resources of protein–protein interactions 
(PPIs). From metabolic level, Kyoto Encyclopedia of 
Genes and Genomes (KEGG) [50] and Reactome [51] 
record the curated pathways from literature. From 
phenotypic level, DiseaseConnect [52] provides the 
associations of diseases. There are also some data-
bases available for diagnosis biomarkers, such as Bio-
markerDigger [53] and Urinary Protein Biomarker 
(UPB) [54], which identify potential biomarkers iden-
tified from proteomic data. For drug research, Drug-
Bank [55] records the drug with its target information. 
These data sources improve the speed and quality of 
biomarker identification. Moreover, some big science 
initiatives have accelerated the availability of high-
throughput data, such as the ENCyclopedia Of DNA 
Elements (ENCODE) [56] and modENCODE [57], 
ImmGene [58], Roadmap Epigenomics [29]. The Can-
cer Genome Atlas (TCGA) [39] and International 
Cancer Genome Consortium (ICGC) [59] research 
networks aim to characterize the molecular profiles 
of many cancers. These open resources provide the 
unprecedented opportunity and challenging tasks of 
identifying disease biomarkers.

Framework of identification
The identification of disease biomarker can be easily 
formulated into a classification problem. In machine 

learning, a classification problem is to identify the 
features which can distinguish different classes and 
accordingly categorize samples into them [73]. Equiva-
lently, the discovery of disease biomarkers is to iden-
tify molecules, cells and other indicators which can 
classify different phenotypic states. The features are 
those biomarkers which we aim to identify for labeling 
the disease states of occurrence, development, dete-
rioration, metastasis as well as treatment effect and 
survival time. Instinctively, the biomarkers are the 
features for delineating control and disease samples, 
or multiple development stages. In theory, the phe-
notype is denoted as Y, for example, control and dis-
ease, or different disease stages and the biomarker(s) 
as X. The classifier is trained to learn the function 
f  between Y and X from data, which is to determine 
Y = f(X). f is a generalized function which usually 
cannot be reconstructed in its explicit form. When 
the function f is learned by a classifier, the outcome 
Y can be determined easily given the biomarker value 
X is of a new client or patient.

Figure 1 illustrates the framework of identifying 
network-based biomarkers of complex diseases from 
high-throughput data (Figure 1A & F). The avail-
able methods of identifying biomarkers are essen-
tially to discover the relationship between network 
components and disease phenotypes. The network 
components, such as nodes, a set of nodes, edges 
and subnetworks as modules and pathways and oth-
ers (Figure 1C), can be used as the candidates to be 
screened as biomarkers by  classification algorithms 
(Figure 1D).

As shown in Figure 1B, the network is a graphi-
cal representation of the relationships among objects. 
According to the theory of network biology [34] and 
network medicine [36], different contents are con-
tained in the network components. The node is the 
individual molecule, in other words, gene, RNA, pro-
tein, metabolite, etc., which is an isolated factor of 
the network. The edge between two nodes indicates 
their relationship. The set of nodes implies the group 
of molecules that performs certain functions. Com-
pared with a set of nodes, modules and pathways in 
the form of community structures refer to the local 
interconnected parts of a subnetwork in the global 
network, where nodes can be reached directly from 
each other through its contained edges on which the 
information can be transmitted smoothly. Often, the 
module is based on network topology [74] and the 
pathway is based on prior biological knowledge [50].

In collecting disease samples (often with controls), 
the training step is to train the classifier which char-
acterizes the distinctive features underlying  different 
phenotypes. The widely used classification  algorithms 
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Figure 1. The framework of identifying network-based biomarkers from high-throughput data. (A) The available 
profiling data of complex diseases in multiple levels, which provide the resources for biomarker discovery. (B) The 
information and relationship among molecules, such as gene, RNA, protein and metabolites, are organized by a 
network model. (C) The network components such as nodes, edges, unstructured parts of network, modules and 
pathways provide the materials for identifying disease biomarkers. (D) Machine-learning-based classifier is built to 
select the specific features and abilities in these network components via the classification of different phenotypic 
states. (E) The validation and evaluation of these identified distinct network components served as biomarkers for 
distinguishing different conditions. (F) Network-based biomarkers are applied to distinguish phenotypic states, 
for example, control and disease.
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are neural network [75], naive Bayesian [76], support 
vector machine [77,78] and random forest [79]. After 
training the relationships between network compo-
nents and disease phenotypes, the biomarkers are 
those components which classify disease phenotypes 
with high sensitivity and specificity (Figure 1E). To 
 evaluate the biomarker classification performance, 
k-fold (e.g., k=10) cross-validations or leave-one-
out validations are usually implemented upon the 
training datasets. The application of these identified 
biomarkers is to extend the obtained biomarkers to 
unknown property samples. The biomarkers can be 
then used to diagnose diseases, predict drug effects 
and treatments and measure recurrence possibility 
and survival time.

As to nodes and node sets, edges, unstructured sub-
networks, modules and pathways, the whole processes 
of identifying disease biomarkers will be slightly dif-

ferent according to their specific characteristics. We 
will review some computational methods with focus 
on their characteristics in the following sections.

Identifying node-based biomarkers
Table 2 lists some available bioinformatics meth-
ods for biomarker discovery from high-throughput 
data. The network model provides us a foothold to 
identify biomarkers. The first type of biomarker is 
the node in the network. Generally, node-based bio-
marker identification is to evaluate whether the node 
contains the distinct properties in different pheno-
types, such as control and disease. Detecting the 
differential information of a molecule (i.e., a node 
of a network) across different states is the first-step 
effort in identification. Gene expression profiles are 
available for techniques such as microarray [30] and 
RNA-Seq [80]. The  strategy of identifying node 
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Table 2. Bioinformatics methods for identifying biomarkers of complex diseases from high-throughput data.

Study (year) Disease Category Data Ref.

Golub et al. (1999) Leukemia Node Gene expression [81]

Guyon et al. (2002) Multiple cancers Node Gene expression [78]

Lu et al. (2005) Multiple cancers Node miRNA expression [13]

van de Vijver et al. (2002) Breast cancer Node Gene expression [82]

van ‘t Veer et al. (2002) Breast cancer Node Gene expression [12]

Efron et al. (2007) Multiple complex diseases Node set Gene expression, gene groups of 
metabolic pathways

[83]

Subramanian et al. (2005) Multiple complex diseases Node set Gene expression, gene groups of 
metabolic pathways

[84]

Tian et al. (2005) Multiple complex diseases Node set Gene expression, gene groups of 
metabolic pathways

[85]

Bandyopadhyay et al. 
(2010)

DNA damage related to 
cancers

Edge Multiple omics data [86]

Liu et al. (2012) Gastric cancer Edge Gene expression, PPI [87]

Sahni et al. (2015) Multiple diseases Edge Multiple omics data [88]

Zhang et al. (2014) Cholangiocarcinoma and 
diabetes

Edge Gene expression [89]

Chuang et al. (2007) Breast cancer Unstructured 
subnetwork

Gene expression, PPI [90]

He et al. (2011) CHD Module Gene expression, PPI [91]

He et al. (2012) HCC Module Gene expression [92]

Hofree et al. (2013) Multiple cancers Module Genomic mutation, gene expression, 
regulatory network, PPI, metabolic 
pathways, among others

[93]

Liu et al. (2011) Alzheimer’s disease Module Gene expression, PPI [94]

Segal et al. (2004) Multiple tumors Module Gene expression [95]

Taylor et al. (2009) Breast cancer Module Gene expression, PPI [96]

Wen et al. (2012) Colorectal cancer Module Gene expression, DNA methylation 
microarrays, PPI

[97]

Zhang & Horvath (2005) Multiple diseases Module Gene expression [98]

Lee et al. (2008) Multiple cancers Pathway Gene expression, genes of metabolic 
pathways

[99]

Liu et al. (2012) Multiple cancers Pathway Gene expression, PPI [100]

Liu et al. (2013) Time courses as cell cycles of 
complex diseases

Pathway Gene expression, regulatory 
network, PPI

[101]

Chen et al. (2012) Multiple complex diseases Dynamical 
network 
biomarker

Gene expression, PPI [102]

Note that these methods can be flexibly used to discover biomarkers of different diseases from different levels of data given suitable inputs and modifications.
The methods are ordered by ‘Category’.
CHD: Coronary heart disease; HCC: Hepatocellular carcinoma; PPI: Protein–protein interaction; Ref.: Reference.

 biomarkers is to first screen all nodes in the network 
by statistically testing their differences over samples. 
Differentially expressed genes are then evaluated by 
their distinguishable power of classifying samples 
and then selected as biomarkers with further in vivo 

experimental validations.  Obviously, the  node-based 
methods used in gene expression profiles can also be 
used in proteomics, metabolomics and other data-
sets for identifying  distinctive information across 
 conditions.
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For two phenotypic states, Student’s t-test [103] is 
a widely used method to detect differential informa-
tion. The method assumes the null hypothesis of gene 
expression, that there is no change in the control and 
disease samples, in other words, 

H :0 control disease=n n  
Statistical testing is used to check whether the mean 

of gene expression contains significant change. The 
differentially expressed genes across control and dis-
ease provide the candidates for distinguishing the two 
states. Wilcoxon rank test [104] is a rank-based signifi-
cance test when comparing two type of samples. The 
nonparametric statistical hypothesis test contains no 
population assumptions of normal distribution and 
can be used as an alternative to the former Student’s 
t-test. Due to the population assumption of the test 
models and the limited availability of samples, signifi-
cance analysis of microarrays (SAM) [105] is another 
widely used method to identify differential genes. Each 
gene is assigned to a score on the difference relative to 
the standard  deviation of expression  measurements, in 
other words, 

(i)
(i)
(i) (i)

d
s s0
c d=

+
-\ \

where 

 
and 

are defined as the mean expression values for gene i 
in control and disease, respectively. s(i) is the standard 
deviation of  expression experiments and s

0
 is a pre-

defined  constant. The significance is then evaluated by 
a permutation  strategy [105].

More advanced techniques are used to discover 
the biomarkers in complicated conditions. When 
comparing more than two states, analysis of variance 
(ANOVA) techniques are often implemented [106]. 
ANOVA model is a general and powerful tool to 
identify differential information through multiple 
conditions. ANOVA F-test formulates an estimate of 
variation across conditions to an estimate of error vari-
ance. The test then identifies the significance of reject-
ing the null hypothesis if there is no variance change 
across the states. The gene expression data are often 
time series [107]. For this case, many statistical testing 
 methods have been developed for time-course data. 

Widely used techniques include the edgeR (extraction 
of differential gene expression in R) package in Bio-
conductor [108]. It originally identifies statistically sig-
nificant changes in expression over time by represent-
ing gene expression trajectories as cubic splines. EdgeR 
can be applied to differential expression in various lev-
els such as gene, exon, transcript or tag. It also includes 
DESeq [109] for differential analysis of RNA-Seq [80] 
and ChIP-Seq [110] data. Short time-series expression 
miner (STEM) can identify significant genes from 
short time series microarrays based on a clustering 
method [107].  Functional principal component  analysis 
(FPCA) method employs a functional principle com-
ponent analysis method to remove the noise and 
ambiguity of the expression data for differential gene 
 identification during time courses [111].

It is easy to know that the ranks of differentially 
significant scores of these genes are not changed after 
operating a statistical test. To select the differential 
genes by their p-values, there is often a need to define 
a threshold for statistical significance. False discov-
ery rate [112], Akaike information criterion [113] and 
Bayesian information criterion [114] techniques of vari-
able selection are often employed to control the false 
positive ratios in the discovery of differential genes. To 
investigate the differential information underlying a 
set of isolated nodes as a whole, for example, a gene set, 
some statistical testing methods have been proposed 
for identifying the enriched gene group as integrative 
biomarkers [83,84]. The differential genes or gene sets 
contain the distinctive characteristics to distinguish 
phenotypic conditions. They are the biomarker can-
didates, but they are not the determined biomarkers 
due to their complicated relationships with these phe-
notypes [94]. Computational classification powered 
evaluation and further experimental validations are the 
following steps for identifying biomarkers from them 
with more possibilities and confidences. Node-based 
methods are the fundamental strategies of identifying 
disease biomarkers [36]. Generally speaking, the other 
available network-based methods are built on these 
methods and philosophies.

There are three major points for the nonequivalence 
between differential genes and biomarkers. First is the 
generalization ability. Although we identify a gene or 
a gene set with differential information over different 
conditions, it might be a false positive and should be 
validated in large-scale samples, especially in indepen-
dent samples. Considering the maturing process of these 
omics techniques and the disturbing noise in the data, 
some important issues also affect the generalization abil-
ity of these candidates. Second, the biomarkers should 
be determined by their  pathological,  dysfunctional and 
clinical implications. Often,  hundreds or thousands 

(i)c\

(i)d\
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genes have been identified as differential genes [83,84]. 
There are too many candidates and  possibilities, of 
which our focus is on a smaller range of genes. These 
genes should be checked for their dysfunctional impli-
cations in the physiological processes. The categories 
of causal, driver, passenger, response and housekeep-
ing genes for the disease have not been determined yet. 
Some correlation metrics, such as Pearson’s correlation 
coefficient (PCC) and mutual information, are ben-
eficial to determine their relationship with phenotypic 
outcomes. However, they cannot be determined as 
causal disease factors or affected molecular entities only 
by optimizing the classification power. The specificity 
of gene signatures served as biomarkers is very impor-
tant in clinical applications [82]. Third is the complexity 
of disease. The molecules in the cell, such as genes, gene 
products, metabolites and minerals, are linked together 
in the form of intricate networks for performing func-
tions [34]. It is difficult to mark the disease by the inde-
pendently isolated nodes in the network. Currently, it is 
known that the complex diseases are system disorders, 
which imply they are not caused only by a single gene 
and/or protein and/or metabolite [35,36]. It has also been 
found that the permutation widely exists in molecular 
interactions in disorders [88,115]. Moreover, from a sys-
tematic perspective, complex diseases are caused by var-
ious interactions and subnetwork communities, such as 
modules and pathways. The network medicine methods 
provide powerful alternatives to reveal biomarker muta-
tions [116], genes [117], miRNAs [17], lncRNAs [118] and 
proteins [10] and metabolites [15] from high-throughput 
data.

Identifying edge-based biomarkers
Unlike node-based methods, edge-based biomarker 
discovery methods take molecule interactions in the 
network into consideration. Instead of observing the 
molecules in the network in isolation, edge-based 
methods regard them from a cooperation perspective. 
Compared with the disorders of isolated nodes, the dis-
orders of molecular interactions [88,115,119,120] and then 
the subnetworks they are involved in [36] seem to be 
a more reasonable hypothesis for the pathogenesis of 
complex diseases. Edgotype refers to the edgetic per-
turbation in biomolecular interaction networks, which 
leads genetic variants to distinct phenotypic outcomes. 
The edgotype bridges the gap between genotype and 
phenotype through the rewiring interactions among 
molecules [121]. Edge-based methods are expected 
to uncover better biomarkers relating genotypes to 
 phenotypes.

As mentioned, many edge-based methods are based 
upon node-based methods. In the same philosophy of 
detecting discriminant information through control 

and disease states, we combined node significance and 
edge significance in two phenotypic states together 
by Fisher’s method (shown in Figure 2A) to identify 
the activated linkages during the disease progression 
of Alzheimer’s disease (AD) [122], as well as those in 
different AD brain regions [94,123]. The combined sig-
nificance as weights are overlaid on a highly-qualified 
PPI network. Then, we identified the context-specific 
protein interactions with rewiring characteristics from 
these edge-weighted networks. The edgotype provides 
a powerful alternative to bridge genotype and pheno-
type [121,124], then serves as a biomarker of indicating 
the phenotypic signals of AD [87].

We also provided an edge-based method of identify-
ing the biomarkers of gastric cancer from a weighted 
PPI network. By distinguishing the two states of con-
trol and disease, we identified a protein subnetwork of 
these differential edges which accurately classified the 
disease and control samples. As shown in Figure 2B, in 
contrast to the former node-based methods of differen-
tial genes, the PCC between a pair of interacting pro-
teins in the human PPI network was calculated based 
on the samples in each group. Subsequently, only those 
PPIs with high correlation coefficients were reserved 
with the assumption that these PPIs with low corre-
lation coefficients do not occur in the corresponding 
samples. The differential PPIs between control and 
disease samples were then identified, which illustrate 
the dynamic changes of rewiring interactions across 
control and disease status. The differential PPIs are 
obtained by combining a specific PPI network in con-
trol and a specific PPI network in disease while remov-
ing their common edges. They indicate the differential 
information of cooperation between these proteins 
in gastric cancer. The differential interactions form 
subnetworks and can significantly distinguish con-
trol from disease samples. The computational method 
provides a novel approach to detecting diagnostic 
 biomarkers of stomach cancer [87].

The former methods provide direct evidence that 
edge-based methods are effective for identifying bio-
markers. These identified biomarkers are very mean-
ingful in the mechanisms of deciphering complex dis-
eases. Moreover, there are topological neighbors and 
functional groups in the network [36,87]. From this per-
spective, the edge-based biomarkers outperform node-
based identifications in the classification performance 
and pathogenesis meaning [87]. Recently, another edge-
based method has been proposed for its importance 
and prevalence [89].

Identifying subnetwork-based biomarkers
For subnetwork-based biomarker discovery, there 
are several categories in these subnetworks, in other 



642 Biomark. Med. (2016) 10(6)

Figure 2. The diagrams of identifying some network-based biomarkers. (A) The edge score between nodes x 
and y is weighted by Fisher’s method. The differential information of two nodes and that of the linkage are 
combined together [122]. (B) The edge-based biomarker identified by rewiring differential interactions in control 
and disease [87]. (C) The information flows between source disease causal genes and target differential genes 
are modeled by an electronic potential model. The involved nodes and edges construct a module and use it as 
biomarker after evaluation [91]. (D) The correlation matrix between gene coexpression modules of HBV and that 
of HCV [125]. (E) The documented pathways are evaluated for the consistency with phenotypes individually. The 
enriched pathways are identified as pathway biomarkers for complex diseases [101]. (F) The dynamical network 
biomarker during the disease progression [102]. Disease can be reversible at the critical points of pre-disesae state, 
while cannot after it. Dynamical network biomarker extracts the early warning signals of disease state transitions. 
HBV: Hepatitis B virus; HCV: Hepatitis C virus. 
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words, the unstructured parts of a network, the struc-
tured modules and pathways. Unstructured subnet-
works refer to the irregular parts without particular 
properties in the global network. Modules refer to the 
community structures of a network which contain 
internally dense connections and sparser connections 
between groups [74]. These topologically particular 
network structures have been identified as functional 

blocks in many networks of biological systems [34,74]. 
Pathways are often knowledge-based interactions 
between molecules containing particular functional 
implications [50].

Systematic identification of disease-related subnet-
works and further subnetwork biomarkers from global 
networks can provide deep insights into the  mechanisms 
of complex diseases and gracious  assistance in diagnosis 



www.futuremedicine.com 643future science group

 Network-based biomarkers of complex diseases    Review

and prognosis [35–36,93]. Different from the former two 
methods, subnetwork-based methods evaluate a group 
of nodes and edges simultaneously in terms of connected 
subnetworks. From an  integrative viewpoint, the signals 
contained in the locally networked systems and the dys-
functional relationships with phenotypes overwhelm 
those of individual nodes and edges [36]. The subnet-
work-based method of identifying bio markers often 
defines a relationship metric of describing the associa-
tion between phenotypes and subnetworks. To this end, 
PCC [126], mutual  information [127] and Kullback-Leibler 
divergence [128] are often employed. Then, an algorithm 
is developed to identify the subnetwork by optimizing 
its association score with phenotypes. In that way, these 
subnetworks are evaluated for classifying disease samples 
and some of them are identified as biomarkers.

There are some specific strategies for different types 
of subnetworks in biomarker discovery. First, the 
unstructured subnetwork can be extracted directly 
from the network. These methods often begin with 
an interested node (or edge) and gradually increase 
the solution sets from neighboring nodes and edges by 
maximizing the predefined association metrics through 
the phenotypic differences. The searching algorithm 
will be terminated by a given threshold of distance 
from the initial network component and the final out-
put is the identified subnetwork-based biomarker. Sec-
ond, it needs to divide the global network into some 
subnetworks in the form of modules. These modules 
are the candidates for selecting biomarkers which can 
classify the samples according to phenotypes. Third 
is to refer to certain prior knowledge of pathways in 
various resources, such as the documented pathways in 
KEGG [50]. The methods directly screen upon the set 
of pathways and identify the  discriminating pathways 
as biomarkers.

For the unstructured subnetwork, a seminal work of 
identifying biomarkers for breast cancer metastasis has 
been proposed [90]. The method identified protein sub-
network biomarkers for classifying the metastatic and 
nonmetastatic tumors by calculating the mutual infor-
mation between subnetworks and phenotypes. The 
optimal subnetworks indicating different phenotypes 
are searched by increasing the size of targeting signa-
tures with the justification of their associations with 
phenotypes. The method resorts to a heuristic optimi-
zation strategy to identify biomarkers in the form of 
subnetworks. The biomarkers are informative of non-
discriminative disease genes [90]. This also proves that 
the differential genes or causal disease genes might not 
definitely serve as biomarkers with significant classifica-
tion accuracy for tumor samples [129]. The  networking 
formation indicates the cooperation among these 
 proteins during cancer metastasis. The authors further 

applied their pipeline to identify subnetwork biomark-
ers of chronic lymphocytic leukemia with the valida-
tion of immunoblotting techniques [130]. Identifying 
subnetwork-growing-based biomarkers overcomes the 
possible classification biases caused by only differen-
tially expressed genes or documented disease casual 
genes.

In the module-based paradigm of biomarker dis-
covery, we provided a method of identifying dysfunc-
tional module biomarkers in coronary heart disease 
(CHD) [91] by potential energy as shown in Figure 2C. 
The information transmitting from the source genes 
(annotated disease genes) to their targets (differentially 
expressed genes) is used to decompose the PPI network 
into modules. These modules are individually evaluated 
as biomarkers of classifying disease samples via mutual 
information with phenotypes. The higher accuracy 
of classification proves the efficiency of our proposed 
method of identifying module biomarkers of CHD by 
information transmission on protein networks [36,91].

In the module-based subnetworks of discriminating 
disease phenotypes, the interrelationship among mod-
ules is also very important for discovering the accurate 
biomarkers by screening all possible module combina-
tions. We proposed a method for identifying module 
biomarkers for hepatocellular carcinoma (HCC) via 
gene coexpression networks [125]. The framework is sum-
marized in Figure 2D. The major risk factors of HCC 
are chronic infection with hepatitis B virus (HBV) and 
hepatitis C virus (HCV) [131]. The similarities and dif-
ferences between HBV and HCV are evaluated by com-
paring the overlap of gene compositions and functional 
annotations in HBV and HCV modules. We identi-
fied distinct patterns of gene coexpression networks 
and inflammation-related modules from genome-scale 
microarray data upon viral infection, and further clas-
sified them into oncogenic and dysfunctional modules, 
respectively. These modules perform significant classi-
fication powers to distinguish the stages of disease pro-
gression. The module biomarkers have also been tested 
in independent datasets for their classification abilities. 
We also compared these viral infection modules across 
HBV- and HCV-induced HCC by module preserva-
tion during disease progression. The revealed modules 
of biomarker properties shed light on the classification 
of different types of virus-induced HCC, which will 
highly benefit the diagnosis of liver cancer [125].

So far, many knowledge-based pathways have been 
documented for describing molecular relationships in 
functional processes [50]. An alternative to identifying 
subnetwork-based biomarkers of complex diseases is to 
screen these pathways [99]. After determining pathway 
activities in response to specific phenotypic states, the 
methods evaluate their classification power of distin-
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guishing these states and make the apparent pathways 
serve as biomarkers.

We provided a Gaussian graphical model to detect 
consistency between subnetwork pathways and high-
throughput data by evaluating the significance of 
their  correspondence [101]. Based on knowledge-based 
pathways, our model is to identify the pathways as the 
subnetwork-based biomarkers. Figure 2E illustrates the 
framework of assessing the significance of consistency 
by screening pathways. The statistical significance 
of the consistency is evaluated by randomizing the 
pathway structure and calculating the possibility. An 
empirical p-value of each pathway is available from the 
consistency likelihood between pathway architecture 
and high-throughput data. We have identified the sig-
nificantly responsive gene regulatory pathways in dia-
betic development [101,132] and some master regulators 
of transcription factor [133]. The pathway biomarkers 
provided deep insights for the diagnosis of diabetic 
 progression [36,132,133].

Identifying dynamical network biomarkers
In personalized medicine, a patient’s genetic contents 
and other molecular or cellular contexts should direct 
the selection of appropriate treatments and optimal ther-
apies [24,134]. From this regard, different people might 
contain different patterns of genetics, molecules and 
cells during disease production and development. And 
these different patterns would be the ideal biomarkers 
in individuals for distinguishing the characteristics of 
disease states [102]. This type of biomarker emphasizes 
on the specificity rather than the generality underlying 
these signatures. Moreover, the classification of multiple 
conditions is strengthened to correspond with the state 
transition points and signals.

To this end, we proposed a new concept of network-
based biomarker, in other words, dynamical network 
biomarker (DNB) [102]. We provided computational 
strategies to identify DNBs for grasping the early 
warning signals of complex diseases during various dis-
ease courses [102,135]. From the dynamical viewpoint, 
we can briefly categorize the development of many 
diseases into three states, in other words, normal, pre-
disease and disease [102], as shown in Figure 2F. During 
disease progression, it usually becomes irreversible to 
the normal state if the system passes the critical point 
and enters another stable state. If we can identify the 
early warning signals of the disease and diagnose the 
predisease state, it is possible to take appropriate inter-
vention actions to prevent qualitative deterioration to 
the following disease states.

We defined the DNB as a special group of observ-
able molecules to indicate the sudden deterioration of 
a complex disease, which often involves over thousands 

of gene, RNAs, proteins and metabolites. In the mole-
cular network of a complex disease, if there is a group 
of variables of molecules, which satisfy the following 
three criteria:

•	 The average PCCs of these molecules drastically 
increase in absolute value;

•	 The average PCCs of molecules between this group 
and any others, in other words, between molecules 
inside this group and any other molecules outside 
this group drastically decrease in absolute value;

•	 The average standard deviations of molecules in 
this group drastically increase.

This group is thus called a dominant group of the 
system, whose change will reflect a transition of the 
system to the disease state. Each of the three condi-
tions represents a criterion, and their combination is 
naturally expected to be a strong signal or an indicator 
for the predisease state, a critical state just before the 
critical transition point. The early warning of criti-
cal transition is reflected in the group of molecules. 
Because the dominant group characterizes dynamical 
features of the underlying system and the molecules in 
the group are also strongly and dynamically correlated 
in the predisease state, the molecules in the group are 
expected to form a network. We regard it as a DNB of 
the disease [102]. Compared with the former methods 
of network components, DNB is often based upon the 
whole network property.

For the biomarkers identified by the former reviewed 
methods, their expression and concentration reflect 
the presence or severity of the disease states. They 
are required to have consistent values in different dis-
ease states for different people. Differently, there are 
no requirements for such consistency in DNB. The 
abundance and concentration of molecules in DNB 
behave dynamically in a strongly collective manner. 
They tend to increasingly fluctuate when the system 
approaches the predisease state [102]. Thus, each indi-
vidual may have a different DNB even for the same 
complex disease. Therefore, in contrast to traditional 
biomarkers, a DNB is not necessarily composed of a 
fixed bunch of molecules and might contain different 
members depending on individual features in the high-
throughput datasets (some people might contain simi-
lar features). The early warning signal of a complex 
disease can be detected by DNB, which is impossible 
for traditional biomarkers or former methods. Com-
pared with the identified network-based cancer bio-
markers of certain molecules [136–138], DNB focuses on 
the anomaly detection of critical signals. The existence 
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of DNB implies that the system is in a predisease state. 
DNB extends the biomarker concept and application, 
and it is a powerful diagnostic and prognostic tool for 
precision medicine [139].

Discussion & conclusion
Numerous high-throughput techniques such as genom-
ics, transcriptomics, proteomics, metabolomics and 
phenomics provide precious opportunities of charac-
terizing the large-scale genetic, molecular and cellular 
biosystems in comprehensive levels [36]. Many omics 
projects and efforts have been initialized for complex 
diseases [39]. The generated big data create the pos-
sibility of identifying precise biomarkers of complex 
diseases for diagnosis, prognosis, therapeutic strategies 
and treatment assessment. The boom in bioinformatics 
methods and software meets the urgent need to dis-
cover biomarkers from high-throughput data. The new 
paradigm of biomarker discovery in computational 
medicine will definitely revolutionize complex disease 
research.

In this review, we summarized the state-of-the-art 
computational strategies of identifying biomarkers 
in the form of network terminologies. The network 
components such as node, edge, module and pathway 
are those candidates for screening. From the network-
based biomarkers, some widely used computational 
and statistical methods are reviewed, respectively. 
We also gave brief introductions to our own works 
in some categories to further demonstrate the spe-
cific and detailed steps in the discoveries. Although 
the computational methods provided considerable 
insights of biomarker candidates and achieved great 
successful identification from data, these methods 
are still in their developing periods. Different meth-
ods often have their own advantages for specific 
types of available data, respectively. Benchmarks for 
assessing and comparing these network-based meth-
ods are urgently needed for building more powerful 
high-throughput screening methods of biomarker 
discovery [140].

The problems underlying current bioinformat-
ics methods can be listed as follows. First is about 
biomarker validation. Essentially, the computational 
methods predict the biomarker candidates with great 
potential of distinguishing diseases from data analy-
ses. The generalization ability and usefulness should 
be evaluated according to the follow-up in vivo experi-
ments and clinical bench trials. Often, the candidates 
are evaluated by the classification methods obtained 
from the training datasets. To raise the possibility of 
a true biomarker, the computational methods should 
improve the validation steps in  multiple independent 
datasets [97].

Computational methods usually generate a long 
list of candidates, which are very difficult to validate 
by traditional in vitro and in vivo experiments. It is 
very important to control the false positives on inde-
pendent datasets and provide ranking scores of these 
candidates for further wet experiments and clini-
cal validations. The robustness of candidates in the 
 classification of disease samples should be evaluated by 
designed  permutations and tests in silico [141]. To resort 
to more advanced computational strategy is still eco-
nomic in the biomarker discovery compared with the 
 wet-lab-based validations.

The work to identify biomarkers from data pio-
neered biomarker discovery and should be extended 
for further applications. So far, the omics technolo-
gies are in their maturation periods. More and more 
reliable measurements will be generated for describing 
the states of normal and disease. The computational 
methods of data processing and mining rely on the 
central high-throughput techniques. The strategies for 
handling raw datasets [142], cells [143] or count num-
bers [144] will affect data exploration. The biomarker 
representing true conditions might be eliminated or 
omitted in unsuitable steps. Moreover, these data often 
describe the biosystems from multiple levels. How to 
integrate these heterogeneous data for more accurate 
and robust biomarker identification is a very important 
research topic [11,145].

Second is biomarker interpretation. The bio-
marker is expected to be crucial to decipher the 
disease pathology and inspire optimal therapies. 
There are high possibilities for these biomarkers to 
perform dysfunctions as disease drivers and passen-
gers. The causal reasoning of biomarkers from high-
throughput data provides very valuable information 
to dysfunctional implications [146]. The biomedical 
meaning of these identified biomarkers indicates the 
disease mechanism, which will direct the treatment 
and drug design for leading the following therapy. 
The biomarker contains the generalization ability in 
various disease samples. While in the personalized 
medicine era, the DNB should also be emphasized 
for the specificity of individuals. The genome differ-
ences and variations of different people require the 
precision disease classification and stratification with 
the specific genetic contexts and backgrounds. The 
interpretation of the biomarkers assesses the risk of 
personalized measures identified from data.

In conclusion, we reviewed the computational 
strategies of identifying network-based biomark-
ers of complex diseases from high-throughput data. 
The individual nodes, node sets, edges, unstructured 
subnetworks, modules and pathways are evaluated 
as disease  biomarkers. The power of computational 
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methods is due to the information in the big data and 
the flexibility in identification. Compared with tradi-
tional methods, the dry-lab-based methods provide 
large-scale screening of network components. We sum-
marized the major pipeline of each strategy and com-
mented on their embedded advantages and weaknesses, 
respectively. Some improvement possibilities are also 
proposed for further research  references. Novel meth-
ods are accelerating biomarker discovery and provide 
valuable information for translational bioinformatics 
research. Although they are in their infancy, a bright 
future is assured. In the big data era, this research direc-
tion should also be emphasized with the aim of translat-
ing the available datasets into biomarkers for diagnosis, 
prognosis and understanding of complex diseases.

Future perspective
With the availability of multilevel high-throughput 
data, computational methods of identifying biomark-
ers from data will become more and more important. 
We envision that the bioinformatics methods will 
become routine pipelines in biomarker discovery. The 
network model is a very powerful framework of orga-
nizing the heterogeneous data and characterizing the 
multiplex molecular relationships in cells. In precision 

medicine, the combination of intelligent computation 
and biomedical experiment will definitely accelerate 
biomarker discovery and validation.
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Executive summary

•	 Rational data integration and accurate learning algorithms from data are greatly expected to be designed and 
developed for biomarker discovery in complex diseases in precision medicine.

•	 Bioinformatics methods provide powerful tools and valuable pipelines for identifying critical network-based 
biomarkers from high-throughput data.

•	 Network components from the individual nodes and edges to integrative modules and pathways can 
malfunction synergistically and comprehensively to drive disease initiation and development. Multiscale 
modeling and measuring the disease dynamics from network models generate accurate disease biomarkers.

•	 Network-based biomarkers propose an insightful alternative to bridge the causal relationship between 
genotype and phenotype. Not only do they provide the signatures of diagnosis and prognosis of marking 
complex diseases, but also uncover the pathogenesis of the occurrence, development and progression of 
complex diseases.
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