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Cancer genomics

An integrated approach to uncover
drivers of cancer

De novo discovery of mutated
driver pathways in cancer
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Background

& Systematic characterization of cancer genomes
has revealed a staggering number of diverse
aberrations that differ among individuals.

& Therefore, the functional importance and
physiological impact of most tumor genetic
alterations remain poorly defined.

= Cell 143, 1005-1017, 2010

An Integrated Approach
to Uncover Drivers of Cancer
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Motivation

®Each tumor is unigue and typically harbors
a large number of genetic lesions

€ 0Only afew drive proliferation and
metastasis.

€ Thus, identifying driver mutations (genetic
changes that promote cancer progression) and
distinguishing them from passengers (those

with NO selective advantage) has emerged as
a major challenge in the genomic
characterization of cancer.




Background(cont.)

€ The most widely used approaches are based
on the frequency that an aberration occurs: If a
mutation provides a fithess advantage in a
given tumor type, Iits persistence will be
favored, and it is likely to be found in multiple
tumors.

€ GISTIC



Background(cont.)

®However, there are limitations to analytical
approaches based on CNA data alone.

€ CNA regions are typically large and contain
many genes, most of which are passengers that
are indistinguishable in copy number from the
drivers.

€ CNA data have statistical power to detect only
the most frequently recurring drivers above the
large number of unrelated chromosomal
aberrations that are typical in cancer.
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Background(cont.)

€ These approaches rarely elucidate the
functional importance or physiological impact of
the genetic alteration on the tumor.

€ These limitations highlight the need for new
approaches that can integrate additional data to
identify drivers of cancer.

€ Gene expression is readily available for many
tumors, but how best to combine it with
Information on CNA iIs not obvious.




The work in the Cell paper

®Hypothesis: driver mutations coincide with a
“genomic footprint” in the form of a gene
expression signature.

& Contribution: to find these signatures and identify
likely driver genes located in regions that are
amplified or deleted in tumors.

&€ Each potential driver gene is altered in some, but
not all, tumors and, when altered, is considered
likely to play a contributing role in tumorigenesis.
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The work in the Cell paper

® Unique: each driver is associated with a gene
module.

& Transferring the annotation of the genes in the
associated module.
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Hypothesis

®Hypothesis: driver mutations coincide with a
“genomic footprint” in the form of a gene
expression signature.

€ Assumption 1
€ Assumption 2
€ Assumption 3
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key assumptions 1
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Three key assumptions that can distinguish

driver and passenger mutations
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Key ideas

€ Driver mutations are frequently associated
with the abnormal regulation of processes
such as proliferation, differentiation (Key 1)

® A driver mutation might be associated with
a characteristic gene expression signature or
other phenotypic output representing a group
of genes whose expression iIs mod by

the driver (Key 2*
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Key ideas

€ CNAs do not typically alter t
sequence of the driver anc

ne coding
SO are expected

to influence cellular phenoty

e via changes In

the driver’s expression (Key 3).
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CONEXIC Learning Algorithm

1 . G ISTI C Selection of candidate driver genes (modulators)

Amplified Genes:

1. CCND1

Deleted Genes:
1. CDKNZA

2. KLF6

3.....
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CONEXIC Learning Algorithm
2. Single Modulator
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CONEXIC Learning Algorithm

3. Network Learning

REepulatory
Program

Lenes

Coregulated

Bﬂatstmnﬂingﬁ
Using the set of Single Modulator of modules
S as a starting point, the algorithm refines the

m | each module.

selected modulators and modules, now allowing
for more than one modulator associated with

# Modulators

Selected
Modulators
For Final
Run

l

Final Results .

20




Take-home message

Expression of a Driver, Not
Its Copy Number, Drives
Phenotype
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How to analyze cancer mutation
data?

ESEARCH

De novo discovery of mutated driver pathways in cancer

Fabio Vandin, Eli Upfal and Benjamin J. Raphael

Genome Res. published online June 7, 2011
Access the most recent version at doi:10.1101/gr.120477.111
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Cancer Is driven by somatic mutations

 Cancer Is driven by somatic mutations In
the genome that are acquired during the
lifetime of an individual.

* These Include single nucleotide mutations
and larger copy- number aberrations and
structural aberrations.

- With the availability of next-generation DNA sequencing technologies,
whole-genome or whole-exome measurements of the somatic mutations in
large numbers of cancer genomes are now a reality.
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Cancer Is driven by somatic mutations

 Somatic mutations can happen
for a variety of reasons

— Some appear to be the result of exposure to toxins or
radiation which interferes with the cell division
pProcess.

— Others are spontaneous, occurring as the result of a
random error in the cell division process. Given the
length of the genome, occasional mistakes do happen
In individual cells, and in fact the body is coded to
destroy somatic cells which have mutated, although it
IS not always successful.

24
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Cancer Is driven by somatic mutations

A major challenge Is to distinguish the
functional “driver mutations” responsible
for cancer from the random “passenger
mutations” that have accumulated In
somatic cells but that are not important for
cancer development.

25
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Cancer Is driven by somatic mutations

However, many studies have confirmed that
cancer genomes exhibit extensive
mutational heterogeneity.

— The presence of passenger mutations

— Driver mutations target genes in cellular signaling and
regulatory pathways.

— there are numerous combinations of driver
mutations that can perturb a pathway important for
cancer.

— This mutational heterogeneity complicates efforts to
identify functional mutations by their recurrence
across many samples

26
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Driver pathway

* Driver mutations typically target genes in
cellular signaling and regulatory pathways.

* Several studies begin to examine mutations
In the context of cellular signaling and
regulatory pathways.

» Two kinds of approach:

— 1) Based on Known pathways (Boca et al. 2010;
Efroni et al. 2011) or genome-scale gene
Interaction networks (Cerami et al. 2010; Vandin

et al. 2011);
— 2) De novo discovery.
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Driver pathway

« Pathway or network analysis of cancer
mutations relies on prior identification of the
groups of genes in the pathways.

* knowledge of pathways remains
iIncomplete!!

* |n particular, many pathway databases
contain a superposition of all components of
a pathway, and information regarding which
of these components are active in particular
cell types is largely unavailable.
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Driver pathway

« The above concerns

 Availability of increasing numbers of
sequenced cancer genomes

* IS It possible to discover mutated
driver pathways, directly from
somatic mutation data collected from
large numbers of patients.

29
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Complexity

» Large-scale search space!

o Additional constraints are needed!

30
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Hypothesis

The Drive pathway usually exhibits
such property:
—1) Coverage: It should be perturbed in a
large number of patients;

—2) Exclusivity: driver mutations are
observed in exactly one gene in the
pathway in each patient.

31
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Mutation matrix

Mutation Matrix
Genomes B - mutated genes

= not mutated

gene

*:’-:I-:-

+: somatic mutation

Maximum Coverage
Exclusive Submatrix (k=2)

Maximum Weight
Submatrix (k=3)
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Maximum Coverage Exclusive

Submatrix Problem

ldentify sets of genes (columns of the mutation
matrix) that are mutated in a large number of
patients and whose mutations are mutually
exclusive

Maximum Coverage Exclusive Submatrix Problem: Given an m x n mutation matrix A and an integer
k > 0, find a mutually exclusive m x k submatrix M of k columns (genes) of A with the largest number of
non-zero rows (patients).

This problem is NP-hard!
This problem is too restrictive!
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How to slack this problem

« Coverage: Most patients have at least one
mutation in M. ['(M)

* Approximate exclusivity: Most patients
have no more than one mutation in M.

Coverage overlap: oM)=Y (g~ [[(M)|

There Is an obvious trade-off.
W(M)=[L(M)| — oM)=2[M)| - Y ()]
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Maximum Weight Submatrix Problem

Maximum Weight Submatrix Problem: Given an m X n
mutation matrix A and an integer k > 0, find the m X k column sub-
matrix M of A that maximizes W{M).

This problem is NP-hard too!
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A greedy algorithm

A greedy algorithm and Gene Independence Model

We propose the following greedy algorithm for the Maximum
Weight Submatrix problem.

Greedy (k) :

1. M ={g,,4, } < pair of genes that maximizes W({g,.£,}).
2. Fori=3.,....kdo:
(a) Let g" = arg max, W(M U {g}).
(b M =M uU{g"}.
3. return M.
The time complexity of the algorithm is O(n* + kn) = O(n?). We

analyze the performance of the algorithm on mutation matrices
generated from the following Gene Independence Model.
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Markov chain Monte Carlo (MCMC)
algorithm

Initialization: Choose an arbitrary subset My of kK genes in §
(the set of all genes).

Iteration: Fort=1, 2,..., obtain M, from M; as follows:

1. Choose a gene w uniformly at random from§.

2. Choose v uniformly at random from M,.

3. Let P(M;, w,v) = min[1, e WM {vh{wh)—cWibMo] 7

4. With probability P(M,, w, v] set My =M— (v} + (w}, else M, =M,

The MCMC algorithm was run for 1077 iterations
sampling every 104 iterations.



Simulation study

How to simulate the mutation data?

Optimal gene set The rest gene set
(mutation control by pl1 and p2) Mutated using a random model

If p1 happens

If p1 doesn’t happen

For SN mutations,

For CNAS,
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Simulation study
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Figure 2. Ratio between the sampled frequency (M) of the maximum
weight set, and the maximum frequency m(max,iher) Of any other set in
the sample for different values of W(M).



Simulation study

Tests for the multiple high weight sets

Table 1. MCMC results on simulated data

M1 MZ MaXother AVJother
(- 24.5 8.6 0.9 1.6 x 104
W(-) 80 78 73 56

(M) is the frequency of M,, r(maxgher) is the maximum frequency with

which a set different from M, and M, is sampled, and %(avgother) is the
average frequency with which a set different from M, and M, is sampled.



Simulation study: scalability

« 20000 genes vs. 1000 patients

» Based on these results, these algorithms
should be useful on whole-exome
seqguencing studies with a modest number

of patients.
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Results on cancer mutation data

The MCMC algorithm was applied to
— somatic mutations from highthroughput genotyping of 238 oncogenes in 1000
patients of 17 cancer types (Thomas et al. 2007)
— somatic mutations identified in recent cancer sequencing studies from lung
adenocarcinoma (Ding et al. 2008)

— glioblastoma multiforme (The Cancer Genome Atlas Research Network 2008).

In the glioblastoma multiforme analysis, we include both copy-number
aberrations and single-nucleotide (or small indel) mutations, while in the
lung adenocarcinoma analysis, we consider only single-nucleotide (or small
indel) mutations.

The MCMC algorithm samples sets with frequency proportional to their
weights, and thus to restrict attention to sets with high weight, we report
sets whose frequency is at least 1%. We also reduce the size of the
mutation matrix by combining genes that are mutated in exactly the same
patients into larger “metagenes.”
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Results: multiple cancer types

 Mutation matrix with 298 patients vs. 18
mutation groups.

They identified a set of eight mutation groups

here are many sets of size 10 that contain

t

Pe

ne set of size 8 above. (how to interpret?)

rmutation test to assess the significance of

the results: The statistic W(M) vs. the nun
distribution by permutated the mutations of

each mutation group in M.



| -_— . ZHANGroup o+

Results: multiple cancer types
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Figure 3. (A) High weight submatrix of eight genes in the somatic mutations data from multiple cancer
types (Thomas et al. 2007). (Black bars) Exclusive mutations; (gray bars) co-occurring mutations. (B) Location
of identified genes in known pathway. Interactions in the pathway are as reported in Ding et al. (2008).
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Results: lung adenocarcinoma

Mutation matrix with 188 patients vs. 356 mutation
genes.

(EGFR, KRAS) 99% of the time
In 90 patients with a coverage overlap w(M) =0
(EGFR, KRAS, STK11) is sampled with frequency 8.4%

The pairs (EGFR, KRAS) and (EGFR, STK11) were
reported by Ding et al. (2008). But not (KRAS, STK11)

(EGFR, KRAS, STK11) is a novel discovery with p-
value=0.005

The three genes EGFR, KRAS, and STK11 are all
Involved in the regulation of mMTOR (Fig. 4)
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Results: lung adenocarcinoma

A & v g s o B
E é E E B cell membrane
EGFR

|

]
2 g
- Z
w o
= =

120F 120

140 142

1) 152

o ' y i Cell death Eratein

synthesis

. = exclusive mutation . = co-occurring mutation |:|= no mutation

Figure 4. (A) High weight submatrices of two and three genes in the lung adenocarcinoma data. (Black bars) Exclusive mutations; (gray bars) co-
occurring mutations. Rows (patients) are ordered differently for each submatrix, toillustrate exclusivity and co-occurrence. (B) The location of gene setsin
known pathways reveals that the triplet of genes codes for proteins in the mTOR signaling pathway (light gray nodes), and the pair (ATM, TP53)
corresponds to interacting proteins in the cell cycle pathway (dark gray nodes). Interactions in the pathway are as reported in Ding et al. (2008).
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Results: lung adenocarcinoma

« To identify additional gene sets, we removed the
genes EGFR, KRAS, STK11 and ran the MCMC
algorithm again on the remaining genes. We
sample the pair (ATM, TP53) with frequency 56%,
and compute that the weight of the pair Is
significant (p < 0.01).

* both genes are involved in the cell cycle
checkpoint control.

« Although the exclusivity of both sets is high, their
coverage Is low (<60%), suggesting that these
gene sets are not complete driver pathways.
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Results: Glioblastoma multiforme

« Mutation matrix with 84 patients vs. 601
mutation genes (SN mutation and CNA).

« (CDKNZ2B, CYP27B1) 18%
 (CDKNZ2B, a metagene) 10%
« (CDKN2B, RB1, CYP27B1) 10%

 (CDKN2B, RB1, a metagene) 6%
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Results: Glioblastoma multiforme
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Figure 5. (A) High weight submatrices of two and three genes in the glioblastoma data. (Black bars) Exclusive mutations; (gray bars) co-occurring
mutations. Rows (patients) are ordered differently for each submatrix, to illustrate exclusivity and co-occurrence. (B) Location of identified genes in known
pathways. Interactions in pathways are as reported in The Cancer Genome Atlas Research Network (2008).
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Results: Glioblastoma multiforme

* The pair (TP53, CDKNZ2A) Is sampled with
frequency 30% (p < 0.01).

 the pair (NF1, EGFR) sampled with
frequency 44% (p < 0.01).
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Discussion

* The proposed algorithms find sets of genes that are
mutated in many samples (high coverage) and that
are rarely mutated together in the same patient
(high exclusivity).

* Notably, they discover these pathways de novo from
the mutation data without any prior biological
knowledge of pathways or interactions between
genes.

 However, it is also important to note that some of
the genes that were measured in these data sets
were selected because they were known to have a
cancer phenotype, and thus there is some
ascertainment bias in the finding that individual
genes (or groups of genes) are mutated in many
samples.
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Discussion

 However, in the lung adenocarcinoma and
glioblastoma data, the size of gene sets that we
identify is relatively modest.

 In addition, considering mutation data at the level of
iIndividual genes might reduce the power to
distinguish driver mutations from passenger
mutations.

 There remain challenges in the identification of
somatic mutations from these data with the
Incorrect prediction of somatic mutations (false
positives) and the failure to identify genuine
mutations (false negatives) (Meyerson et al. 2010)
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Discussion

* One particular source of false negatives is the
heterogeneity of many tumor samples, which
often include both normal cell admixture and
subpopulations of tumor cells with potentially
different sets of mutations.
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Discussion and future study

 First, we could include additional information in
the scoring of mutations and gene sets.

— Extending our techniques to use additional information about the
functional impact, or expression status, of each mutation is an
interesting open problem.

« Second, alternative weight functions W(M) could
be considered.

Fina
com
over
furth

ly, the performance of our algorithm in
nlex situations involving multiple,

apping high weight sets of genes requires
er analysis.

— It is not yet clear whether such complex situations arise in cancer
mutation data.
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Discussion and future study

* What can be done next?
* Free discussion
* Further reading

Genome Biology

Patient-oriented gene set analysis for cancer
mutation data

Simina M Boca', Kenneth W Kinzler?, Victor E Velculescu?, Bert Vogelstein?, Giovanni Parmigiani®”



