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Central dogma of molecular biology
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Transcription factors (TFs) are proteins that dynamically read and interpret
the static genetic instructions in the DNA
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Basic building blocks for gene regulatory network

‘ Transcriptional Factor

Bl Target Gene

Gene Regulatory Network

==l Physical Interaction
== s Genetic Interaction

Cooperative Interaction
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Transcriptional network

Genetic network

TF Cooperative Network




Gene regulatory network inference
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Time series data of gene expression Indirect influence among genes
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Physical interactions between TFs and target genes
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What IS TF cooperativity?

Ts

Indirect interaction
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Li, T., et al. Science. (1995)

Li, T., et al. Nucleic Acids Research.
(1998)

Structure of the MAT a1/a2 TF complex bound to DNA fragment in yeast
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Wolberger, et al. Cell, (1999)

TF Interactions /n
Drosophila
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Feedforward Loop Multi-Input Motif
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Here, a master regulator binds to the promoter of a
second regulator, then both regulators bind a common

Lee, T. et al. Science (2002)
target gene.
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TF-TF cooperativity Is important

e Transcription factors usually cooperate with other TFs to
facilitate (as an activator) or inhibit (as a repressor) the
recruitment of RNA polymerase

e TFs use complex logic rules building upon simple ones (AND, OR,
and NOT) to control the precise condition-dependent
expression of target genes

e The idea of combinatorial regulation as a primary mechanism
for achieving fine-tuned transcriptional control

 One reason for the complexity of gene regulatory network.



$ i s ZHANGroup

Can we predict TF cooperativity?

 Experimental methods for detecting TF interaction
include co-immunoprecipitation and super-gel shift.

e These methods are generally time-consuming and
expensive.

e |tis difficult to apply them to mapping the whole-
genome TF cooperativity network in the living cell.



e Case studies

e Using information from a single data source
such as TF binding motif, target gene, and TF
activity

e Unsupervised framework
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Our work

Main idea: first supervised framework to
integrate all the available data together

Challenges:
Scarcity of gold-standard data

Collection and assessment of genomic
predictors for TF cooperativity

Optimally integrate these predictors



Part I: Collecting features
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Model eukaryote: Yeast

We choose Saccharomyces cerevisiae as our model eukaryote
since many different types of genome-wide data sources are
available in yeast.

174 TFs and 6000 target genes

ChlP-chip data: 143 TFs, 4,774 TGs, and 16,656 transcriptional
regulations

Literature data: 162 TFs, 4,716 TGs, and 17,616 transcriptional
regulations

108 TFs have 281 specific DNA binding motifs
Sequence for the 6000 target genes

5,193 proteins and 111,883 protein interactions

Many gene expression data under different conditions
41,984 co-evolutionary linkages among 3,047 proteins



Literature data ChIP-chip data
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List of Features

15 TF pair features that potentially correlate with TF
cooperativity relationships.

TF physical/genetic interaction
TF co-expression,
TF co-evolution relationships

The degree of overlap among the corresponding
target genes (TGs) based on literature, ChIP-chip, and
motif occurrence evidence (3 features)

The degree of coherence among the corresponding
target genes (TGs) in terms of co-expression, co-
function, and interaction, based on literature, ChlIP-
chip, and motif occurrence evidence (9 features)
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TG overlap

e Cooperative TFs tend to share larger number of
target genes than expected by chance

e We developed two scores, a p-value score and an
enrichment score, to assess the significance of
TG overlap for a pair of TFs.

e For a given TF pair, to determine whether the
observed TG overlap m is statistically significant,
we fix the total number TGs in the yeast genome
(N), the number of TGs regulated by the first TF
(N1), the number of TGs regulated by the second
TF (N2).
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An ennchment score is defined as the ratio of the observed TG

overlap versus the expected TG overlap by chance, as follows:

Nm
N,N,

F =

A score larger than 1 indicates that there is more TG overlap than
expected by chance.

e Let the number of TGs regulated by both TFs be a random
variable X. X follows a hypergeometric distribution:

(N
|‘.

P(X =i)=-

i AN ‘:Vj_ _j

"N-N, )

PN
)

e A p-value score, which is defined as the probability that the TG
overlap would assume a value greater than or equal to the
observed value, m, by chance:

m-1

P(X zm)=1-> P(X =1)
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TG coherence

The target genes of cooperative TFs tend to share
significant co-expression, co-function, and interaction
relationships.

First step: computing the pairwise co-expression, co-
function and interaction relationships for co-regulated TG
pairs

Second step: calculating the fraction of TG pairs with a

specific relationship (co-expression, co-function, or
interaction) for the co-regulated TG set.

Third step: calculating the fraction of TG pairs with the
same specific relationship for the entire set of TGs
regulated by any TF.

Fourth step: An coherence enrichment score is defined as
the ratio of these two fractions.



Assessing features
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Gold standard data

We compiled 25 TF pairs each belonging to the same
biochemically well-defined complex according to the MIPS
complex catalogue as our gold-standard positives (GSP).

We constructed an approximate gold-standard negative (GSN)
set for TF cooperativity by identifying all TF pairs that do not
belong to any known MIPS complex.

The GSP set is the only high-quality dataset of TF cooperativity
currently available, and is more restrictive.

The GSN set is expected to contain a small fraction of false
negatives.

Nevertheless, our results suggest that the quality of the GSP
and GSN sets are good enough to approximately assess the
contribution of each piece of evidence before integrating them
in an optimal way.

C e Y S e ZHANGrouP
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TF 1 Gene name

TF 1 ORF name

TF 2 Gene name

TF 2 ORF name

MIPS complex ID

MIPS complex name

ARGBS0 YMRO42W MCM1 YMROA43W 510.190.120 ARG complex

ARGS0 YMRO42W ARGS1 YMLO99C 510.190.120 ARG complex

MET4 YNL103W CBF1_ YJRO60W 510.190.160.10____|Cbf1/MeW/MeR28 complex

MET 4 YNL103W MET32 YDR253C 510.190.160.30 | Meta/Met2&/Mel32 complex
510.190.160.10,  |Cof1/MeH/MeR8 complex
510.190.16020,  |MeW/Met28/Met31 complex

MET4 YNL103W MET28 YIR017C 510.190.16030  |MeW/Met28/Met32 complex

MET4 YNL103W MET31 YPLO3BW 510.190.16020 _ |MeW/Met28/Met31 complex

PIP2 YOR363C OAF1 YALOS 1W 510.190.100 OAF complex

STP4 YDLO48C STP2 YHROO6W 440.30.30 RNA splicing

STP4 YDLO48C S1P1 YDRAG3W 440.30.30 RNA spicing

CBF1 YJROGOW MET 28 YIR017C 510.190.160.10____|Cof1/MeH/MeR28 complex

R1G1 YOLOG7C R1G3 YBL10 510.190.130 [RTG complex

SWi4 YER111C SWI6 YLR182W 510.190.60 SBF complex

IME1 YJROC UMES YDR207C 510.190.200 UmeBAme1 complex

MCM1 YMRO43W ARGS1 YMLO99C 510.190.120 ARG complex

SWI6 YLR182W MBP1 YDLOS6W 510.190.70 MBF complex

GALB0 YMLO51W GAL4 YPL248C 510.190.80 GAL8) complex

HAPS YOR358W HAP4 YKL109W 510.160 CCAAT -binding factor complex

HAPS YOR356W HAP2 YGL237C 510.160 W_gr-omng factor complex

HAPS YOR358W HAP3 YBLO21C 510.160 CCAAT -binding factor complex

MET 32 YDR253C MET28 YIR017C 510.190.160.30 __|Metd/Met28/Met32 complex

STP2 YHRO0SW STP1 YDR463W 440.30.30 RNA spiicing

HAP4 YKL109W HAP2 YGL237C 510.160 CCAAT binding factor complex

HAP4 YKL109W HAP3 YBL021C 510.160 CCAAT -binding factor complex

MET 28 YIR017C MET31 YPLO38W 510.190.16020 _ |MeW/MeR&/Met31 complex

HAP2 YGL237C HAPS YBLOZ21 510.160 T-Dinding factor complex




Likelihood ratio score

e Given the GSP and GSN datasets. The likelihood
ratio for a binary feature f taking on a particular
value (1 or O; presence or absence) is defined as the
fraction of GSP where the feature takes on the given
value, divided by the fraction of GSN where the
feature takes on the given value

e LR =Prob(f | GSP) / Prob(f | GSN)

* A likelihood ratio score much larger than 1 indicates
that the feature is a good predictor for TF
cooperativity.
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e Likelihood ratio scores can guide the choice of proper
cutoffs to convert numerical features into categorical
ones.

 We can quantitatively assess the predictive power of
each feature.

 Because the same gold-standard data is used
throughput the integration process, each feature can be
assessed on a common benchmark. Different features
are directly comparable by the likelihood ratio scores
even though the data sources are highly heterogeneous.
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Likelihood ratio score for TF cooperativity
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combination of p-value and enrichment score

e ZRANGTOM i

prediction

4.00

2.00

0.00

ChlP-chip data Motif occurrence data Literature data

B Control score 3. 20 2. .86 210
O Enrichment score only 3. 49 3. 31 2. 18
B P-value score only 8.99 9. 04 7. 39
Combination of p-value and enrichment 10. 48 10. 43 878

score
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Likelihood ratio score for TF cooperativity

Looking back: construction of the motif-occurrence transcriptional
regulatory network
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Frequency of motif occurrence
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Looking back: construction of the motif-occurrence transcriptional
regulatory network
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Integrating features
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Bayesian network method

For each TF pair, the prediction of cooperativity is based on
the calculation of the posterior odds of cooperativity given
the presence of genomic features.

The posterior odds for predicting the class label y (1 if exists
cooperativity, and 0 otherwise) by integrating genomic
features f1, f2,..., fn can be written as follows using the Bayes
rule:

oo PO =N Sof) (o Pr=D | P(fy.fyef, [¥=D)
TP(y=0|fi.fonuf,)  P(y=0) " P(fi.fr.f, | ¥=0)

where y=1 represents TF cooperativity and y=0 represents
non-cooperativity. f1 through fn are different genomic
features that are predictive for TF cooperativity.
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P(y=1|f1, f2,..., fn) is the probability that the TF pair
is cooperative given these features.

P(y=1)/P(y=0) is the prior odds.

P(f1, f2,...fn|y=1)/P(f1, f2,...,fn|y=0) is the likelihood
ratio for the combined features.

A TF pair is predicted to be cooperative if the
calculated posterior odds of cooperativity is greater
than a predetermined threshold.
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The simplest case: naive Bayes

 Genomic features are assumed to be conditionally
independent given TF cooperativity.

e |n this case, the likelihood ratio of the combined
features is equal to the product of the likelihood ratios
for individual features.

e P(f1,f2,...fn|y=1)/P(f1, f2,....fn|y=0)
=P(f1|y=1)/P(f1]|y=0)
*P(f2|y=1)/P(f2|y=0)

*

*P(fn|y=1)/P(fn|y=0)
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e However in our TF cooperativity prediction task,
the TG overlap feature and the TG coherence
features are not conditionally independent, as
they all rely on the target gene information and
are thus are partially redundant.

e |tis possible to learn the optimal Bayesian
network structure from training data, but this
problem is hard in terms of computational
complexity, and requires a large training data.

 We rely on prior knowledge to determine the
Bayesian network structure.
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P(A,F1,F2,F3,F5,F5,F6,F7,F8,F9,F10,F11,F12,F13,F14,F15)=
P(A)*P(F1|A)*P(F2|A)*P(F3|A)*
P(F4|A)*P(F7|A,F4)*P(F8|A,F4)*P(F9]A,F4)*
P(F5|A)*P(F10|A,F5)*P(F11]|A,F5)*P(F12|A,F5)*

Bayesian network structure
P(F6]A)*P(F13|A,F6)*P(F14|A,F6)*P(F15|A,F6)
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e Guiding rule: the structure should be as simple as
possible, i.e., maximize the number of conditional
independencies among features, while at the same
time still be able to capture the dominant
dependencies within data.

e Given the Bayesian network structure, we can
determine the posterior odds for every TF pair:

log PO = i fora) _1oq PO =D S0 PULIY =LS)
P(y=0|fi. f5.-..1,) P(y=0) 3 P(f, yv=0.5,)

 Where Siis the set of parent features that fi
conditionally depends upon.
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ROC plot comparison of our Bayesian network classifier,
naive Bayes classifier, and 15 individual feature based classifiers.
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Comparing with other machine learning methods



Question: Is it the best structure?

 The Bayesian network architecture we
proposed is the simplest that still captures the
important relationships between different
features for integrated prediction.

 We used the contingency tables to carefully
compare the substructures of our Bayesian
network with other possible substructures



TF cooperativity

iterature data
dased TG overls

Motif occurrence
data based TG overlap

TF cooperativity

Motif occurrence
data based TG overlap

IP-chip data basec
TG overlap

(b)

iterature data
IP-chip data basec yased TG overla
TG overlap




;!
9
8
0
0
3
2
0
3

The highlighted yellow region means this parameter cannot be
accurately estimated by full Bayesian network due to scarcity of gold-
standard positive data. Instead we give an estimated interval.
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Comparison with other methods

e Five existing methods.

(1) Jansen et al. used Bayesian networks to predict yeast protein-
protein interactions in general

(2) Datta et al. used log-linear models to predict cooperative
binding among cell cycle specific TFs.

(3) Banerjee et al. integrated genome-wide location data from
ChIP-chip and gene expression data to infer cooperative TF pairs

(4) Tsai et al. used statistical methods (ANOVA) to identify
synergistic pairs of yeast cell cycle TFs

(5) Balaji et al. used a specific network transformation procedure
to obtain a co-regulatory network
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Two Independent benchmark
datasets

 The first benchmark dataset is based on the KEGG
pathway database, and contains 48 TF pairs among
13 TFs that co-occur in at least one KEGG pathway.

e The second benchmark dataset is based on the

recently published high-quality experimental binary
protein-protein interaction map in yeast (CCSB-YI1)
by Yu et al. , and contains 17 interacting TF pairs
among 24 TFs.
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Balaji

Balaji

= Datta | Banerjee | Tsaietal. | Tsaietal. Tsai et al. Jansen
e Our | etal | etal [22] 22 [22 'E;]al' F;]"‘I' etal.
2 : q 2
[19] 20] (Doubtful) | (Plausible) | (Confident) (All) (Coro) 26]
# of overlapping TFs 13 4 8 7 8 6 13 13 7
# of possible wteractions -3 6 28 21 78 15 -3 -3 21
among overlapping TFs
KEGG e : y
pathway :ﬁiﬁﬁl‘:‘"eﬁz‘;ﬁ 48 6 20 15 18 9 48 48 13
database g pping
[63]1 (13 # of predicted mteractions iy o
TFs. 48 TF | among overlapping TFs 8 . 8 . ! & = “® &
pairs) i = : .
# of KEGG interactions that g 3 5 3 ] ] 45 33 5
are correctly predicted
Fisher's exact test p-value 0.016 1.0 0.87 0.34 0.64 0.86 0.071 0.079 0.37
# of overlapping TFs 20 2 11 2 3 1 18 18 8
# of possible interactions 190 1 55 1 3 0 153 153 28
among overlapping TFs
CCSB-YI1 | #of CCSB-YI1 interactions 13 0 2 0 0 0 12 12 3
dataset among overlapping TFs
[64] (24 ” " : "
TFs. 17TF | # of predicted interactions 5 1 > 0 1 0 01 50 >
. among overlapping TFs
pairs)
# of CCSB-YI1 interactions 5 0 0 0 0 0 3 3 1
that are correctly predicted
Fisher's exact test p-value 6.6x107 1.0 1.0 1.0 1.0 1.0 1.0 0.82 0.21




Biological results



Choosing cutoff for final prediction
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Positive predictive value

Percentage of positive prediction
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The posterior odds of TF cooperativity by our Bayesian network integration
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Validation of novel TF
cooperativity predictions

e Structural evidence in PDB

 We then manually curated TF cooperativity
information from PubMed abstracts and found that
most of the 159 predicted TF cooperativity
relationships are supported by one or more
published literatures (143 out of 159 are supported
by literature evidence including 21 gold-standard
positives).

e The extensive literature validation demonstrates the
overall high quality of the prediction results
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The heatmap for feature profiles of the predicted 159 TF cooperative relationships
Columns represent genomic features

Rows represent predicted cooperative TF pairs.
Red if the feature is present (f = 1), or green if the feature is absent (f = 0)
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Conclusion

Three machine learning ideas for the first time into the
prediction of transcriptional cooperativity.

First, we introduced a small set of well-constructed gold-standard
dataset, and emphasized its central role in our data integration
framework.

Second, we used graphical models such as Bayesian networks to
capture the casual relationships among genomic features. This
framework of transparent data integration is especially important
for our case, where the gold-standard data is scarce.

Third, our Bayesian network structure is pre-chosen by carefully
considering the optimal trade-off between predictive bias and
variance, and we only need to learn Bayesian network
parameters during training.

In general, our methodology can be applied to other genomic
data integration tasks where high-quality gold-standard positive
data are scarce.



