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Network systems biology
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» Usually graphs are used to represent these complex biological systems
*1D Vs 3D: 2D representation
* Nodes denote biological molecules and edges denote their relationships
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A quick view of network biology

Size of the network: organism complexity

Hub: essential or
Evolutionarily
conserved

Node: biological molecules

molecule

Edge: physical, genetic , | (Quai-)Clique: protein complex

or regulatory

Interaction,
1. A mapping from graph theory to biology
2. Global topological properties
3. Local patterns of interaction

Path: pathway
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Huge successes

Revealing the large scale organization and
evolutionary principles of a cell

» Cellular networks are scale-free

» High clustering in cellular networks

» Motifs are elementary units of cellular networks

» Hierarchy organization of topological modules

» Modular organization of networks

» Topological, functional and dynamic robustness

> ...

Nature Reviews Genetics, 2004



Is it enough to study the whole

network?

Observation: Although protein-protein

Interactions are conveniently represented as
nodes and edges in a network, it is important to
note that each node in the network represents
several entities (proteins in different tissues)
and events (transcription, translation,

degradation, etc) that are compressed in DOth
space and time.
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Biological complexity of networks
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Although a series of regulatory events can
Cytoplasm =~ be conveniently represented as a node in
the network, the dynamics of the entities

_ and the biological processes that make
Molecular Systems Biology 5:294 up the node are not captured.
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Subnetwork vs whole network?

* Observation: Genome-wide network and
subnetwork can be very different.

« An example:

1. The current interactome maps cover only a
small fraction of the total interactome (3-15%).

2. Basic observation: the current interactome is
scale free.

3. Question: can we infer that the topology of
complete interactome networks is scale free?
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Subnetwork?

« Many network-based studies focus on graph theoretical
analysis of nodes and edges within a single, global
biomolecular network. However, there exists a high level
of chemical and functional heterogeneity within the
underlying biomolecules, biomolecular interactions, and
Interactome subnetworks.

* It remnains an open guestion whether or not the global
properties of the full interactome extend to these
subnetworks.

 In addition, subnetworks may exhibit unique, emergent
properties that are absent in the conglomeration of the full
Interactome.
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Studying subnetwork Is
Important

Studying the
individual gene
or protein

 Studying a group of condition
specific genes or proteins and
their relationships. \
* The concept of subnetwork is Subnetwork
very important and extensively
applied in different contexts.

Studying the
genome-wide
network
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Subnetwork

« Subnetworks can reveal the complex patterns of
the whole-genome network

Temporal: The temporally conserved or diverse subnetworks
Spatial: Protein complexes depending on the sub-cellular localization

Condition specific context: Subnetwork biomarker for diseases

« Novel subnetwork identification methods that are
flexible and efficient are still much needed.
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Automatic modeling of signaling pathways
from protein-protein interaction networks

Published online 13 April 2008 Nucleic Acids Research, 2008, Vol. 36, No. 9 e48
doi:10.1093/nar [gknl45

Uncovering signal transduction networks from
high-throughput data by integer linear programming
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TERATO Aihara Complexity Modelling Project, JST, Tokyo 151-0064, Japan, ZIntelligent Computing Lab, Hefei
Institute of Intelligent Machines, Hefei, Anhui, China, 3Institute of Industrial Science, The University of Tokyo,
Tokyo 153-8505, Japan, “Institute of Systems Biology, Shanghai University, China and *Department of Electrical
Engineering and Electronics, Osaka Sangyo University, Osaka 574-8530, Japan
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Background
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Signal transduction

» Movement of signals from outside the cell to
Inside; Cells always receive different signals
from the physical environment and from other

cells. A FIRFAAREMN. (Quorum sensing)

» Mediate the sensing and processing of
stimuli; Many cellular decisions such as
proliferation, differentiation, development and
other responses to external stimuli are
achieved by signal transduction.

» Abnormality in cellular information processing
are responsible for diseases such as cancer,
heart disease, autoimmunity, and diabetes.
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MAPK signal transduction pathways In yeast
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Background (cont.)

« Methods for detecting components in signaling
pathways:

— Experimental methods:
« Knock out specific genes;
« Time consuming and expensive;

— Every reaction and component even in a
relatively simple signaling pathway requires a
concerted and decades-long effort.

— Many signaling components and mechanisms
are unknown. There is not a lot of kinetic data
available with which to create models of
pathway component interaction.

— Computational methods
« Knowledge based methods;
« Data based methods.
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Background (cont.)

« Knowledge based methods:
— Modeling pathways by ordinary differential equations;
— Modeling pathways by Petri net
— Limited by the scale, lack of kinetic coefficients

- Data based (our focus):

— High-throughput techniques result in large mounts of
biological data.

— Recovering signal transduction pathways and identifying
key components from multiple data sources.
» Large scale.
» Data dependency.
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Previous works

NetSearch algorithm

Steps:

— Potential pathways detected by Depth First Search (DFS)
algorithm from PPI network;

— Ranking candidate pathways according to the clustering
results on gene expression data.

— The more the elements in candidate pathways overlap with
a cluster, the more likely they are true components.

“Automated modelling of signal transduction networks”, BMC Bioinformatics 2002, 3:34.
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Previous works (cont. )

Ordering the signal pathway with score function

Steps:
— Assume the components in a signaling pathway are
known. Only the order of the components is unknown

— Find the candidate pathways by using PPIs, i.e. assign
each order a score

— Ordering the signal pathways by using gene expression
data (pairwise correlation coefficients).

“A computational approach for ordering signal transduction pathway components from
genomics and proteomics data”, BMC Bioinformatics, 5, 158, 2004
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Previous works (cont. )

* Problems lying in the previous works:

— Individual signaling pathways are identified and
then heuristically rank and assemble them into
a signal transduction network;

— Multi-stage tends to lead to local optimal
solutions.

* A one-stage method with global optimal solutions
IS needed.
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An idea about recovering
signaling networks

€ Proteins involving in a same signaling pathway tend to
Interact with each other.

€ The model tries to find a subnetwork with highest sum of edge
weights (there is a tradeoff between the sum of edge
weights and the number of edges) from a membrane
protein (receptor) to a transcription factor in a big protein-
protein interaction (PPI) network.

€ The extraction process is formulated into an integer linear
programming model, which will be relaxed into a linear
programming in the practical applications
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Recovering signaling networks by
Integer linear programming
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Experimental results

= Experimental data:

o Yeast protein interaction network with ~4,500 nodes and
~14,500 edges.

= Pre-process:

o Find the paths of length 6-8 from the PPI network using the
Depth-first search;

o The reduced network consist of all possible candidate
pathways.
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Pheromone response (linear path)
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Discussion

These results on known yeast MAPK signaling pathways
demonstrate that the ILP model can recover the known
signaling pathways, and the reconstructed STNs match most
parts of those published results

Compared with existing methods, this method is much
simpler in both algorithm and computation because it can
detect the signaling networks from protein interaction data
directly in an integrated and accurate manner

This method can handle a large scale system without
numerical difficulty due to the LP algorithm.



Conclusion and future work

Proposed LP algorithm is effective for inferring the
signaling network; It is a one-stage method and does not
need heuristic ranking and assembling

Protein interactions have no timing information. In the
future, we will integrate PPIs with gene expression data for
signaling network detection, which will make the detection
more realistic

We will also explore the further application of the method to
other signaling networks except MAPK pathways.



Qiu et al. BMC Bioinformatics 2010, 11:26
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Detecting disease associated modules and
prioritizing active genes based on high
throughput data

Yu-Qing Qiu'", Shihua Zhang'*', Xiang-Sun Zhang'", Luonan Chen**

Abstract

Background: The accumulation of high-throughput data greatly promotes computational investigation of gene
function in the context of complex biological systems. However, a biological function is not simply controlled by
an individual gene since genes function in a cooperative manner to achieve biological processes. In the study of
human diseases, rather than to discover disease related genes, identifying disease associated pathways and
modules becomes an essential problem in the field of systems biology.

Results: In this paper, we propose a novel method to detect disease related gene modules or dysfunctional
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Finding the disease related subnetwork

Protein—protein interaction network Gene expression profiles
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Problem formulation

* Defining response active score fi for each
gene I. =fi = f(x; x,x;,..., %)

flx))=(u¢(x;))+b > ﬁsb{x

‘ b = (P, 90

j{x]—zﬁjk +b

* Defining observed active score wi for each
gene I:

_ Myl —H{2
Gil1T0i2

w;
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Problem solution

» Support vector regression (SVR) model.
o1 2 ~ 4 - 2
min || u||* +C Z‘nﬁ—wiu
* It Is solved by considering its dual problem

(convex quadratic programming)
min %2(0{5 — cxf)(a},- — cxf)Ki}-

i,j=1

n n
Y (a+ai)+ Y wile;—a)),
i=1 1

i=

1
s.t. Z(Cci—af)z(),
i=1

a.,o; €[0,C*|,i=1,2,...,n,
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To get the condition-specific
pathway

* This SVR model is solved by LIBSVM
software:

VU ={v;f;>f+6c,i=1,2,_,n}
VD, ={v;;fi<f -60,i=12,..,n

 The induced subnetwork from G forms the
up-regulated (down-regulated) pathways.
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Figure 1 lllustration of the effect of RegMOD. (A) shows the grid network where the red nodes represent the active module. (B) and (D)
illustrate the active score surfaces before and after the processing of RegMOD respectively. (E) shows the active score surface obtained by
RegMOD when the nodes represented by blue triangle are deleted. In the randomly generated network example, the recall-precision plot and
box-plot of F-measure for RegMOD are shown in (C). In the edge-weighted case, the performance is significantly improved. The recall-precision

plot and box-plot of F-measure for RegMOD are shown in (F).
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Figure 2 Breast cancer metastasis associated modules identified by RegMOD. The square nodes refer to known breast cancer related
genes. (A) and (D) are up-regulated modules BCUM1 and BCUM2 which are related to cell cycle and apoptosis respectively in red color. (B) and
(E) are down-regulated modules BCDM1 and BCDMZ2 which are related to signaling transduction and antigen presentation respectively. (C) and
(F) chart the box-plot of the similarity among genes and SNR values of genes involved in active modules found by different methods. The
distributions of breast cancer genes on different gene ranking lists are shown in (G). (H) charts the comparison of gene sets’ coverage of known
breast cancer associated genes using different methods with the significant p-values calculated by hypergeometric distribution.
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Optimization model for condition
specific subnetwork identification

The Second International Symposium on Optimization and Systems Biology (OSB’08)
Lijiang, China, October 31— November 3, 2008
Copyright © 2008 ORSC & APORC, pp. 333-340

Condition specific subnetwork identification
using an optimization model

Yong Wang -2 Yu Xia'

I Bioinformatics Program, Department of Chemistry, Boston University, Boston, MA 02215, USA
2 Academy of Mathematics and Systems Science, Chinese Academy of Sciences,
Beijing 100080, China

Chinese Academy of Science
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Subnetwork

« Subnetworks can reveal the complex patterns of
the whole-genome network

Temporal: The evolutionarily conserved subnetworks
Spatial: Protein complexes depending on the sub-cellular localization

Condition specific context: Subnetwork biomarker for diseases

« Novel subnetwork identification methods that are
flexible and efficient are still much needed.
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Problem formulation

Input:

G=(V,E) is the network with n nodes V,,V,. ... V.. We use a
symmetric weight matrix W to quantify the connectivity
strength (for example, W can be the edge confidence
scores for biomolecular interaction or functional linkage
networks). W;20,1,j=1,2...n.

Every node V, is associated with a profile (for example
gene expression data, or other properties related to the
nodes). We consider the simplest case (weight f,).

The guestion:

Can we find the a group of nodes Iin this network
with similar profiles?



by

G=(V, E) and edge weight
Matrix {W, 1,j=1,2,...,n }

ij?

-_— . ZHANGroup

iInformation f;, f,, f5,....f,
for molecules

/ Optir;]ization model \

max ZZWijxixj +ﬂz f X
i j i

st. xP4+xf+xf 1 xf =1

Condition specific subnetwork

N X; >0 i=12,---.n y

—
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Then we have two objects:

Choose as many as possible edges within the

subnetwork (maximize the interconnectivity within the
subnetwork)
Maximize the degree of association between the

subnetwork nodes and the specific condition.

We Introo

We Introo

the number of nodes selected.
Parameter B is introduced to adjust t
regularization applied to the variable

When

3=2, this is a trust region prob

optimizes a quadratic function
3=1, the L1-type constraint will lead to a sparse
solution, i.e., many of the entries will be zeros

When

uce a parameter to integrate them.

uce a regularization constraint that limit

ne strength of
x=(x1,x2,...,x")

em which
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Computational complexity

* If we focus only on the first term of objective function,
our model can be used to find the maximum
clique in an weighted graph (the Motzkin-Struss
Formalism for computing maximal cliques, Motzkin-
Straus Theorem, 1965)

« Both the maximum cardinality and the maximum
weight cliqgue problems are NP-hard.

« Biomolecular networks are often large in scale. In
yeast the protein-protein interaction network Is
estimated to have about 6,000 nodes and 50,000
Interactions.

46



A fast algorithm for large-scale problem

The KKT condition is:

L z—ZZWUXIXJ 2> fixi +a(X + x5 + X+ xF=1) = g
oL

5_20:”" =2WX); —Af. +afx"  i=12,---n
X
,Llixi =0 i:1,2,"' n

XD+ x84 x84+ xP =1

Then we can use the following iterative algorithm to quickly
converge to a local minimum satisfying KKT condition:

i
(2X Wx”zfixi)/ gt WX 5 2WX) )
o= ' '
B

of 2XTWX + 2" fix
i

Please refer the paper for Proof of Convergence!

e ZHANGroup 5
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Notes on the model

€ To relax the variable from integer to continuous
variable in [0,1], we get a quadratic programming
problem. The meaning can be the probability of
that node to be a biomarker.

€ The hardness of this programming depends on the
network structure, maybe many local minimums
exist. So careful choose of initial solution is
necessary.

€ \We provide a deterministic way to replace the
current heuristic based methods for subnetwork
identification.



Type 2 diabetes related subnetwork

* Type 2 diabetes mellitus Is a complex
disease with profound impact on health and
longevity.

* |tIs estimated to affect more than 150
million people worldwide by the World
Health Organization statistics.



Data integration

* The basic network is protein interaction network

We assembly the protein-protein interaction data in human have
7,903 proteins and 44,422 interactions. We make the sparse (the
percentage of protein pairs that interact is only 0.14%.) denser by
considering indirect interaction. In this way, we get a weighted protein-
protein interaction network with 724,144 edges (2.3% of all protein
pairs, a 16-fold increase in network size).

 Disease related data i1s confidence of association
with T2D

We collected 2503 genes related to T2D and each gene is assigned a
confidence score to be T2D candidate gene



|dentified subnetworks

MAPK3 TCL6

(a) ~— ABCF3 (b)
\\\ ’///“ TP538P1
rad D \/
| 24 ,’(( GTF3C2
.{g“ - 0~\\ STOMLA / ] -
" " : B41|_1 IL18R1
-o‘ e

IFI127

CASP10

(d)
They are closely related to insulin-degradation, signal
transduction, and metabolism functions.
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Why “pilot study”?

&® First, the present protein-protein interaction
network in human is noisy and far from complete.

& Second, our basic assumption is that
subnetworks are better biomarkers than single
proteins, which needs further experimental and
clinical verification especially for complex
diseases such as T2D.

€ Further research directions include validation of
the effectiveness of subnetwork biomarkers,
and improvement of the subnetwork
identification algorithm.



Conclusions

€ \We discuss a general framework to
Integrate two different kind of data.

€ Condition-specific or disease-related
subnetworks are important in systems
biology.

€ a general methodology to deal with it.



Take-home messages

€ Subnetwork concept is very important.

& It provides a efficient way to integrate
heterogeneous data sources to identify
condition-specific pathways (subnetworks)



