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Reduction of Networks

* Networks are powerful!
* Networks are complicated!
e Can we reduce the network?

RESEARCH ARTICLE

COMPUTATIONAL BIOLOGY

Reduction of Complex Signaling Networks
to a Representative Kernel

Jeong-Rae Kim,"? Junil Kim," Yung-Keun Kwon,'* Hwang-Yeol Lee,’
Pat Heslop-Harrison,” Kwang-Hyun Cho'*
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Editor's Summary: Red U Cl ﬂ g CO m p I eX | ty

The large and complex nature of the biochemical regulatory networks
that govern cell behavior provides a major challenge to the systematic
analysis of cell signaling.

However, most processes that reduce network complexity fail to
reproduce the dynamic properties of the original network. Kim et al.

describe an algorithmic approach to network reduction and
simplification that preserves the dynamics of the network.

They applied their approach to several networks in species from bacteria
to humans, producing simplified networks called "kernels”. Examination
of the genes represented by the kernel nodes provided insight into the
evolution of these core network genes.

Furthermore, the genes represented by the kernel nodes were enriched
In disease-associated genes and drug targets, suggesting that this type
of analysis may be therapeutically beneficial.

J.-R. Kim, et al. Sci. Signal. 4, ra35 (2011). 4
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Online cover

S- Suentéhng

This week features a Research

Article that describes an
algorithmic approach to
simplifying complex
signaling networks and
then examines the
properties of the nodes in
those simplified networks,
which may have implications
for drug targeting. The image
shows an artist's rendition of
a complex network overlaid
with the simplified one.



http://stke.sciencemag.org/cgi/content/abstract/4/175/ra35
http://stke.sciencemag.org/cgi/content/abstract/4/175/ra35

Introduction: Data reduction

> Reduction

» Data reduction is the transformation of numerical
or alphabetical digital information derived
empirical or experimentally into a corrected,
ordered, and simplified form (from wiki).



http://en.wikipedia.org/wiki/Kernel_(computing)
http://en.wikipedia.org/wiki/Kernel_(computing)
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Introduction: Network kernel

» Kernel (computing), the central component of
most operating systems (from wiki)

» We speculated that ... networks were built
around certain core structures or “kernels,”
which would be simpler to analyze without losing
essential information.

» An individual kernel can be defined broadly as a
simplified framework of a given complex
Interaction network that preserves the
dynamics and the output of the original
network.



http://en.wikipedia.org/wiki/Kernel_(computing)

How to study biological network?

Two general approaches:

() component-wise analysis of individual components
In the networks, as in studies of “minimal gene sets”




How to study biological network?

Two general approaches:
(i) computational analysis of simplified networks.
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How to study biological network?

More discussion:

The spanning tree network reduction approach reduces only the number of
edges while preserving all the nodes of the original network. secause the resutting

simplified network is a tree, it cannot preserve the dynamics of the original network if the original contains feedback loops (22—-25) or
feedforward loops (26, 27).

The approach taken by ltzkovitz et al. (12) replaces network motifs with
CGUs, which in principle can preserve the dynamics of a network only if the
Intrinsic dynamics of each network motif are identically implemented in the
CGU of the reduced network. However, it remains unclear how to implement such identical dynamics at each CGU.

Song et al. (18) proposed a reduction scheme that tiles a network with boxes
such that the shortest path length of any two nodes in a box is less than a
given number called a box size, where the size of the box is 1 + m, with m
the maximum of the shortest paths between two nodes in the boxX. However, the

resulting network does not contain any information on the direction or interaction type (activation or inhibition) of the edges; thus,
preservation of dynamic properties is not possible.

Using network symmetry, Xiao et al. (19) proposed a network reduction scheme
in which a set of nodes is grouped as one node if the rearrangement of their
position within the set does not change the network topology. This approach can be

effectively applied to a gene network containing many functionally redundant genes, but it is not effectively applicable to cell signaling
networks that usually contain many long cascades.

10



Kernel identification algorithm

e an algorithm that identifies a kernel systematically by
considering the relationship between a network’s

structure and its dynamics.
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Kernel identification algorithm

e Can not simultaneously taking into account the dynamics
of all possible subnetwork cases.

« To overcomes this difficulty by recursive sequential
replacement of the neighborhood subnetwork of
each node withh a smaller one that preserved the
same dynamics.

« Generally coarse-graining fail to preserve the
dynamical properties of a network.

12
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Kernel identification algorithm

Subnetwork replacement rule:

simulated the mathematical models of all two- and
three-node networks with ordinary differential
equations.

then clustered the two- and three-node networks
according to the similarity in their dynamics (Fig.
1B).

We verified that the clustering assignments were
similar between linear and Hill-type
mathematical models and among the parameter
values used. .



Kernel identification algorithm

e simulated the mathematical models of all two-
and three-node networks with ordinary
differential equations.

B
Positive Negative Incoherent Feedback
regulations regulations regulations regulations
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(i) Linear models

: dX
We constructed linear models ? = AX + B for the two- and three-node networks (P, PP, NN, PPP,
t

PNN. N. PN. NP. NPN. NNP. PNP. PPN. NPP, NNN. FBPP, FBNN. FBPN. FBNP) in Fig. 1B. For
X=(X,.X,. . X )(m=2or3). the stimulus (5) was given on X, (see Supplementary Figure
S13 for the detailed stimulus pattern) and. therefore. B is given by B=(5.0)" or B=(5.0.0)".
The matrix A4 for each network structure is given as follows:

—a 0 —a 0 —a a —a —a
P: A={ " ],N: A_( " ],FBPP: A_[ i u}FBNN: A:{ i 12]
My Ty —dy —dy ayy —dy —dy —dy

FBPN: A [a“ HHJ,FBNP A_[_a“ = J
ay, —y ay Ay
—ay, 0 0 —ay, 0 0 —ay, 0 0
PP: A=| a,, —a,, 0 NN: 4=| —a,, a,, 0 [.PN: A= a, a,, 0
0 Ay, Ay 0 sy ey 0 s A3
a 0 0 —a, 0 0 a, 0 0
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Stimulus pattern

B = (S,0) or B = (S,0,0)

The stimulus pattern used for the simulation of two- and three-node
network models. This pattern was used for both linear models and

nonlinear models.

0.8f
0.6}
0.4r

Stimulus

021

V%40 20 30 40 50 60 =
Time



Response patterns
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Six representative response patterns used for classification of two- and

three-node networks.
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Table S10. Simulation results for linear models of 18 network structures. We repeated the simulation
1000 times for randomly selected parameter sets. The table shows the distribution of the six response
types (see fig. S14 for the 6 response types) for the 1000 simulation results for each network.
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Multi-dimensional scaling map

for responses
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Subnetworks can be reduced or not!

The algorithm cannot replace D
. (i T

§ubnetworks. () when one n_ode ; Q P- —

In a three-node subnetwork is ]

also a component node of a self- Selt-feedback ~  Two-node

loops feedback loops

feedback loop, a two-node

feedback loop, or an intermediate ‘T/.' ) b, v

node of an incoherent , f’" ~

feedforward loop, or (i) when both _.

the indegree and the outdegree of . _CHPRURIE: Mgrer=l B
feedforward loops Outdegree =1

the node are >1

When a network cannot be reduced any E

further by the above reduction process, the

algorithm reduces the network by replacing : :

the neighborhood subnetwork of a set of \,J

edges, taking into account consistency of lT
the types of regulation among the /' \' %’

neighboring edges
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Kernel identl

Given signaling network G 1. E)y

algorithm

v

te1 |
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Kernel identification algorithm

"y

For each node viin | (except the input and oulput nodes)
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Kernels of the circadian networ

T e ZRANGroup o
k and integrin

pathway with node reduction percentages of 67% and 94%, respectively.
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Kernels of the networks of E. coli,
yeaSt and human with node reduction rates of 77%, 81%, and 81%

E. coli Yeast Human
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“node reduction percentage”

C
E. coli Yeast Human

Number of the total nodes 129 129 1953
Number of the input nodes 35 36 669
Number of the intermediate nodes 30 43 867
Number of the output nodes 64 50 417
Number of the reduced nodes 23 35 699
Node reduction percentage (%)* 77 81 81

*(Number of the reduced nodes/Number of the intermediated nodes) x 100

26
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Validation of the story

» The identified kernels preserved the input-output dynamics of the
original networks.

» Structural characteristics of networks and kernels
» a large proportion of the nodes within the kernels corresponded to
» essential genes,
» disease-associated genes,
» genes encoding drug targets, or
» genes that are part of synthetic lethal gene pairs.

» kernel nodes were encoded by genes conserved in multiple
species, suggesting low evolutionary rates,

» encoded proteins present in various tissues, suggesting that
these kernel-associated genes may serve core cellular functions.

» provide a reduced form of a given network, and this smaller network
may provide insight into the design principles of complex
biomolecular interaction networks, as well as suggest effective ways
to perturb or manipulate the network.



Validation of the story

» The identified kernels preserved the input-output dynamics of the
original networks.




@ Boolean models aroup

To compare the similarity of dynamics between each signaling network and the corresponding kernel.
we constructed Boolean models as follows:

1) Every node has one value: 0 or 1.

2) Because we usually do not know the exact Boolean logic of large-scale networks. we consider
only two cases: every Boolean logic 15 ‘AND’ or every Boolean logic 1s “OR”.

3) We used the standard Boolean model. For example. let X activate Y and Z inhibit Y. If the Boolean
logic 15 *AND", then the next state of Y 1s determined by the previous states of X and Z as follows:

X Z Y
0 0 0
1 0 1
0 1 0
1 1 0

If the Boolean logic 1s ‘OR’, then the next state of Y 15 determined by the previous states of X and Z
as follows:

e E=E=1

X
0
1
0
1

[EE e T T g

4) For a constant stimulation given to input nodes, we compared the steady state responses of the

output nodes (we used the average of the output node states over the last 100 time steps as the steady
state value of an output node). As an example. let us consider two steady state response vectors. S1

and S2. composed of the steady state values of N output nodes. Then, the response coherency 1s

defined as the average of 1-d(S1.52)/N for all possible input node perturbations where d(A.B)

denotes the absolute distance measure between two vectors A and B. The response coherency

between the original network and its kernel 1s a measure of how similar the response profiles of the 3
kernel are to those of the original network.

Preserved the input-output %

dynamics or not
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Preserved the input-output

dynamics or not

Table S1. Response coherency between the original signaling network and the corresponding kernel.
See Supplementary Model Descriptions for details.

AND logic OR logic
E. coli 1 0.998
Yeast 0.981 0.981
Human 0.938 0.966

32



Validation of the story

» Structural characteristics of networks and kernels
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Motif comparison in ...

A
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Fig. S5. The frequency distributions of three-node subnetworks in the signaling networks of E. coli
and yeast compared with the distributions of these subnetworks 1n their kernels.
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Human kinases are more connected
than those of E. coli or yeast.
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Validation of the story

» a large proportion of the nodes within the kernels corresponded to
» essential genes,
» disease-associated genes,
» genes that are part of synthetic lethal gene pairs.




Enrlchment of essential genes, disease
genes, and synthetic lethal genes
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Validation of the story

» kernel nodes were encoded by genes conserved in multiple
species, suggesting low evolutionary rates,

» encoded proteins present in various tissues, suggesting that
these kernel-associated genes may serve core cellular functions.
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Tlssue broadness and species

broadness of kernel nodes
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Validation of the story

» genes encoding drug targets
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Network kernel and drug targets

Because most kernel nodes in the human signaling
network can be mapped to diseases, so how about
network kernel vs. drug targets?

Essentialgenes Disease genes
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Network kernel and drug targets

Drug targets are enriched in the backbone network
composed of middle-degree nodes (6 to 38 connections)

A
N
D-
A
uw A
it A
=T A A
) a
= 0 A2
Qo A
‘_'Jc;-
-3 A
@
s e e N A S S A
U_lnﬁ A
o A a
S A
A
=
- Fa¥. o WY
o a0 a

1 2 5 10 20 50 100
K

PL0S Comput. Biol. 5, e1000550 (2009)
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Network kernel and drug targets

DrueBank =<3

Open Data Drug & Drug Target Database

What is DrugBank?

The DrugBank database is a unique bioinformatics and cheminformatics
resource that combines detailed drug (i.e. chemical, pharmacological and
pharmaceutical) data with comprehensive drug target (i.e. sequence, structure,
and pathway) information. The database contains 6829 drug entries including
1435 FDA-approved small molecule drugs, 134 FDA-approved
biotech (protein/peptide) drugs, 83 nutraceuticals and 5210 experimental
drugs. Additionally, 4438 non-redundant protein (i.e. drug
target/enzyme/transporter/carrier) sequences are linked to these drug entries.
Each DrugCard entry contains more than 150 data fields with half of the
information being devoted to drug/chemical data and the other half devoted to
drug target or protein data.

Nucleic Acids Res. 2011 Jan:39:D1035-41.



Network kernel and drug targets

Drug targets were enriched in the kernel (Fig. 6, A and B),

which is consistent with the previous work
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Summary

Kernel identification algorithm

The identified kernels preserved the input-output dynamics of the
original networks.

Structural characteristics of networks and kernels

a large proportion of the nodes within the kernels corresponded to
» essential genes,
» disease-associated genes,
» genes that are part of synthetic lethal gene pairs.

» kernel nodes were encoded by genes conserved in multiple
species, suggesting low evolutionary rates,

» encoded proteins present in various tissues, suggesting that
these kernel-associated genes may serve core cellular functions.

» genes encoding drug targets

provide a reduced form of a given network, and this smaller network
may provide insight into the design principles of complex

biomolecular interaction networks, as well as suggest effective ways,
to perturb or manioulate the network.
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