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Central dogma of molecular biology
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Transcription factors (TFs) are proteins that dynamically read and interpret
the static genetic instructions in the DNA
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Basic building blocks for gene regulatory network
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Gene regulatory network inference
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Time series data of gene expression Indirect influence among genes
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Li, T., et al. Science. (1995)

Li, T., et al. Nucleic Acids Research.

Structure of the MAT a1/a2 TF complex bound to DNA fragment in yeast



Wolberger, et al. Cell, (1999)

TF Interactions /n
Drosophila
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Feediorward Loop
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Here, a master regulator binds to the promoter

of a second regulator, then both regulators bind

Lee, T. et al. Science (2002)
a common target gene.



TF-TF cooperativity Is Important

Transcription factors usually cooperate with other TFs to
facilitate (as an activator) or inhibit (as a repressor) the
recruitment of RNA polymerase

TFs use complex logic rules building upon simple ones (AND, OR,
and NOT) to control the precise condition-dependent
expression of target genes

The idea of combinatorial regulation as a primary mechanism
for achieving fine-tuned transcriptional control

One reason for the complexity of gene regulatory network.
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Can we predict TF cooperativity?

 Experimental methods for detecting TF interaction
include co-immunoprecipitation and super-gel shift.

* These methods are generally time-consuming and
expensive.

e |tis difficult to apply them to mapping the whole-
genome TF cooperativity network in the living cell.
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Existing studies

e Case studies

e Using information from a single data source
such as TF binding motif, target gene, and TF
activity

e Unsupervised framework



Our work

Main idea: first supervised framework to
integrate all the available data together

Challenges:
Scarcity of gold-standard data

Collection and assessment of genomic
predictors for TF cooperativity

Optimally integrate these predictors



Part |. Collecting features
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Model eukaryote: Yeast

We choose Saccharomyces cerevisiae as our model eukaryote
since many different types of genome-wide data sources are
available in yeast.

174 TFs and 6000 target genes

ChlIP-chip data: 143 TFs, 4,774 TGs, and 16,656 transcriptional
regulations

Literature data: 162 TFs, 4,716 TGs, and 17,616 transcriptional
regulations

108 TFs have 281 specific DNA binding motifs
Sequence for the 6000 target genes

5,193 proteins and 111,883 protein interactions

Many gene expression data under different conditions
41,984 co-evolutionary linkages among 3,047 proteins
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List of Features

15 TF pair features that potentially correlate with TF
cooperativity relationships.

TF physical/genetic interaction
TF co-expression,
TF co-evolution relationships

The degree of overlap among the corresponding
target genes (TGs) based on literature, ChIP-chip, and
motif occurrence evidence (3 features)

The degree of coherence among the corresponding
target genes (TGs) in terms of co-expression, co-
function, and interaction, based on literature, ChlIP-
chip, and motif occurrence evidence (9 features)
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TG overlap

s tend to share larger number of

target genes than expected by chance

 We developec
enrichment sc
TG overlap for

e Foragiven TF

two scores, a p-value score and an
ore, to assess the significance of
a pair of TFs.

pair, to determine whether the

observed TG overlap m is statistically significant,
we fix the total number TGs in the yeast genome
(N), the number of TGs regulated by the first TF

(N1), the num
TF (N2).

ber of TGs regulated by the second
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e An enrlchment score is defined as the ratio of the observed TG
overlap versus the expected TG overlap by chance, as follows:

Nm

NN,
A score laiger vian 1 indicates that there is more TG overlap than

expected by chance.

e Letthe number of TGs regulated by both TFs be a random
variable X. X follows a hypergeometric distribution:

F_

‘N, N-N,)

I N Ny,—-1
P(X =i)=- f}v";

e Ap .. ___. _}. Y2) _ sdefined as the probability that the TG
overlap would assume a value greater than or equal to the
observed value, m, by chance:

m—1

P(X zm)=1-> P(X =1i)
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TG coherence

The target genes of cooperative TFs tend to share significant co-
expression, co-function, and interaction relationships.

First step: computing the pairwise co-expression, co-function
and interaction relationships for co-regulated TG pairs

Second step: calculating the fraction of TG pairs with a specific
relationship (co-expression, co-function, or interaction) for the
co-regulated TG set.

Third step: calculating the fraction of TG pairs with the same
specific relationship for the entire set of TGs regulated by any TF.

Fourth step: An coherence enrichment score is defined as the
ratio of these two fractions.



Assessing features
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Gold standard data

e We compiled 25 TF pairs each belonging to the same
biochemically well-defined complex according to the MIPS
complex catalogue as our gold-standard positives (GSP).

 We constructed an approximate gold-standard negative (GSN)
set for TF cooperativity by identifying all TF pairs that do not
belong to any known MIPS complex.

e The GSP set is the only high-quality dataset of TF cooperativity
currently available, and is more restrictive.

e The GSN set is expected to contain a small fraction of false
negatives.

 Nevertheless, our results suggest that the quality of the GSP
and GSN sets are good enough to approximately assess the
contribution of each piece of evidence before integrating them
in an optimal way.
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TF 1 Gene name [TF 1 ORF name [TF2 Gene name TF 2 ORF name MIPS complex ID MIPS complex name

ARGHRD i MRO42W MM IR0 3V 510,190,120 ARG complax

ARGHED ¥ MEO42W ARGET YMLOBEC 510,190,120 ARG complax

MET 4 W IRLTO3W CZBF1 W JRDE0W 510.190.160.10 Chi1iMatl/Mat28 comphax

MET 4 Y LTO3W MET32 YORZ53C 510.190.160.30 Maatd/Mat2 BiMat 32 complax
510.190.180.10, Chi1iMatl Mat2 8 comphax
510.190.180 20, Matl/Mat28/Mat3 complax

MET 4 L 1030 MET 28 YWIRDATC 510.190.160.30 Matl/Mat2BiMal32 complax

MET 4 Bl e MET31 P LOEEW 510,190,160 20 Matl /M2 BIat3] complax

PIP2 YOR3EIC CAF WALDETW 510.190.100 QAF complax

S TP4 YOLMEC STPZ H FODGW 440,30 30 tHMNA splicing

STP4 YL BC STP1 WO FAE 3N 440,30 .30 R MNA splicing

CBF1 Y JRDG0W MET 28 YWIRDATC 510.190.160.10 Chi1iMatl/Mat28 comphax

RTGA YOLOETC RTG3 YBEL103C 510.190.130 RTG complax

SW I YER111C SWIG WLRTE2W 510.190.60 SBF complax

IME 1 Y JRO8C UMES YOR20TC 510,190,200 Umshimal complax

MK RO W ARGE1 WIMLOBEC 510,190,120 ARG complax

SWIG LR 1820 MEP1 WOLOEEW 510.190.70 MEF complax

GALBD Y IMLOSTW ALY YPL24 B0 510.190.80 GALEBD complax

HAPS YOR358W HAP4 LT OEW 510.160 CCAAT Jbinding factor complax

HAPS Y OR35EW HAFZ WEL23TE 510,180 CCAAT -binding factor complax

HAPS Y OR35EW HAFP3 YBELOZ21C 510,180 CCAAT Sbinding factor complax

MET 32 Y DHR253C MET 28 YWIRDATC 510.190.150.30 Matd/Mat2B8IMat32 complax

= Y HROOGW STP1 i 440,30 30 tHMA splicing

H AP 4 LT 0BW HAFZ WEL23TE 510,160 CCAAT -binding factor complax

H AP 4 LT 0RW HAP3 YELOZ21C 510,180 CCAAT Jbinding factor complax

MET 28 YIRD1TC METS1 WP LO3EW 510.1890.150.20 Matl/Mat2BiMat3l complax

HAPZ YGEL23TCE HAF3 I‘fEﬂ LO21C 510,180 CCAAT -binding factor complax




Likelihood ratio score

* Given the GSP and GSN datasets. The likelihood
ratio for a binary feature f taking on a particular
value (1 or O; presence or absence) is defined as the
fraction of GSP where the feature takes on the given
value, divided by the fraction of GSN where the
feature takes on the given value

e LR =Prob(f | GSP) / Prob(f | GSN)

* A likelihood ratio score much larger than 1 indicates
that the feature is a good predictor for TF
cooperativity.
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e Likelihood ratio scores can guide the choice of proper
cutoffs to convert numerical features into categorical
ones.

 We can quantitatively assess the predictive power of
each feature.

 Because the same gold-standard data is used
throughput the integration process, each feature can be
assessed on a common benchmark. Different features
are directly comparable by the likelihood ratio scores
even though the data sources are highly heterogeneous.



Likelihood ratio score

Assessment of the genomic features
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Looking back: Guide the choice of parameters
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Looking back: combination of p-value and enrichment score

12.00 —

10.00 —

8.00 —

Likelihood ratio score
for TF cooperativity 6.00 —

prediction
4.00
2.00 — SRaRt
000 e
ChIP-chip data Motif occurrence data Literature data
B Control score 3. 20 2. .86 2. 10
O Enrichment score only 3. 49 3. 31 2. 18
W P-value score only 8. 99 9. 04 7. 39
B Combination of p-value and enrichment 10. 48 10. 43 878
score




Likelihood ratio score for TF cooperativity
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Looking back: construction of the motif-occurrence transcriptional
regulatory network
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Looking back: construction of the motif-occurrence transcriptional
regulatory network

-
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Frequency of motif occurrenceFrequency of motif occurrenceFrequency of motif occurrence,

only and motif orientation motif orientation, and inter-
motif distance

Likelihood ratio score for TF cooperativity



Integrating features
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Bayesian network method

For each TF pair, the prediction of cooperativity is based on
the calculation of the posterior odds of cooperativity given
the presence of genomic features.

The posterior odds for predicting the class label y (1 if exists
cooperativity, and O otherwise) by integrating genomic
features f1, f2,..., fn can be written as follows using the Bayes
rule:

log P =1ffyuf) | PO =D PUfi.fref, [V =1)
P(y=0|fi.fsrf,)  P(y=0) " P(fi.frf, | ¥=0)

where y=1 represents TF cooperativity and y=0 represents
non-cooperativity. f1 through fn are different genomic
features that are predictive for TF cooperativity.
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P(y=1]|f1, f2,..., fn) is the probability that the TF pair
is cooperative given these features.

P(y=1)/P(y=0) is the prior odds.

P(f1, f2,....fn|y=1)/P(f1, f2,...,fn|y=0) is the likelihood
ratio for the combined features.

A TF pair is predicted to be cooperative if the
calculated posterior odds of cooperativity is greater
than a predetermined threshold.
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The simplest case: naive Bayes

 Genomic features are assumed to be conditionally
independent given TF cooperativity.

e |n this case, the likelihood ratio of the combined
features is equal to the product of the likelihood ratios
for individual features.

e P(f1, f2,...fn|y=1)/P(f1, f2,...,fn|y=0)
=P(f1|y=1)/P(f1]|y=0)
*P(f2|y=1)/P(f2|y=0)

*

*P(fn|y=1)/P(fn|y=0)
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e However in our TF cooperativity prediction task,
the TG overlap feature and the TG coherence
features are not conditionally independent, as

they all rely on the target gene information and
are thus are partially redundant.

e |tis possible to learn the optimal Bayesian
network structure from training data, but this
problem is hard in terms of computational
complexity, and requires a large training data.

* |n this paper, we rely on prior knowledge to
determine the Bayesian network structure.
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Bayesian network structure
P(F6|A)*P(F13|A,F6)*P(F14|A,F6)*P(F15|A,F6)
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e Guiding rule: the structure should be as simple as

possible, i.e., maximize the number of conditional
independencies among features, while at the same
time still be able to capture the dominant
dependencies within data.

Given the Bayesian network structure, we can
determine the posterior odds for every TF pair:

P(y=1) &, P(f|y=18)

.P(-l:l ﬁ.”f:....ufﬁj =1Gg —Zl{:}g

lo
EP(}' =0| fi. fr.oo 1) P(yv=0) I P(f.|yv=0.5)

Where Si is the set of parent features that fi
conditionally depends upon.
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naive Bayes classifier, and 15 individual feature based classifiers.
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Comparing with other machine learning methods



Question: Is It the best structure?

 The Bayesian network architecture we
proposed is the simplest that still captures the
important relationships between different
features for integrated prediction.

 We used the contingency tables to carefully
compare the substructures of our Bayesian
network with other possible substructures
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The highlighted yellow region means this parameter cannot be
accurately estimated by full Bayesian network due to scarcity of gold-
standard positive data. Instead we give an estimated interval.
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Comparison with other methods

Five existing methods.

(1) Jansen et al. used Bayesian networks to predict yeast
protein-protein interactions in general

(2) Datta et al. used log-linear models to predict cooperative
binding among cell cycle specific TFs.

(3) Banerjee et al. integrated genome-wide location data from
ChIP-chip and gene expression data to infer cooperative TF
pairs

(4) Tsai et al. used statistical methods (ANOVA) to identify
synergistic pairs of yeast cell cycle TFs

(5) Balaji et al. used a specific network transformation
procedure to obtain a co-regulatory network
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Two Independent benchmark
datasets

e The first benchmark dataset is based on the KEGG
pathway database (63), and contains 48 TF pairs

among 13 TFs that co-occur in at least one KEGG
pathway.

* The second benchmark dataset is based on the
recently published high-quality experimental binary
protein-protein interaction map in yeast (CCSB-YI1)

by Yu et al. (64), and contains 17 interacting TF pairs
among 24 TFs.
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Datta | Banerjee | Tsaietal. | Tsaietal Tsai et al. Balaji | Balaji Jansen
Benchmark Our 5 5 5 et al. et al.
Dataset method FI ;l:1| F’TJ '[E}{]] | E)-o]ubtﬁﬂ) Ei}usib le) E'-o]nﬁden‘r} [°] [°] F: ;]1
- ' (Al (Core) | -7
# of overlapping TFs 13 it 8 7 8 6 13 13 7
# of possible interactions 73 6 28 1 78 15 -3 g 21
among overlapping TFs
KEGG N . .
pathway :;giEsgf:tei‘;“;;Z 48 6 20 15 18 9 48 48 13
database : = ppins
[63] (13 # of predicted interactions
TFs. 48 TF | among overlapping TFs 8 3 8 3 ! . 69 48 -
pairs) o : .
# of KEGG interactions that g 3 5 3 1 1 45 313 )
are correctly predicted
Fisher's exact test p-value 0.016 1.0 0.87 0.34 0.64 0.86 0.071 0.079 0.37
# of overlapping TFs 20 2 11 2 3 1 18 18 8
# of possible nteractions 190 ) 55 1 3 0 153 153 28
among overlapping TFs
CCSB-YI1 | #of CCSB-YI1 interactions 13 0 2 0 0 0 12 12 3
dataset among overlapping TFs
[64] (24 N ; . .
TF< 17TF | ® of predicted interactions 5 ) > 0 1 0 91 50 2
pairs) among overlapping TFs
# of CCSB-YI1 1'11‘reralcti0115 5 0 0 0 0 0 3 3 1
that are correctly predicted i
Fisher's exact test p-value 6.6x107 1.0 1.0 1.0 1.0 1.0 1.0 0.82 0.21




Biological results
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The posterior odds of TF cooperativity by our Bayesian network integration
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Validation of novel TF
cooperativity predictions

e Structural evidence in PDB

* We then manually curated TF cooperativity
information from PubMed abstracts and found that
most of the 159 predicted TF cooperativity
relationships are supported by one or more
published literatures (143 out of 159 are supported
by literature evidence including 21 gold-standard
positives).

e The extensive literature validation demonstrates the
overall high quality of the prediction results
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Conclusion-I|

Three machine learning ideas for the first time into the
prediction of transcriptional cooperativity.

First, we introduced a small set of well-constructed gold-standard
dataset, and emphasized its central role in our data integration
framework.

Second, we used graphical models such as Bayesian networks to
capture the casual relationships among genomic features. This
framework of transparent data integration is especially important
for our case, where the gold-standard data is scarce.

Third, our Bayesian network structure is pre-chosen by carefully
considering the optimal trade-off between predictive bias and
variance, and we only need to learn Bayesian network
parameters during training.

In general, our methodology can be applied to other genomic
data integration tasks where high-quality gold-standard positive
data are scarce.
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Conclusion-I|

The results can be used to improve the accuracy of
reconstructed transcriptional regulatory networks.

The method can be extended to the prediction of
cooperativity among three or more TFs.

Extending the method to higher eukaryotes where TF
cooperativity is expected to be more complex

To relate the alterations in these synergies to complex
human diseases.

Our method can be applied to study microRNA
cooperativity, and more generally the cooperativity
networks of any regulatory system in an organism.
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