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Q6: Aging and disease are known to be 
closely related. Can we see this 
relationship in the interactome?
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Aging Disease

Association 
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(1) Human disease genes are much closer to aging 
genes than expected by chance.

(2) Diseases can be categorized into two types 
according to their relationships with aging. 

Type I diseases have their genes significantly close to aging 
genes, while 
type II diseases do not.

(3) Aging genes make a significant contribution to 
associations among diseases.

Results
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Degree of 
aging 
genes

Average 
degree

Disease genes

Observed Random P‐value

<20 9.38 2.51 1.99 7.3e‐8

20‐50 33.33 8.53 7.05 7.8e‐7

50‐100 69.27 17.49 14.52 1.9e‐8

>100 139.81 33.86 28.82 1.4e‐7
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Association? 



(1) Human disease genes are much closer to aging 
genes than expected by chance.

(2) Diseases can be categorized into two types 
according to their relationships with aging. 

Type I diseases have their genes significantly close to aging 
genes, while 
type II diseases do not.

(3) Aging genes make a significant contribution to 
associations among diseases.

Results
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Two types based on connection 
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Two types show functional diversity



(1) Human disease genes are much closer to aging 
genes than expected by chance.

(2) Diseases can be categorized into two types 
according to their relationships with aging. 

Type I diseases have their genes significantly close to aging 
genes, while 
type II diseases do not.

(3) Aging genes make a significant contribution to 
associations among diseases.

Results
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Q7: Regarding to evolution principles, 
is the subnetwork and the whole 

interactome the same?
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TF subnetwork vs whole network
• We study evolutionary principles in the network 

of an important subset of proteins, the 
transcription factors (TFs).  

• TFs are important regulators of cellular 
processes at the transcriptional level.  

• The interactions and coordinated actions of 
multiple TFs in the TF network provide a 
primary mechanism for achieving fine-tuned 
transcriptional control in eukaryotes.
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Well-known result

Fraser HB, Hirsh AE, Steinmetz LM, Scharfe C, Feldman MW (2002) Evolutionary rate in the protein interaction network. Science 296: 750-752.

Hubs in the S. cerevisiae protein-protein interaction 
network tend to evolve more slowly than non-hubs 

A protein’s number of interaction partners exerts some influence on its evolutionary rate, 
most likely due to increased structural co-evolutionary constraints imposed by protein-
protein interaction (negative selection) . 15

http://www.sciencemag.org/content/vol296/issue5568/images/large/se1520393001.jpeg


Surprising findings

• Hubs in the yeast TF network tend to evolve 
more quickly than non-hubs;

• This result holds for all four major types of TF 
hubs: 

Interaction hubs that interact with many other TFs
Regulatory in-degree hubs that are regulated by many TFs
Regulatory out-degree hubs that regulate many TFs
Co-regulatory hubs that jointly regulate target genes (TGs) with 
many other TFs.

16Y. Wang, E. Franzosa, X.S. Zhang, and Y. Xia. Nucleic Acids Research, 38(18): 5959–5969, 2010.



TF networks

• We collected 174 yeast TFs and assembled the 
whole-genome TF network based on three types 
of associations: 

protein-protein interactions among TFs (forming the 
TF interactome)
transcriptional regulatory relationships among TFs 
(forming the TF transcriptional regulatory network)
joint regulation of target genes among TFs (forming 
the TF co-regulatory network)

17Y. Wang, E. Franzosa, X.S. Zhang, and Y. Xia. Nucleic Acids Research, 38(18): 5959–5969, 2010.



Evolutionary rate
• Evolutionary rate was measured as the KA/KS

ratio calculated over alignments between the 
coding sequences of  S. cerevisiae and their 
orthologs in S. paradoxus (the closest related 
yeast with a sequenced genome).

– KA/KS is the ratio of the rate of non-synonymous substitutions (KA) to the 
rate of synonymous substitutions (KS), and serves as an approximate 
measure of the strength of sequence selection acting on a protein 
(factoring out mutational background and translational selection).  

– Smaller KA/KS values are associated with heightened purifying selection 
(reduced evolutionary rate), while larger values are associated with neutral 
or adaptive evolution (increased evolutionary rate).
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20Y. Wang, E. Franzosa, X.S. Zhang, and Y. Xia. Nucleic Acids Research, 38(18): 5959–5969, 2010.

TF interaction hubs evolve fast

The evolutionary rate of TF hubs is significantly 
greater on average than the evolutionary rate of 
TF non-hubs (p = 0.04).

The mean of these sampled correlations between protein 
evolutionary rate and generic protein-protein interactions is 
significantly different from the observed correlation between 
TF evolutionary rate and TF-TF interactions (p < 1.0×10-6).



TF interaction hubs evolve fast

We conclude that TF-TF interactions and generic 
protein-protein interactions evolve in very different 
ways: hubs in the protein interactome tend to 
evolve more slowly than non-hubs, whereas hubs 
in the TF interactome tend to evolve more quickly 
than non-hubs.
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Network rewiring model
• We hypothesize that protein-protein interactions operate at a low 

level in the cellular network, and tend to be conserved during 
evolution.  

• On the other hand, TF-TF associations operate at a high level in 
the cellular regulatory hierarchy, and tend to rewire during 
evolution.  

• Protein-protein interactions are fundamental to the basic functions 
of a living cell; more interaction partners for a particular protein 
will lead to greater structural and functional constraint, resulting in 
negative selection. 

• In contrast, TF-TF associations are more easily changed in 
evolution compared to protein-protein interactions. Positive 
selection acts to fix specific TF-TF associations that are beneficial 
to a particular organism in a particular environment. The rewiring 
of TF-TF associations also encourages adaptive TF evolution.  25
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Lesson learned
• We observe that while generic protein hubs tend to evolve 

more slowly than non-hubs, TF hubs tend to evolve more 
quickly than TF non-hubs.  

• We made the surprising finding that two of the most 
important interactome subnetworks, the TF interactome and 
the protein interactome, are fundamentally different in terms 
of their function and evolution. 

• Our work demonstrates a high degree of functional and 
evolutionary heterogeneity within biological networks, and 
highlights the rich insights that can be gained from 
modeling biomolecular subnetworks. 27
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Single gene

Gene list

Network
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J.Wang, et al. NAR, 2011.



High-throughput data
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the Gene Ontology
Tool for the unification of biology

Nature genetics, 2000
GO structure: directed acyclic graph 30



the Gene Ontology
Tool for the unification of biology

Biological Processes

Molecular Functions

Cellular Components

Nature genetics, 2000

GO structure: directed 
acyclic graph 31



Ontology?
• 存在论（Ontology）是哲学的核心领域。顾名思
义，存在论即关于“存在”的理论，是关于存在
是什么以及存在如何存在的理论。存在论虽然是
在17世纪才由德国经院学者郭克兰纽（
Rudolphus Goclenius , 1547－1628）命名并由沃
尔夫（Christian, Freiherr von Wolff, 1679－1754
）加以完善并从理论上系统化，但就存在论这一
学问而言，则是早已由古希腊哲学确定了其基本
框架及理论内容的。事实上，存在论本身就是古
希腊哲学的主题形态。

32



GO annotations
GO annotations are associations made between gene products and the GO terms that describe them

Up to October 26, 2010, there have 
been more than 2,753,338 annotations 
covering 48 species in GO database

annotation

33



Gene Ontology Tools 
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Nucleic Acids Research, 2009, 37,1

Gene set enrichment analysis
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Types of Enrichment analysis
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Molecular systems biology, 2009

Normal DiseaseDisease

Only gene list is not enough!
The same gene list

Different phenotype 37



Nature, 2004

Regulatory network dynamics

Only gene list is not enough!
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In fact, “edge ontology” or 
“arrow ontology” has been 
suggested by a forward-
looking work. 

Inspired by the gene ontology, 
Lu et al. aim to build a similar 
hierarchical term structure for 
edges. 

However, edge ontology is still 
far from complete to describe 
the functional relationship in 
the network. In contrast, gene 
ontology has contained 32,862 
terms and 2,753,338 
annotations up to now. 

Trends in Biochemical Sciences, 2007

Edge ontology

39



Network-based gene ontology analysis

Gene set 
ontologyGene set

Blast2GO, 
GoAnnotator, 
Goanna, etc

FatiGO, 
DAVID, 
g:profiler,
BiNGO, etc

NOA

term1

term2 term3

term5term4term6

Hierarchical structure of 
Gene ontology terms

Single gene

network ?
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Link ontology

How to define the 
function of links based 
on gene annotation?

41
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Diversity and Coverage

Diversity is the average D(emn), which 
represents the functional consistency of edge 
emn with both nodes gm and gn,

Coverage is the average C(gm), which implies 
the coverage ratio of all functions on node gm, 
covered by the functions of all edges 
connecting to gm.

For a Network or Edge set,
A good assignment should have 
small diversity and large coverage

42



An example

? ?
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Network ontology

Based on the definition of 
link ontology, next we can 
further define network 
ontology via regarding 
the network as a set of 
links.
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Network ontology
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Result I: NOA works well in dynamic 
networks

48



Network rewiring of yeast 
transcription regulatory

TFs

Targets during sporulation Targets during cell cycleOverlapping targets 49



Network rewiring of Yeast 
transcription factor co-regulatory

Cell cycle
Sporulation
Both

We construct TF coregulatory
networks via adding an edge 
between two TFs if they have 
at least one common target 
gene

Most of nodes are the same in 
cell cycle and sporulation
networks, but the links are 
significantly different (Network 
rewiring)
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Results

Whole-
net cell 
cycle 
edge

Whole-
net cell 
cycle 
node

sub-net
cell cycle 
edge

sub-net
cell cycle 
node

Whole-
net 
Sporulati
on
edge

Whole-
net
Sporulati
on
node

sub-net
Sporulati
on edge

sub-net
Sporulati
on
node

Rank 12 101 20 20 33 335 54 163

# significant
terms

56 217 55 18 79 235 85 15

# terms 209 485 209 485 234 536 234 536

P-value 0.0006 0.0020 0.0017 0.0720 0.0029 0.1754 0.0107 0.3403
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Comparing methods: NOA vs GLM
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Comparing methods: NOA vs GLM
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Different stages in Alzheimer’s disease

Incipient

Moderate

Severe
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Results by two types of methods

GLM

NOA
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Result II: NOA can identify more 
specific and meaningful functional 

terms in static network
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KEGG pathways
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Specificity of different methods
S

pe
ci

fic
ity Level of terms reported by 

NOA and Gene List Methods 
(GLM) in GO structure.

Roughly, terms reported by 
NOA have deeper level than 
GLM.
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Results in KEGG pathway
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Webserver

• Input: 
– Species
– Edges of a network 

– Upload a file
– Directly paste in blank field 

– Cutoff
• Output: 

– Enriched GO terms by NOA and GLM
– Corresponding p-values
– Corresponding edges (or nodes)

60



Index page
http://www.aporc.ac.cn/noa
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Reports
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Discussion

Molecular Systems Biology, 2007

Annotations of genes are far from complete NOA is an important step towards 
annotating functions on a biological system 
since it actually offers a novel way to infer 
edge function additional with gene function.63



Take-home messages

• Network is powerful

• Network is a new platform

• Network can be dangerous

• More stories in network can be expected, 
but we need to ask a good question first!!!

64
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