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Gene regulation

Transcription 
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Transcription factors (TFs) are proteins that dynamically read and interpret
the static genetic instructions in the DNA
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Time series data of gene expression
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Transcriptional regulation inference

Physical interactions between TFs and target genes



What is TF cooperativity?
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Structure of the MAT a1/α2 TF complex bound to DNA fragment in yeast

Li, T., et al. Science. (1995) 

Li, T., et al. Nucleic Acids Research. 
(1998) 

Example 1



TF Interactions In 
Drosophila

Wolberger, et al. Cell, (1999)

Example 2



Example 3

Here, a master regulator binds to the promoter 
of a second regulator, then both regulators bind 

a common target gene.
Lee, T. et al. Science (2002) 



TF-TF cooperativity is important
• Transcription factors usually cooperate with other TFs to 

facilitate (as an activator) or inhibit (as a repressor) the 
recruitment of RNA polymerase

• TFs use complex logic rules building upon simple ones (AND, OR, 
and NOT) to control the precise condition-dependent 
expression of target genes 

• The idea of combinatorial regulation as a primary mechanism 
for achieving fine-tuned transcriptional control

• One reason for the complexity of gene regulatory network.



Can we predict TF cooperativity?

• Experimental methods for detecting TF interaction 
include co-immunoprecipitation and super-gel shift. 

• These methods are generally time-consuming and 
expensive.

• It is difficult to apply them to mapping the whole-
genome TF cooperativity network in the living cell. 



Existing studies

• Case studies 

• Using information from a single data source 
such as TF binding motif, target gene, and TF 
activity 

• Unsupervised framework



Our work

• Main idea: first supervised framework to 
integrate all the available data together

• Challenges:

1. Scarcity of gold-standard data

2. Collection and assessment of genomic 
predictors for TF cooperativity 

3. Optimally integrate these predictors



Part I: Collecting features



Model eukaryote: Yeast
• We choose Saccharomyces cerevisiae as our model eukaryote 

since many different types of genome-wide data sources are 
available in yeast.

• 174 TFs and 6000 target genes
• ChIP-chip data: 143 TFs, 4,774 TGs, and 16,656 transcriptional 

regulations 
• Literature data: 162 TFs, 4,716 TGs, and 17,616 transcriptional 

regulations 
• 108 TFs have 281 specific DNA binding motifs 
• Sequence for the 6000 target genes
• 5,193 proteins and 111,883 protein interactions 
• Many gene expression data under different conditions
• 41,984 co-evolutionary linkages among 3,047 proteins 
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List of Features
• 15 TF pair features that potentially correlate with TF 

cooperativity relationships.  
• TF physical/genetic interaction
• TF co-expression, 
• TF co-evolution relationships 
• The degree of overlap among the corresponding 

target genes (TGs) based on literature, ChIP-chip, and 
motif occurrence evidence (3 features)

• The degree of coherence among the corresponding 
target genes (TGs) in terms of co-expression, co-
function, and interaction, based on literature, ChIP-
chip, and motif occurrence evidence (9 features)



TG overlap
• Cooperative TFs tend to share larger number of 

target genes than expected by chance
• We developed two scores, a p-value score and an 

enrichment score, to assess the significance of 
TG overlap for a pair of TFs. 

• For a given TF pair, to determine whether the 
observed TG overlap m is statistically significant, 
we fix the total number TGs in the yeast genome 
(N), the number of TGs regulated by the first TF 
(N1), the number of TGs regulated by the second 
TF (N2).



• An enrichment score is defined as the ratio of the observed TG 
overlap versus the expected TG overlap by chance, as follows:

A score larger than 1 indicates that there is more TG overlap than 
expected by chance.

• Let the number of TGs regulated by both TFs be a random 
variable X. X follows a hypergeometric distribution:

• A p-value score, which is defined as the probability that the TG 
overlap would assume a value greater than or equal to the 
observed value, m, by chance:



TG coherence
• The target genes of cooperative TFs tend to share significant co-

expression, co-function, and interaction relationships. 
• First step: computing the pairwise co-expression, co-function 

and interaction relationships for co-regulated TG pairs 
• Second step: calculating the fraction of TG pairs with a specific 

relationship (co-expression, co-function, or interaction) for the 
co-regulated TG set. 

• Third step: calculating the fraction of TG pairs with the same 
specific relationship for the entire set of TGs regulated by any TF.  

• Fourth step: An coherence enrichment score is defined as the 
ratio of these two fractions. 



Assessing features



Gold standard data
• We compiled 25 TF pairs each belonging to the same 

biochemically well-defined complex according to the MIPS 
complex catalogue as our gold-standard positives (GSP).  

• We constructed an approximate gold-standard negative (GSN) 
set for TF cooperativity by identifying all TF pairs that do not 
belong to any known MIPS complex.  

• The GSP set is the only high-quality dataset of TF cooperativity 
currently available, and is more restrictive.

• The GSN set is expected to contain a small fraction of false 
negatives.  

• Nevertheless, our results suggest that the quality of the GSP 
and GSN sets are good enough to approximately assess the 
contribution of each piece of evidence before integrating them 
in an optimal way. 





Likelihood ratio score
• Given the GSP and GSN datasets.  The likelihood 

ratio for a binary feature f taking on a particular 
value (1 or 0; presence or absence) is defined as the 
fraction of GSP where the feature takes on the given 
value, divided by the fraction of GSN where the 
feature takes on the given value 

• LR = Prob(f | GSP) / Prob(f | GSN) 

• A likelihood ratio score much larger than 1 indicates 
that the feature is a good predictor for TF 
cooperativity. 



• Likelihood ratio scores can guide the choice of proper 
cutoffs to convert numerical features into categorical 
ones. 

• We can quantitatively assess the predictive power of 
each feature.

• Because the same gold-standard data is used 
throughput the integration process, each feature can be 
assessed on a common benchmark.  Different features 
are directly comparable by the likelihood ratio scores 
even though the data sources are highly heterogeneous. 
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Integrating features



Bayesian network method
• For each TF pair, the prediction of cooperativity is based on 

the calculation of the posterior odds of cooperativity given 
the presence of genomic features.  

• The posterior odds for predicting the class label y (1 if exists 
cooperativity, and 0 otherwise) by integrating genomic 
features f1, f2,…, fn can be written as follows using the Bayes 
rule:

• where y=1 represents TF cooperativity and y=0 represents 
non-cooperativity.  f1 through fn are different genomic 
features that are predictive for TF cooperativity.  



• P(y=1|f1, f2,…, fn) is the probability that the TF pair 
is cooperative given these features.  

• P(y=1)/P(y=0) is the prior odds.  

• P(f1, f2,…,fn|y=1)/P(f1, f2,…,fn|y=0) is the likelihood 
ratio for the combined features.  

• A TF pair is predicted to be cooperative if the 
calculated posterior odds of cooperativity is greater 
than a predetermined threshold.



The simplest case: naïve Bayes
• Genomic features are assumed to be conditionally 

independent given TF cooperativity.  

• In this case, the likelihood ratio of the combined 
features is equal to the product of the likelihood ratios 
for individual features. 

• P(f1, f2,…,fn|y=1)/P(f1, f2,…,fn|y=0)

=P(f1|y=1)/P(f1|y=0) 

*P(f2|y=1)/P(f2|y=0)

*…

*P(fn|y=1)/P(fn|y=0)



• However in our TF cooperativity prediction task, 
the TG overlap feature and the TG coherence 
features are not conditionally independent, as 
they all rely on the target gene information and 
are thus are partially redundant. 

• It is possible to learn the optimal Bayesian 
network structure from training data, but this 
problem is hard in terms of computational 
complexity, and requires a large training data.

• In this paper, we rely on prior knowledge to 
determine the Bayesian network structure.  
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• Guiding rule: the structure should be as simple as 
possible, i.e., maximize the number of conditional 
independencies among features, while at the same 
time still be able to capture the dominant 
dependencies within data. 

• Given the Bayesian network structure, we can 
determine the posterior odds for every TF pair:

• Where Si is the set of parent features that fi
conditionally depends upon.



ROC plot comparison of our Bayesian network classifier, 
naïve Bayes classifier, and 15 individual feature based classifiers.



Comparing with other machine learning methods
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Question: Is it the best structure? 

• The Bayesian network architecture we 
proposed is the simplest that still captures the 
important relationships between different 
features for integrated prediction.

• We used the contingency tables to carefully 
compare the substructures of our Bayesian 
network with other possible substructures 
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The highlighted yellow region means this parameter cannot be 
accurately estimated by full Bayesian network due to scarcity of gold-
standard positive data. Instead we give an estimated interval.
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Comparison with other methods
• Five existing methods.  
• (1) Jansen et al. used Bayesian networks to predict yeast 

protein-protein interactions in general 
• (2) Datta et al. used log-linear models to predict cooperative 

binding among cell cycle specific TFs. 
• (3) Banerjee et al. integrated genome-wide location data from 

ChIP-chip and gene expression data to infer cooperative TF 
pairs 

• (4) Tsai et al. used statistical methods (ANOVA) to identify 
synergistic pairs of yeast cell cycle TFs 

• (5) Balaji et al. used a specific network transformation 
procedure to obtain a co-regulatory network



Two independent  benchmark 
datasets

• The first benchmark dataset is based on the KEGG 
pathway database (63), and contains 48 TF pairs 
among 13 TFs that co-occur in at least one KEGG 
pathway.  

• The second benchmark dataset is based on the 
recently published high-quality experimental binary 
protein-protein interaction map in yeast (CCSB-YI1) 
by Yu et al. (64), and contains 17 interacting TF pairs 
among 24 TFs. 





Biological results
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The genome wide TF cooperation network(174 nodes and 159 edges)



Validation of novel TF 
cooperativity predictions

• Structural evidence in PDB

• We then manually curated TF cooperativity 
information from PubMed abstracts and found that 
most of the 159 predicted TF cooperativity 
relationships are supported by one or more 
published literatures (143 out of 159 are supported 
by literature evidence including 21 gold-standard 
positives).  

• The extensive literature validation demonstrates the 
overall high quality of the prediction results 
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Type-I

Type-I I

Type-I I I

The heatmap for feature profiles of the predicted 159 TF cooperative relationships  
Columns represent genomic features 
Rows represent predicted cooperative TF pairs. 
Red if the feature is present (f = 1), or green if the feature is absent (f = 0) 
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Conclusion-I
• Three machine learning ideas for the first time into the 

prediction of transcriptional cooperativity.  
• First, we introduced a small set of well-constructed gold-standard 

dataset, and emphasized its central role in our data integration 
framework.  

• Second, we used graphical models such as Bayesian networks to 
capture the casual relationships among genomic features.  This 
framework of transparent data integration is especially important 
for our case, where the gold-standard data is scarce.  

• Third, our Bayesian network structure is pre-chosen by carefully 
considering the optimal trade-off between predictive bias and 
variance, and we only need to learn Bayesian network 
parameters during training.  

• In general, our methodology can be applied to other genomic 
data integration tasks where high-quality gold-standard positive 
data are scarce.



Conclusion-II
• The results can be used to improve the accuracy of 

reconstructed transcriptional regulatory networks. 
• The method can be extended to the prediction of 

cooperativity among three or more TFs.  
• Extending the method to higher eukaryotes where TF 

cooperativity is expected to be more complex 
• To relate the alterations in these synergies to complex 

human diseases.  
• Our method can be applied to study microRNA 

cooperativity, and more generally the cooperativity 
networks of any regulatory system in an organism. 
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