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Q6: Aging and disease are known to be
closely related. Can we see this
relationship in the interactome?
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Abstract

One of the challenging problems in biclogy and medicine is exploring the underlying mechanisms of genetic diseases.
Recent studies suggest that the relationship between genetic diseases and the aging process is important in understanding
the molecular mechanisms of complex diseases. Although some intricate associations have been investigated for a long
time, the studies are still in their early stages. In this paper, we construct a human disease-aging network to study the
relationship among aging genes and genetic disease genes. Specifically, we integrate human protein-protein interactions
(PPIs), disease-gene associations, aging-gene associations, and physiological system-based genetic disease classification
information in a single graph-theoretic framework and find that (1) human disease genes are much closer to aging genes
than expected by chance; and (2) diseases can be categorized into two types according to their relationships with aging.
Type | diseases have their genes significantly close to aging genes, while type |l diseases do not. Furthermore, we examine
the topological characters of the disease-aging network from a systems perspective. Theoretical results reveal that the
genes of type | diseases are in a central position of a PPl network while type Il are not; (3) more importantly, we define an
asymmetric closeness based on the PPl network to describe relationships between diseases, and find that aging genes make
a significant contribution to associations among diseases, especially among type | diseases. In conclusion, the network-
based study provides not only evidence for the intricate relationship between the aging process and genetic diseases, but
also biological implications for prying into the nature of human diseases.
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Results

(1) Human disease genes are much closer to aging
genes than expected by chance.

(2) Diseases can be categorized into two types
according to their relationships with aging.

v Type | diseases have their genes significantly close to aging
genes, while

v type |l diseases do not.

(3) Aging genes make a significant contribution to
associations among diseases.
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Assoclation?

9045 genes in PPl network
226 105 1317
Aging \Overlap, Diseases

aging degree
genes Observed Random P-value

<20 9.38 2.51 1.99 7.3e-8
20-50 33.33 8.53 7.05 7.8e-7
50-100 69.27 17.49 14.52 1.9e-8
>100 139.81 33.86 28.82 1.4e-7
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Results

(1) Human disease genes are much closer to aging
genes than expected by chance.

(2) Diseases can be categorized into two types
according to their relationships with aging.

v Type | diseases have their genes significantly close to aging
genes, while

v type |l diseases do not.

(3) Aging genes make a significant contribution to
associations among diseases.
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Two types based on connection
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Two types show functional diversity

Table 2. Different GOA enrichments of ARD and NARD.

GO-ID ARD NARD Description
p-value #Genes p-value #Genes
3676 14e-4 156 1.1e-10(under) 68 nucleic acid binding
5634 3.2e-13 193 2.2e-7{under) 79 nucleus
6139 5.0e-19 194 3.7e-03(under) 113 nucleobase, nucleoside, nucleotide and nucleic acid metabolic proc
5622 1.1e-9 411 =0.01 391 intracellular
16301 24e-8 63 =0.01 44 oxidoreductase activity
30528 5.3e-15 112 =0.01 49 transcription regulator activity
43170 34e-11 313 =0.01 295 macromolecule metabolic process
3824 =0.01 206 1.6e-8 282 catalytic activity
5478 =0.01 58 3.9e-10 101 transporter activity
9055 =0.01 12 8.3e-7 56 catabolic process
9056 =0.01 29 2.5e-5 85 biosynthetic process
9405 =0.01 2 7.6e-7 20 cell surface
9929 =0.01 11 29e-7 60 ion transmembrane transporter activity
15075 =0.01 36 8.5e-6 37 channel activity
5941 =0.01 1 4.6e-4 (3} unlocalized protein complex
16740 =0.01 76 1.2e-5 129 hydrolase activity
16787 =0.01 88 1.9e-5 20 lyase activity
16874 =0.01 13 1.4e-7 113 cell differentiation

10



Results

(1) Human disease genes are much closer to aging
genes than expected by chance.

(2) Diseases can be categorized into two types
according to their relationships with aging.

v Type | diseases have their genes significantly close to aging
genes, while

v type |l diseases do not.

(3) Aging genes make a significant contribution to
assoclations among diseases.
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Q7: Regarding to evolution principles,
IS the subnetwork and the whole
Interactome the same?

13
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TF subnetwork vs whole network

* We study evolutionary principles in the network
of an important subset of proteins, the
transcription factors (TFs).

« TFs are important regulators of cellular
processes at the transcriptional level.

* The interactions and coordinated actions of
multiple TFs in the TF network provide a
primary mechanism for achieving fine-tuned
transcriptional control in eukaryotes.

14
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Well-known result

Hubs in the S. cerevisiae protein-protein interaction
network tend to evolve more slowly than non-hubs
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Fraser HB, Hirsh AE, Steinmetz LM, Scharfe C, Feldman MW (2002) Evolutionary rate in the protein interaction network. Science 296: 750-752.


http://www.sciencemag.org/content/vol296/issue5568/images/large/se1520393001.jpeg
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Surprising findings

* Hubs in the yeast TF network tend to evolve
more quickly than non-hubs;

 This result holds for all four major types of TF
hubs:

» Interaction hubs that interact with many other TFs
» Regulatory in-degree hubs that are regulated by many TFs
» Regulatory out-degree hubs that regulate many TFs

» Co-regulatory hubs that jointly regulate target genes (TGs) with
many other TFs.

Y. Wang, E. Franzosa, X.S. Zhang, and Y. Xia. Nucleic Acids Research, 38(18): 5959-5969, 2010. 16
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TF networks

 We collected 174 yeast TFs and assembled the
whole-genome TF network based on three types
of associations:

» protein-protein interactions among TFs (forming the
TF interactome)

» transcriptional regulatory relationships among TFs
(forming the TF transcriptional regulatory network)

» joint regulation of target genes among TFs (forming
the TF co-regulatory network)

Y. Wang, E. Franzosa, X.S. Zhang, and Y. Xia. Nucleic Acids Research, 38(18): 5959-5969, 2010. 1/
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Evolutionary rate

- Evolutionary rate was measured as the K,/Kq
ratio calculated over alignments between the
coding sequences of S. cerevisiae and their
orthologs in S. paradoxus (the closest related
yeast with a sequenced genome).

— Ku/Ks is the ratio of the rate of non-synonymous substitutions (K,) to the
rate of synonymous substitutions (Kg), and serves as an approximate
measure of the strength of sequence selection acting on a protein
(factoring out mutational background and translational selection).

— Smaller K,/Kg values are associated with heightened purifying selection
(reduced evolutionary rate), while larger values are associated with neutral
or adaptive evolution (increased evolutionary rate).

18
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TF interaction hubs evolve fast

We conclude that TF-TF interactions and generic
protein-protein interactions evolve in very different
ways: hubs in the protein interactome tend to
evolve more slowly than non-hubs, whereas hubs
In the TF interactome tend to evolve more quickly
than non-hubs.

21
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Network rewiring model

We hypothesize that protein-protein interactions operate at a low
level in the cellular network, and tend to be conserved during
evolution.

On the other hand, TF-TF associations operate at a high level in
the cellular regulatory hierarchy, and tend to rewire during
evolution.

Protein-protein interactions are fundamental to the basic functions
of a living cell; more interaction partners for a particular protein
will lead to greater structural and functional constraint, resulting in
negative selection.

In contrast, TF-TF associations are more easily changed in
evolution compared to protein-protein interactions. Positive
selection acts to fix specific TF-TF associations that are beneficial
to a particular organism in a particular environment. The rewiring
of TF-TF associations also encourages adaptive TF evolution. .



1 22

Level in regulatory hierarchy

0

Ayaueisiy Aiore|nbai ul |aAa7]

26



i e S . ZHANGrOup
| esson learned

 We observe that while generic protein hubs tend to evolve
more slowly than non-hubs, TF hubs tend to evolve more
quickly than TF non-hubs.

* We made the surprising finding that two of the most
Important interactome subnetworks, the TF interactome and
the protein interactome, are fundamentally different in terms
of their function and evolution.

« QOur work demonstrates a high degree of functional and
evolutionary heterogeneity within biological networks, and
highlights the rich insights that can be gained from
modeling biomolecular subnetworks. -
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the Gene Ontology

Tool for the unification of biology
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the Gene Ontology

Tool for the unification of biology
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GO annotations

GO annotations are associations made between gene products and the GO terms that describe them
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Up to October 26, 2010, there have
been more than 2,753,338 annotations
covering 48 species in GO database
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Gene Ontology Tools

Consortium Tools All tools, alphabetical listing

All tools, listed by category
Starred tools are those whose listings have been updated recently; unstarred tools may

Ontology or annotation browser longer be aciive.

Ontology or annotation search engine
Agile Protein Interaction Data Analyzer: direct link to tool » entry in GO tools li

Ontology or annotation visualization

Gr‘ltD|Dg‘f or annﬂtatiﬂln Editﬂr AmiGO*: direct link to tool » entry in GO tools listings

Database or data warehouse

Sﬂlﬁware |Ibraw Bioconductor®: direct link to tool * entry in GO tools listings

Statistical analYSlS BioPerl: direct link to tool * entry in GO tools listings

S”mmer_t'ﬂrpe tool Blast2GO: direct link to tool = entry in GO tools listings

Term enrichment

Text mining

Protein interactions

Functional Slml|arlt':,|" COBrA: direct link to tool + entry in GO tools listings

Semantic similarity

Other arlal"fﬂis Db for Dummies!: direct link to tool * entry in GO tools listings

FunCluster: direct link to tool  entry in GO tools listings 34

Functional Analysis of Transcriptional Networks: direct link to tool * entry in GO tools listings




User to input
agene list

Nucleic Acids Research, 2009, 37,1
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Table 1. List of 68 enrichment tools

Enrichment tool name Year of Key statistical method Category
release
FunSpec 2002 Hypergeometric Class T
Onto-express 2 Fisher’s exact; hyperg etic; binomial; dlli-square Class 1
3 N ) ct il EA Class I
3 hells et Class I
3 Lcflls exfic Class I
-3 eorfts Class I
GeneMerge 2003 Hypergeometric Class T
GoMiner 2003 Fisher’s exact Class 1
MAPPFinder 2003 Z-score; hypergeometric Class T
CLENCH 2004 Hypergeometric; chi-square; binomial Class T
GO::TermFinder 2004 hypergeometric Class T
GOAL 2004 Permutation Class I
GOArray 2004 Hypergeometric; Z-score; permutation Class T
GOStat 2004 Fisher's exact; chi-squre Class T
GoSurfer 2004 Chi-square Class [
OntologyTraverser 2004 Hypergeometric; Fisher's exact Class T
THEA 2004 Hypergeometric Class T
BINGO 2005 Hypergeometric; binomial Class T
FACT 2005 Adopt GeneMerge and GO::TermFinder statistical modules Class T
gfinder 2005 Fisher’s exact Class T
Gobar 2005 Hypergeometric Class T
GOCluster 2005 Hypergeometric Class T
GOSSIP 2005 Fisher's exact Class I
L2L 2005 Binomial; hypergeometric Class T
WebGestalt 2005 Hypergeometric Class T
BayGO 2006 Bayesian; Goodman and Kruskal's gamma factor Class T
eGOn/GeneTools 2006 Fisher's exact Class I
Gene Class Expression 2006 Z-statistics Class [
GOALTE 2006 Hidden Kripke model Class T
GOFFA 2006 Fisher's inverse chi-square Class T
GOLEM 2006 Hyerpgeometric Class T
JProGO 2006 Fisher's exact; Kolmogorov-Smirnov test; Class T
student’s /-test; Wilcoxon’s test; hypergeometric
PageMan 2006 Fisher's exact; chi-square; Wilcoxon Class T
STEM 2006 Hypergeometric Class T
WEGO 2006 Chi-square Class T
EasyGO 2007 Hypergeometric; chi-square; binomial Class [
g:Profiler 2007 Hypergeometric Class T
ProbCD 2007 Yule's Q; Goodman-Kruskal's gamma; Cramer's T Class T
GOEAST 2008 Hypergeometric Class T
GOHyperGAll 2008 Hypergeometric Class T
CatMap 2004 Permutations Class 1T
Godist 2004 Kolmogorov-Smirnov test Class 1T
GO-Mapper 2004 Gaussian distribution; EQ-score Class TT
iGA 2004 Permutations; hypergeometric; r-test; Z-score Class 1T
GSEA 2005 Kolmogorov-Smirnov-like statistic Class 1T
MEGO 2005 Z-score Class IT
PAGE 2005 Z-score Class IT
T-profiler 2005 £-Test Class 1T
FuncCluster 2006 Fisher's exact Class IT
FatiScan 2007 Fisher’s Exact Class TT
FINA 2007 Fisher's exact Class IT
GAzer 2007 Z-statistics; permutation Class TT
GeneTrail 2007 Hypergeometric; Kolmogorov-Smirnov Class 1T
MetaGP 2007 Z-score Class 1T
Ontologizer 2004 Fisher's exact Class IIT
POSOC 2004 POSET (a discrete math: finite partially ordered set) Class IIT
topGO 2006 Fisher's exact Class IIT
GO-2D 2007 Hypergeometric; binomial Class IIT
GENECODIS 2007 Hypergeometric; chi-square Class TIT
GOSim 2007 Resnik's similarity Class IIT
Pals 2008 Percent Class I11
ProfCom 2008 Greedy heuristics Class IIT
GOTM 2004 Hypergeometric Class LIT
ermineJ 2005 Permutations; Wilcoxon rank-sum test Class LIT
DAVID 2003 Fisher's Exact (modified as EASE score) Class LITT
GOToolBox 2004 Hypergeometric; Fisher's exact; Binomial 35 Class LIIT
ADGO 2006 Z-statistic Class ILIIL
FunNet 2008 Unelear Unclear




Types of Enrichment analysis

Table 2. Categorization of enrichment analysis tools

Tool category

Description

Indication and limitation

Sub-type of algorithms

Methods

Example tool

Class I:
singular
enrichment
analysis
(SEA)

Class 1I:
gene sel
enrichment
analysis
(GSEA)

Class II1:
modular
enrichment
analysis
(MEA)

Enrichment P-value is calculated
on each term from the pre-selected
interesting gene list. Then,
enriched terms are listed in a
simple linear text format. This
strategy is the most traditional
algorithm. Tt is still dominantly
used by most of the enrichment
analysis tools.

Entire genes (without pre-selec-
tion) and associated experimental
values are considered in the
enrichment analysis. The unique
features of this strategy are: (i) No
need to pre-select interesting
genes, as opposed to Classes I and
IT; (i) Experimental values inte-
grated into P-value calculation.

This strategy inherits key spirit of
SEA. However, the term-term/
gene-gene relationships are con-
sidered into enrichment P-value
caleulation. The advantage of this
strategy 15 that term-term/gene-
gene relationship might contain
unique biological meaning that is
not held by a single term or gene.
Such network /modular analysis is
closer to the nature of biological
data structure.

Capable of analyzng any gene
list, which could be selected from
any high-throughput biological
studies/technologies (e.g.
Microarray, ChIP-on-CHIP,
ChIP-on-sequence, SNP array,
EXON array, large scale sequence,
elc.). However, the deeper inter-
relationships among the terms
may not be fully captured in linear
format report.

Suitable for pair-wide biological
studies (e.g. disease versus con-
trol). Currently, may be difficult to
be applied to the diverse data
structures derived by a complex
experimental design and some of
the new technologies (e.g. SNP,
EXON, Promoler arrays).

Capable of analyzing any gene
lists, which could be selected rom
any high-throughput biological
studies/technologies, like Class 1.
Emphasis on network relation-
ships during analysis. ‘Orphan’
geng/term (with little relationships
to other genes/terms), that some-
times could be very interesting,
too, may be left out from the
analysis,

Global reference background

Local reference background

Neural network

Based on ranked gene list

Based on continuous gene values

Composite annolations

DAG Structure

Global annotation relationship

Fisher's exact
hypergeometric
chi-square
binomial

Fisher's Exact
hypergeometric
chi-square
binomial

Bayesian
Kolmogorov-Smirnov-like

t-Test
permutation
Z-score

Measure enrichment on
joint terms

Measure enrichment by
considering parents-child
relationships

Measure term-term global
similarity with

Kappa Statistics
Czekanowski-Dice
Pearson’s correlation

GoStat, GoMiner, GOTM,
BinGO, GOtoolBox, GFinder, etc.

DAVID, Onto-Express,
GARBAN, FatiGO, etc.

BayGO

GSEA, CapMap, etc.
FatiScan, ADGO, erminel,
PAGE, iGA, GO-Mapper,

GOdist, FINA, T-profiler,
MetaGP, etc.

ADGO, GeneCodis,
ProfCom, elc.

topGO, Ontologizer, POSOC, elc.

DAVID, GoToolBox, etc.

36
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Only gene list is not enough!

The same gene list
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Molecular systems biology, 2009 Y
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Only gene list is not enough!

Static
N Regulatory network dynamics
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Edge ontology

In fact, “edge ontology” or
“arrow ontology” has been
suggested by a forward-
looking work.

Inspired by the gene ontology,
Lu et al. aim to build a similar

hierarchical term structure for
edges.

However, edge ontology is still
far from complete to describe
the functional relationship in
the network. In contrast, gene
ontology has contained 32,862
terms and 2,753,338
annotations up to now.

Table 1. A prototype of an edge ontology

Inberaclian

Direction (hevael 1) Type (lewvel 1) | Sub-type Nevel 1) Spacification [ewvel V)
Direcied | Phesphorylation ’ Seine?  —2L
Tyrosing”  — 2
Other® .
Dephespharylation -
Tagging of proteins® R I
I Ubiguitylation II
{ Mlinked ———
| Glycosylation —» '
O-linked ———
| Methytation "I
Cleavage ol proleins® —_—
Diffugion —_—
Transiocation = [
| Active ranzpon _
Conformaional change (")
Chemical reaction” —
Catalysis I
Unknownictbes T
Uiedicarchied .BII'II.'-IIII;I. o —_— i o 3
Complex associaton™ ==
Binding o associalion” L
Digsociation +

Co-axprassion
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Blast2GO,
GoAnnotator,
Goanna, etc

J

FatiGO,
DAVID,
g:profiler,
BINGO, etc

e ZRARGroup

Network-based gene ontology analysis

¢ @
Single gene
o
o Ge
O’?fo/oe

( terml \

ﬂ

Gene set term2 | | term3

L N N\

term6 term4 term5
- ./
Hierarchical structure of
Gene ontology terms
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Link ontology




e ZRARGroup

Diversity and Coverage

2 S(t,T) — S (t.T)

D(T(E])= Z D(Emn]= Z Z

emnEE emnEE tETyn

2 |Tmn|

Diversity is the average D(e,,,), which

represents the functional consistency of edge

e, With both nodes g,, and g,,

S (t, = Tmn
cTE) =Y Cln= Y ¥ (t-Um'?n'j )

gm G gm €V teTy

Coverage is the average C(g,,), which implies
the coverage ratio of all functions on node g,,,
covered by the functions of all edges

connecting to g,,.
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An example

Au_uﬂbc (T=

=NETS

Aﬁmpmc el

auan

t4
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ENET)

AEEG: el

?
D(e,,)=0

2
6
Clgn)=C(g,)=1

THP =T, M TJ,_r
Die,,)
Clg,)
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Network ontology

Input networks Reference networks

v v NS _—
s HTY
1

|

R

union

p{XgO):min{fT} (f) (l}:f)

=
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Network ontology

Table 1. Test set and reference set of the four types of GO analysis methods:
whole-net NOA, sub-net NOA, whole-net gene list method, and sub-net gene

list method.

whole-net sub-net
NOA Test set Link list Link list
Reference set  Clique Background network
GLM Test set Gene list Gene list

Reference set  Yeast gene

Gene in background network

where GLM means gene list based method.
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Result I: NOA works well in dynamic
networks

48



Network rewiring of yeast
transcription regulatory

Targets during sporulation Overlapping targets Targets during cell cycle
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Network rewiring of Yeast

transcription factor co-regulatory

[

— Cell cycle
— Sporulation

—— Both -




Results

# significant

terms

Whole- | Whole- sub-net sub-net Whole- Whole- sub-net sub-net

net cell | net cell cell cycle | cell cycle | net net Sporulati | Sporulati

cycle cycle edge node Sporulati | Sporulati | on edge on

edge node on on node
edge node

51



& i S ZHANGTOUP
Comparing methods: NOA vs GLM

GLM GLM
whole-net sub-met

mmm GO term: cell cycle process

[ significant terms p-value<0.05
(A2)  Eother related tems

B

i

p-value=0 05

=

-log p-value of term
“cell cycle process”
.

=

Wholenet sLb-net
Yeast cell cycle TF CJNoA
co-regulatory network (A3) BEEGene List method {GLM) 52



ol cycle
m— Sporulation
{Bl} mmm Both

Yeast sporulation TF
co-regulatory network

-log p-value of term

rank( %)

GLM N GLM
whole-net sub-net
w50 term: sporulation
[ significant terms p-value<0.05
{EEI I other related terms
B
L G .
o
L=
ER :
pruaiue=0.05
8
o2 ]
L1 -
whoke-met sub-net
[_INCA
(B3) mNGene List method (GLM]
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Results by two types of methods

Type GO term Descniption (frequency in pathway/network) P-value
incipient CGOHG355 regulation of transcroption, DMNA-dependent (13728) 2.67e1{19
GOiN45944 positive regulation of transcription from ENA polymerase 11 promoter (97145 1.01e07
GORHT24 2 imtracellular signaling cascade (678) 1.93e-05
moderate CGOG 16 anti-apoptosis (1 1,22) 3.12e )6
GONNIT 165 signal transduction {1651} 6.17e-D6
GORHB355 regulation of transcription, DNA-dependent (1 1728) 4.15e115
SEVeTs GORHB355 regulation of transcoption, DNA-dependent (16728) | .90
GO G620 lipid metabolic process (1{/22) 750115
GOM4594 4 positive regulation of transcription from EMNA polvmerase 11 promoter (10/14) 5. 82e )7

Network type

O term (BP)

Description

Incipient GO:0016192 Vesicle-mediated transport

GO:0042325 Regulation of phosphorylation

GO 0005979 Regulation of glycogen biosynthetic process
Moderate GO 0043549 Regulation of kinase activity

GO 0048589 Developmental growth

GO D006 EOT Endocyitosis
Severe GO:0015918 Sterol transport

GO: 0006915
GO 0D0eS09

A poptosis
Membrane protein ectodomain proteolysis

where AD means Alrheimer's disease and BP means biclogical process

GLM

NOA
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Result II: NOA can identify more
specific and meaningful functional
terms in static network
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KEGG pathways
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SpeC|f|C|ty of different methods

Pancreatic cancer pathway
10

_|

Level of terms reported by
| NOA and Gene List Methods
(GLM) in GO structure.

Specificity

—

| Roughly, terms reported by
al | | 1 NOA have deeper level than
i GLM.

MOA GLM
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Results in KEGG pathway

Biological
Process
- 6-20 by GLM
Signaling Biological ¢ TopS ~ 6-20by
process regulation W . NOA _~
Signalin Signaling A lne
g transmissio biological
pathway n — ‘-'\
Negative regulation Regulation of Regulafion of
of biological cellular signaling
process process pathway
Negative Regufatio Regulation of _
regulation of of cell cell Regulation
cellular process death commupication of signaling
process
Regulation
Negative Regulation Positive regulation of s?gnaling
regulation of programmed of cell transductio Positive
~._ celldeath cell death commupnication regulation of
7_4//‘/ cell process .~
Negative regulation .
of programmed cell Regulation of

\\@//g# apoptosis

Negative regulation

Regulation of

\ of apoptosis Positive regulation ‘
k>\—/'/ ' of signaling ) i il e \
Anti- . transduction intracefiiar protein 59
\,\__/ kinase cascade
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Webserver

* |nput:
— Species
— Edges of a network
— Upload a file
— Directly paste in blank field
— Cutoff

* Output:
— Enriched GO terms by NOA and GLM
— Corresponding p-values
— Corresponding edges (or nodes)

60
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Index page

rt‘_‘Netl.morkDntologyAnalysis-'ﬁiﬁZﬁS.Z R EEN HEEE TED #5H) F o x

vebapps/NOA/NOA/index.htm - | B | | AT

.9 % & N S | Dfiley//C/apache-tomeat-7. *4. species Q|
@ [Biolnf_Group [JDatabase [JEntertainment [Journal [Paper searcher *JGoogle [ online @ MSsesE [&E4 [iscb [ KITPC - Programs [ b5 Eiessm®... [Lnkear » »
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24 alzheimer' s .. w @ Molecular Sy... ‘ [M Yubljana, slo... ‘ 6o Contact GO |i;;’£! Gene Ontolo... = . ‘ 60 The Gene On... |@_ L~

-~

T

Introduction NOA

Faste gene list or gene network here: (Examples: Yeast cell cycle TF co-regulatory network, )

Or upload a file containing gene list or gene network from local disk:

B . .

Upload a file containing reference gene list or reference gene network from local disk:
(Examples: Yeast TF co-regulatory network)

PG . .

Threshold: 0.05 61
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Introduction

Parameters explain.

R: Number of genes in reference set.

T: Number of genes in test set.

G: Number of genes annotated by given term in reference set.
O: Number of genes annotated by given term in test set.

T o

Biological Process

| GO: term p-value | corrected p-value | R | T | G | (0] | Term name

GO:0019752 |52E-6 | 0.0010 12211 319 |15 [10 | carboxylic acid metabolic process £
G0:0042180 52E6 0.0010 2211 319 |15 |10 |cellular ketone metabolic process
GO0043436 52E-6 0.0010 2141 [319 [15 |‘ID oxoacid metabolic process

'GO0044106 |52E-6 00010 12211 319 |15 |10 | cellular amine metabolic process

'GO-0044281 |52E-6 00010 12211 319 |15 [10 |small molecule metabolic process

'GO-0006082 |52E-6 00010 12211 319 |15 |10 |organic acid metabolic process

| GO:0006519 52E-6 | 0.0010 2211 (3192 |15 |10 | cellular amino acid and derivative metabalic process

| G0:0006520 52E-6 | 0.0010 2211 | 319 |15 (10 | cellular amino acid metabolic process

'GO-0009308 | 52E-6 00010 12211 319 |15 |10 |amine metabolic process

'GO:0006790 | 86E-6 | 0.0018 12211 (319 |6 |6 | sulfur metabolic process

Cell Component

| GO: term | p-value | corrected p-value | R | T | G | o] | Term name

|Qﬂ'ﬂﬂﬂﬁ?ﬂﬁ |') NnE A |I"\ alalary |')')‘I‘1 |'1'10 |RR |'J‘1 |r~hrnm::lin >
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Discussion

- unknown | S cerevisice  C.elegans  D.melanogaster  A.thaliana M. musculus H. sapiens

1
Biological
process

Molecular 7
function

Cellular
component

Molecular Systems Biology, 2007
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Take-home messages

* Network is powerful

* Network is a new platform

* Network can be dangerous

* More stories in network can be expected,

but we need to ask a good question first!!!
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