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1. The performance of CEA using different 𝒅 and 𝑻 

In the CEA method, we introduced a randomization parameter 𝑑, which could help 

the algorithm to escape the local minimum. Larger 𝑑 will increase the variance of 

solutions identified by the algorithm. That is, the probabilities to find better solutions 

as well as worse solutions are both increased. Therefore, the algorithm need repeat 

sufficient times in order to find better solutions. Larger 𝑑 often requires more repeat 

times of algorithm. In this section, we conducted a simulated experiment to explore 

the effects of parameters 𝑑 and 𝑇 to the final result of CEA. 

The simulated datasets were extracted from the biological process (BP) domain of 

GO. We simulated the active gene lists using a more appropriate approach (see below). 

Our simulation was based on the biological assumption that the active gene list 

derived from a specific biological experiment usually has close relationship with 

several biological processes. 

The original annotation matrix of BP domain, derived from the Bioconductor R 

package org.Hs.eg.db, contains 14614 genes and 13226 terms. We first filtered the 

terms and kept the terms that annotate 50 to 100 genes as candidate terms. Namely, 

too general or specific terms were filtered out. This preprocessing could avoid the final 

results have a large variance and reduce the total computation time. 

In the experiment, the following values of parameters 𝑑 and 𝑇 were considered: 

𝑑 = {0, 0.01, 0.1, 1, 10} , 

𝑇 = {1, 10, 50,100,200,500} , 

The detailed procedure of our exploration is as follows: 

1) Randomly select one term from the candidate terms into the current term 

combination, until the number of annotated genes is no less than 200. 

2) Randomly select 100 annotated genes from the genes annotated by the 

current term combination as the active gene list. 

3) For each 𝑑 and 𝑇, execute the CEA algorithm to compute the enriched term 

combinations using the given active gene list. 

4) Sort the identified term combinations based on the p-values of the Fisher’s 

exact test. 

5) Record the mean value of −𝑙𝑜𝑔10 (𝑝)  of the top 30 enriched term 

combinations. 

6) Repeat the above procedure for 100 times to achieve a robust result. 

The final results were shown in Figure S1. 
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Figure S1. The performance of CEA using different 𝒅 and 𝑻. For each 𝑑, a group of 

boxplots for each repeat times 𝑇 was plotted. The performance was evaluated by the 

negative logarithmic transformation of p-values. 

As expected, the results clearly showed that the performance of CEA can be 

significantly improved by introducing the randomization parameter 𝑑 and CEA needs 

more repeat times to achieve a desired performance when 𝑑 increasing. 

Generally, for a fixed 𝑑, the performance of CEA will be improved if more repeat 

times is executed. The performance of CEA would be very poor when the repeat times 

is insufficient (e.g. 𝑑 = 10  and 𝑇 ≤ 10 ). However, the performance cannot be 

improved infinitely by increasing the repeat times 𝑇 . For enough large 𝑇 , the 

marginal improvement becomes very small. Therefore, the users should balance the 

trade-off between the performance and the computation time. 

We can roughly estimate an appropriate repeat times �̃� for a given 𝑑 from the 

above results. It seems that �̃� = 500𝑑 would be enough for good performance. In 

this paper, we selected 𝑑 = 1 and 𝑇 = 500 as the default values to execute the CEA 

algorithm. 
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2. The preprocessing of gene expression datasets 

In this work, we used real gene expression datasets of human complex diseases to test 

whether the term combinations identified by CEA are meaningful and closely related 

to the corresponding disease. The selection of gene expression datasets is based on 

the following criteria: 

1) Homo sapiens organism disease; 

2) Published (submission date) in recent ten years; 

3) A balanced number of case and control samples and the total number is at 

least 50; 

According to these criteria, four gene expression microarray datasets of human 

complex diseases were selected from the Gene Expression Omnibus repository [1] 

(http://www.ncbi.nlm.nih.gov/geo/), with accession number GSE4115, GSE11223, 

GSE9750, GSE36895, respectively, for real datasets analyses. 

As for lung cancer dataset (GSE4115 [2]), we combined the original primary and 

prospective datasets, which made a total of 97 and 90 smokers with and without lung 

cancer, respectively. For ulcerative colitis dataset (GSE11223 [3]), we only used the 

uninflamed samples in each cohort, which made a total of 66 ulcerative colitis patients 

and 69 healthy control donors. All samples of the cervical carcinogenesis dataset 

(GSE9750 [4]) were kept. As for renal cell carcinoma (GSE36895 [5]), the paired 

expression profiles of 23 clear-cell RCC patients and their related normal cortex were 

used for further analysis.  

For all expression datasets, we averaged the expression values of the probesets 

mapping on the same gene. The summaries of the preprocessed datasets are shown 

in Table S1. 

Table S1: The summary of gene expression datasets used in our work. 

Dataset accession number #disease #normal #genes 

lung cancer GSE4115 97 90 12493 

ulcerative colitis GSE11223 66 69 10506 

cervical carcinogenesis GSE9750 33 24 12494 

renal cell carcinoma GSE36895 23 23 20108 

  

http://www.ncbi.nlm.nih.gov/geo/
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3. Active gene lists used in the real data analysis 

For each microarray dataset, we generated a representative active gene list after 

preprocessing the original dataset. The detailed procedure of generating the active 

gene list is introduced in the main text. 

The active gene lists used as the input of each enrichment analysis method are 

listed as follows: 

Lung cancer (81): 
SLC5A1 PRUNE ATP8B1 NSUN3 HDGFRP3 STK38 AGPS TRIM36 DCLRE1C BTD RPL35A SOX9 DND1 C6 

TSR1 NNT ZNF160 TFE3 HTRA1 ADH6 PDE8B ZNF611 U2AF2 ECD TMEM110 GOSR2 GTF2H3 SUGP2 

MOCS2 PPP2R2D RPL18 P2RX4 NEDD9 SLC4A4 ADK PGF CRY1 EXT2 NOTCH2NL EIF2B3 CORO2A FGF14 

DMD DLAT DIP2A USP46 HAUS2 ALPK1 MAN1A2 PPM1D CEP57 DAPP1 PRDX2 NPFFR1 STX3 LAT FBXO9 

WWC3 TGDS ARID5A UBQLN4 GNPDA1 RHOQ TNFRSF1A CPE ODF2 PYGB FUT8 ZFR NUDT4 TXN DNAJC6 

MTPAP RRAGB ABHD17B IL13RA1 MSH6 MYO1C UNC93B1 MFSD11 KDELR3 

Ulcerative colitis (56): 
PLCB3 ELL MAPKAPK2 DOCK7 DOHH STK25 TBXA2R INPPL1 C6orf120 APOC1 CEP290 STK35 LARP1 

GTF2H5 PPP1R14B SBF1 DIRC2 BRD4 AXIN1 INSR SKIV2L PRCP B3GALT5 TAF12 VPS52 RPS29 ZNF304 

C14orf2 ITGA3 GAS6 ARF6 SPSB1 USP54 SLC2A8 GCA CCL11 SERPINF1 FBXL12 TBC1D2B MAN2A1 

HIST1H2BN GNB2 ACYP2 ARAF BLVRA HOMER3 PUS1 ACSM1 ADAL C3orf33 GBE1 COMP OXSR1 MVD 

MLXIP DDX6 

Cervical carcinogenesis (94): 
PITPNA ZDHHC3 GJA1 SYNGR1 KCTD15 ESR1 AHNAK TRPS1 CDKN2A KANK1 KRT13 KIF18B SYPL1 NAGK 

MCM6 LMBRD1 UBE2E1 CHMP2B SPRR3 USO1 GINS2 RPL10A NEK2 MCM2 ZNF586 DNMT1 POLD1 

RAD54L GOLGA4 CRYL1 GINS1 RPS12 SKP1 SLC24A3 UBE2C MAP2K4 CHAF1B PLCD1 KNTC1 PRDM2 

MCM5 ZNF415 TK1 KIF4A KIF2C AURKA CAPN7 TP53AIP1 CCNF LPAR6 SNX3 RPS6KA1 ATP6V1F 

LAPTM4A PPP2R5A ITM2B DUSP1 NUP62 ATP13A2 RPL29 ATP10D CENPF USP46 LIG1 ARHGAP10 STX7 

BBOX1 KLF4 CLCA4 SPAG5 TMEM9B DSC2 RYR1 LANCL1 SYNGR3 AVPR1B TPX2 PSMC3IP SASH1 MAPK10 

CDC20 CDT1 CDC45 GIGYF2 TRIM13 TIMELESS GALR3 SLC15A3 IL17RC CDC6 CLCN3 RALB DTL PERP 

Renal cell carcinoma (85): 
NPHS2 SPAG4 UMOD SFRP1 FGF1 SLC12A1 EGLN3 IGFBP3 ATP6V0D2 HK2 CALB1 GGT6 CWH43 CLDN8 

HILPDA HEPACAM2 LPPR1 ATP6V0A4 ACSF2 ANGPTL4 SCNN1G PTH1R CLIC5 FAM3B CLCNKB ENO2 SLIT2 

PPAPDC1A PRKCDBP FUT11 CRHBP TMPRSS2 PLCXD3 SAP30 SLC47A2 PTGDS HS6ST2 FXYD4 ATP6V1G3 

TYRP1 TCEAL2 TNNC1 DMRT2 CNTN1 HPD SER INA5 KNG1 GPD1L STAP1 C5 CAV1 PDK1 PTPRO RASL11B 

SLC26A7 GAS1 CAV2 TFAP2B LDHA NPHS1 TCF21 DDB2 SLC2A12 PACRG KCNJ10 DIO1 DACH1 ARHGEF26 

GPC3 BMPR1B SEC61G NRK ALDOA VEGFA MUC15 EIF4H CA10 MAN1C1 COL4A6 SOSTDC1 SOST 

ATP6V1C2 ATP6V1B1 ANGPTL1 FABP5 
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