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Background: Network biology
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» Usually graphs are used to represent these complex biological systems

*1D Vs 3D: 2D representation

* Nodes denote biological molecules and edges denote their relationships
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A quick view of Network biology

Size of the network: organism complexity

Hub: essential or
Evolutionarily

conserved
Node: biological molecules
molecule
‘ Clique: protein complex

Edge: physical, genetic
or regulatory
interaction,

Path: pathway

1. A mapping from graph theory to biology
2. Global topological properties
3. Local patterns of interaction
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Huge successes

Revealing the large scale organization and
evolutionary principles of a cell
o Cellular networks are scale-free

* Motifs are elementary units of cellular networks

e Topological, functional and dynamic robustness

NATURE REVIEWS | GENETICS VOLUME 5 | FEBRUARY 2004 | 101



% R — - ZHANGroup o

Is it enough to study the whole network?

* Observation: Although protein-protein
interactions are conveniently represented
as nodes and edges in a network, it is
important to note that each node in the
network represents several entities
(proteins in different tissues) and events
(transcription, translation, degradation,
etc) that are compressed in both space and
time.
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Network representation

GTF

Tranécriptional Regulation

»é SN

Hlstan modification

é Kinase

Although a series of regulatory events can
be conveniently represented as a node in
the network, the dynamics of the entities
and the biological processes that make up
the node are not captured.
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Subnetwork VS whole network?

Observation: Genome-wide network and subnetwork

can be very different

An example:

The current interactome maps cover only a small

fraction of the total interactome (3-15%).
Basic observation: the current interactome iIs scale free

Question: can we infer that the topology of complete

Interactome networks is scale free?



The answer is: No

Power law Truncated
Random Exponential dicuibution normal

distribution

At current coverage level the scale-free
topology of the maps can not be
extrapolated to the complete
iInteractome network.

Han et al.Nature Biotechnology, 2005
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Subnetwork?

e Many network-based studies focus on graph theoretical
analysis of nodes and edges within a single, global
biomolecular network. However, there exists a high level of
chemical and functional heterogeneity within the underlying
biomolecules, biomolecular interactions, and interactome
subnetworks.

e It remains an open question whether or not the global
properties of the full interactome extend to these
subnetworks.

 In addition, subnetworks may exhibit unique, emergent
properties that are absent in the conglomeration of the full
interactome.
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Studying subnetwork is important

Studying the
. -y individual gene
» Studying a group of condition S r protein
specific genes or proteins and
their relationships.

* The concept of subnetwork Subnetwork
IS very important and
extensively applied in different
contexts.

Studying the
genome-wide
network
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Subnetwork

e Subnetworks can reveal the complex patterns of
the whole-genome network

Temporal: The evolutionarily conserved subnetworks
Spatial: Protein complexes depending on the sub-cellular localization

Condition specific context: Subnetwork biomarker for diseases

« Novel subnetwork identification methods that are
flexible and efficient are still much needed.



Automatic modeling of signaling
pathways from protein-protein
Interaction networks
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Uncovering signal transduction networks from
high-throughput data by integer linear programming
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Outline

Background

Previous works on this topic

Signaling network reconstruction by integer linear
programming

Experimental results

Conclusions
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Background

Binding of growth
factor to receptor

Signal transduction

CyrosoL

» Movement of signals from outside the cell

to inside; Cells always receive different signals from
the physical environment and from other cells.

AN AR BN, (quorum sensing)
» Mediate the sensing and processing of

stimuli; Many cellular decisions such as proliferation,

differentiation, development and other responses to external
stimuli are achieved by signal transduction.

lm R . . " - .
mﬁmb‘sﬁ"ﬂ » Abnormality in cellular information processing
ona JOV VMRS , areresponsible for diseases such as cancer,

heart disease, autoimmunity, and diabetes.
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Background (cont.)

Signal transduction processes are activated by multiple extracellular
factors as well as cell membrane receptors to mediate the
regulation of target gene expression.

Cells respond to signals by specific receptor proteins that can bind
those signals.

The ultimate cellular response to a signal may be the opening of ion
channels, the alteration of enzyme activities, or changes in gene
transcription.



Background (cont.)

Outside of cell
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An illustration of signal transduction from outside to inside of cell



MAPK signal transduction pathways in yeast
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Background (cont.)

Methods for detecting components in signaling pathways:
— Experimental methods:
e Knock out specific genes;

 Time consuming and expensive;

— Every reaction and component even in a relatively
simple signaling pathway requires a concerted and
decades-long effort.

— Many signaling components and mechanisms are
unknown. There is not a lot of kinetic data available with
which to create models of pathway component
interaction.

— Computational methods

 Knowledge based methods;
e Data based methods.
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Background (cont.)

e Knowledge based methods:
— Modeling pathways by ordinary differential equations;
— Modeling pathways by Petri net
— Limited by the scale, lack of kinetic coefficients

e Data based (our focus):

— High-throughput techniques result in large mounts of
biological data.

— Recovering signal transduction pathways and identifying key
components from multiple data sources.
e Large scale.
* Data dependency.
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Previous works

NetSearch algorithm
Steps:

— Potential pathways detected by Depth First Search (DFS)
algorithm from PPl network;

— Ranking candidate pathways according to the clustering
results on gene expression data.

— The more the elements in candidate pathways overlap with a
cluster, the more likely they are true components.

Ref: “Automated modelling of signal transduction networks”, BMC Bioinformatics
2002, 3:34.
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Previous works (cont.)

Ordering the signal pathway with score function

Steps:

— Assume the components in a signaling pathway are known. Only
the order of the components is unknown

— Find the candidate pathways by using PPIs, i.e. assign each order
a score

— Ordering the signal pathways by using gene expression data
(pairwise correlation coefficients).

Ref: “A computational approach for ordering signal transduction pathway

components from genomics and proteomics data”, BMC Bioinformatics, 5, 158,
2004
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Previous works (cont.)

Color coding

Given a weighted PPl network
— Find candidate signaling pathways by a variant of color coding algorithm;

— Assemble top-scoring candidate pathways into signaling network.

 Ref: “Efficient Algorithms for Detecting Signaling Pathways in Protein Interaction
Networks”, Journal of Computational Biology 2006.



Previous works (cont.)

* Problems lying in the previous work:

— Individual signaling pathways are identified and then
heuristically rank and assemble them into a signal transduction
network;

— Multi-stage tends to lead to local optimal solutions.

A one-stage method with global optimal solutions is
needed
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Our ideas about recovering signaling
networks

Proteins involving in a same signaling pathway tend to interact with
each other

The model tries to find a subnetwork with highest sum of edge
weights (there is a tradeoff between the sum of edge weights and
the number of edges) from a membrane protein (receptor) to a
transcription factor in a big protein-protein interaction (PPI)
network.

The extraction process is formulated into an integer linear
programming model, which will be relaxed into a linear
programming in the practical applications



e ZRANGroup 5

Recovering signaling networks by integer linear

programming
VI Vi V[V
a;; — PPI strength
Min 30 Y e
=1 =1 =1=1 e X;— binary variable for
s.t. e < o protein |
€ij <X
* ¢;— binary variable for

Z e;; > 1, 17 1s a membrane protemn or TF protein interaction (i,j)

J
Z e;;j > 2x;,1f'i 1s not a membrane protem or TF ° A — penalty parameter

j

* One step and global model

x; = 1,117 1s a membrane protein or TF o

v €401}, i=1,2,--,|V]
e €401}, i, j =12, .|V
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Experimental results

= Experimental data:

o Yeast protein interaction network with ~4,500 nodes and
~14,500 edges.

= Pre-process:

o Find the paths of length 6-8 from the PPI network using the
Depth-first search,;

o The reduced network consist of all possible candidate
pathways.



Pheromone response (linear path)

Color
coding

FAR1

15 5 R B

We find additional
components. Such
redundant mechanisms
can compensate single
protein disruptions and
maintain signal
transduction unblocked
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e pheromone response (signaling network)

Results by results by results by
Netsearch color coding ILP
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Filamentation pathways(signaling network)

Results by results by
Netsearch ILP
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Cell wall integrity (linear path)

KEGG

TXIITY
$000600

o B
Color

coding ILP

Our method can detect
the exact pathway that
other algorithms found
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These results on known yeast MAPK signaling pathways
demonstrate that the ILP model can recover the known signaling
pathways, and the reconstructed STNs match most parts of those
published results

Compared with existing methods, our method is much simpler in
both algorithm and computation because it can detect the signaling
networks from protein interaction data directly in an integrated and
accurate manner

Our method can handle a large scale system without numerical
difficulty due to the LP algorithm.
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Conclusion and future work

Proposed LP algorithm is effective for inferring the signaling
network; It is a one-stage method and does not need heuristic
ranking and assembling

Protein interactions have no timing information. In the future,
we will integrate PPIs with gene expression data for signaling
network detection, which will make the detection more realistic

We will also explore the further application of the method to
other signaling networks except MAPK pathways.



Optimization model for condition
specific subnetwork identification
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Condition specific subnetwork identification
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Subnetwork

e Subnetworks can reveal the complex patterns of
the whole-genome network

Temporal: The evolutionarily conserved subnetworks
Spatial: Protein complexes depending on the sub-cellular localization

Condition specific context: Subnetwork biomarker for diseases

« Novel subnetwork identification methods that are
flexible and efficient are still much needed.
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Problem formulation

* |nput:

G=(V,E) is the network with n nodes V ,V,. ... V,.
We use a symmetric weight matrix W to
quantify the connectivity strength (for example,
W can be the edge confidence scores for
biomolecular interaction or functional linkage
networks). WUZO, I, j=1, 2--*n.

Every node V. is associated with a profile (for
example gene expression data, or other
properties related to the nodes). We consider
the simplest case (weight f).



G=(V, E) and edge weight
Matrix {W, 1,j=1,2,...,n }

IJ?

information f;, f,, f,....f,
for molecules

/

Optir;ﬂzation model

max ZZWuXiXJ‘ +AZ fiX;
j i

S.t.

|

i

7 3 e e

Condition specific subnetwork
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Then we have two objects:

Choose as many as possible edges within the subnetwork
(maximize the interconnectivity within the subnetwork)

Maximize the degree of association between the
subnetwork nodes and the specific condition.

We introduce a parameter to integrate them.

We introduce a regularization constraint that limit the
number of nodes selected.

Parameter f is introduced to adjust the strength of
regularization applied to the variable x=(x!,x?,...,x")

When B=2, this is a trust region problem which optimizes a
guadratic function

When B=1, the L1-type constraint will lead to a sparse
solution, i.e., many of the entries will be zeros
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Computational complexity

* |f we focus only on the first term of objective function,
our model can be used to find the maximum clique in an
weighted graph (the Motzkin-Struss Formalism for
computing maximal cliques, Motzkin-Straus Theorem,
1965)

e Both the maximum cardinality and the maximum weight
clique problems are NP-hard.

 Biomolecular networks are often large in scale. In yeast
the protein-protein interaction network is estimated to
have about 6,000 nodes and 50,000 interactions.

40
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A fast algorithm for large-scale problem
The KKT condition is:

—ZZWUX,XJ A X+ a( X+ X x4 )P 1) = X,

S—L=O:>yi=—2(VVX)i—/1fi+aﬂxiﬂ‘l i=12,---,n
Xi

ILIIXIZO i:1,2,"’,n
X, 20, 420 1=1,2,---,n

xlﬂ+x2ﬂ+x3ﬂ+---+xnﬁ:1

Then we can use the following iterative algorithm to quickly
converge to a local minimum satisfying KKT condition:

;
2X WX+iZfiXV S _ tz(\Nx).Mf))ﬂ (xt —2WX); +2;) )/13
o = i
p

! af3 2XTWX + 4" fix




Proof of Correctness
Lagrangian function
L ——ZZWUXIXJ —/IZ fx +a(x’ +x/+x0+- 4+ xP —1)—Zyixi

Complementarity Slackness:

[2Wx); + AT, —affx " 1% =0

Lagrangian multipier value: a= 2(xTWx+/12 f.x)/ g

2(Wx), + A 1.
afp
L 2(WX). + AT

af

Update rule: X. <—£

At Convergence X =£ , ] satisfies KKT condition



-
Proof of Convergence

Introducing auxiliary function

G(x,x’) Is an auxiliary function of L(x) if

G(x,X") <L(x), G(X,X)=L(X)

set X" =argmax, G(x,x")

L(X(t) ): G(X(t), X(t)) < G(X(t+1), X(t)) < L(X(t+1) )
L(x® )< L(x® )< L(x® )<---

L(x) is monotonically increasing and is bounded from up. Thus
the algorithm converges
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Proof of Convergence (cont)

Key: (1) find auxiliary function, (2) find global maxima

The auxiliary function is
X

X. X . n

G(x,x) =D, X"W;x';(1+log - )+ A X —a (D % -1)
P N =1 [

First order derivativ%'G(X " |

) _ o X WX0, +Afx" —apfx/
OX; X.
2nd order derivative: is negative definite
2 ' ' '
T L XDt aB(B- DX,
O%;OX; X; ‘

Thus G(X,X’) is concave In X. we can obtain global maxima.
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Notes on the model

e To relax the variable from integer to continuous
variable in [0,1], we get a quadratic programming
problem. The meaning can be the probability of that
node to be a biomarker.

 The hardness of this programming depends on the
network structure, maybe many local minimums
exist. So careful choose of initial solution is
necessary.

 We provide a deterministic way to replace the

current heuristic based methods for subnetwork
identification.



FiInding the disease related subnetwork

Protein—protein interaction network Gene expression profiles

(PPI) B Phenotype 1

] Phenotype 2

Samples
81 82 83 sd4 s5 6

a1

gé -

\ /- Gene expression matrix

Disease related subnetworks
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Type 2 diabetes related subnetwork

 Type 2 diabetes mellitus is a complex disease
with profound impact on health and longevity.

e |tis estimated to affect more than 150 million

people worldwide by the World Health
Organization statistics.



Data integration

* The basic network Is protein interaction network

&
=

We assembly the protein-protein interaction data in human have
7,903 proteins and 44,422 interactions. We make the sparse (the
percentage of protein pairs that interact is only 0.14%.) denser by
considering indirect interaction. In this way, we get a weighted protein-
protein interaction network with 724,144 edges (2.3% of all protein
pairs, a 16-fold increase in network size).

e Disease related data Is confidence of association
with T2D

We collected 2503 genes related to T2D and each gene is assigned a
confidence score to be T2D candidate gene



CASP10

(d)
They are closely related to insulin-degradation, signal
transduction, and metabolism functions.
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Why “pilot study”?

e First, the present protein-protein interaction network
in human is noisy and far from complete.

e Second, our basic assumption is that subnetworks are
better biomarkers than single proteins, which needs
further experimental and clinical verification especially
for complex diseases such as T2D.

e Further research directions include validation of the
effectiveness of subnetwork biomarkers, and
improvement of the subnetwork identification
algorithm.



- 7i ﬁd{},\aﬁ oR

Conclusions

 We propose a general framework to integrate
two different kind of data.

* To find the disease related subnetwork is only
a special case.

e We develop a general methodology to deal
with it.



Take-home messages

e Subnetwork concept is very important.

* |n essence it provides a efficient way to
integrate heterogeneous data sources



