
was a consistent outlier for all genes, data from all pools were included in our analysis.

Differences between parental pools increase our confidence intervals for the interspecific

expression difference and can reduce our power for detecting trans-regulatory differences.

To deal with this issue, interspecific expression differences for genes with unusually large

variance between the four original pools were measured in an additional three parental

pools.
The normalization procedure used to correct cDNA measurements for experimental

bias (Supplementary Information) prohibits a standard nested analysis of variance, but a

t-test provided a simple and robust test of our null hypotheses. Two-tailed t-tests were used

to identify cis-regulatory divergence (H0: MelF1/SimF1 ¼ 1), interspecific expression

differences (H0: Mel/Sim ¼ 1) and parent-of-origin effects (H0: MelF1/SimF1 ¼ MelF1/

SimF1 in reciprocal crosses). To identify trans-regulatory divergence, two-sided t-tests

(with the Cochran correction for unequal variances) and nonparametric Mann–Whitney

U-tests were used to compare relative expression between hybrid and parental pools. The

decision to accept or reject the null hypothesis (H0: MelF1/SimF1 ¼ Mel/Sim) was the same

for both tests for all except three genes, and t-test significance was ultimately used to infer

trans-regulatory divergence. All statistical analyses were preformed with SAS software v.

8.2 (SAS Institute, Cary, North Carolina) and are shown in Supplementary Table 2.
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In apparently scale-free protein–protein interaction networks, or
‘interactome’ networks1,2, most proteins interact with few part-
ners, whereas a small but significant proportion of proteins, the
‘hubs’, interact with many partners. Both biological and non-
biological scale-free networks are particularly resistant to ran-
dom node removal but are extremely sensitive to the targeted
removal of hubs1. A link between the potential scale-free top-
ology of interactome networks and genetic robustness3,4 seems to
exist, because knockouts of yeast genes5,6 encoding hubs are
approximately threefold more likely to confer lethality than
those of non-hubs1. Here we investigate how hubs might con-
tribute to robustness and other cellular properties for protein–
protein interactions dynamically regulated both in time and in
space. We uncovered two types of hub: ‘party’ hubs, which
interact with most of their partners simultaneously, and ‘date’
hubs, which bind their different partners at different times or
locations. Both in silico studies of network connectivity and
genetic interactions described in vivo support a model of orga-
nized modularity in which date hubs organize the proteome,
connecting biological processes—or modules7—to each other,
whereas party hubs function inside modules.

The biological role of topological hubs, so far considered in static
representations of interactome networks without information on
the functional states of these networks—that is, dynamic or steady
state8—might vary depending on the timing and location of the
interactions they mediate (Fig. 1a). Because accurate temporal
parameters are not yet available for many protein–protein inter-
actions, we estimated temporal characteristics of hubs and their
partners by using compilations of yeast messenger RNA expression
profiling data9.

Hubs connected by false-positive interactions10 would be
uncorrelated in mRNA expression with their interaction part-
ners9,11, and would resemble date hubs. To minimize false positives,
we first generated a high-quality yeast interaction data set by
intersecting data generated by several different interaction detection
methods (see Methods). The resulting ‘filtered yeast interactome’
(FYI) data set contains 2,493 high-confidence interactions, each
observed by at least two different methods (Supplementary Fig. 1).
FYI is a high-quality network enriched for genuine positives
(Supplementary Information and Supplementary Fig. 2). The FYI
network contains 1,379 proteins with an average degree of 3.6
interactions per protein and a large connected component of 778
proteins. Its degree distribution follows the power law that charac-
terizes scale-free networks (Supplementary Fig. 3). FYI hubs were
characterized with an expression-profiling compendium of 315 data
points for most yeast genes across five different experimental
conditions (referred to below as the ‘yeast expression compen-
dium’9). For each hub we calculated the average of Pearson
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correlation coefficients between the hub and each of its respective
partners for mRNA expression (see Methods). Strikingly, the
average PCCs of hubs, defined as nodes (proteins) with degree k
greater than 5, follow a bimodal distribution in the whole compen-
dium (Fig. 1b, red curve). In contrast, the average PCCs of non-
hubs, defined as nodes with degree k of 5 or less, show a normal
distribution centred on 0.1 (Fig. 1b, cyan curve, and Supplementary
Fig. 4). In randomized interactome networks of the same topology
(Supplementary Methods), the average PCCs of hubs also show a
normal distribution centred on 0 (Fig. 1b, black curve). This
bimodal distribution suggests that hubs can be split into two
distinct populations: one with relatively high average PCCs (party
hubs) and the other with relatively low average PCCs (date hubs)
(Supplementary Information). Futhermore, the bimodal distri-
bution suggests a natural boundary for separating or partitioning
date hubs from party hubs.

Party and date hubs were analysed for each individual condition
of the yeast expression compendium. Average PCCs of FYI hubs
show a clear bimodal distribution for two conditions: ‘stress
response’ and ‘cell cycle’ (containing 174 and 77 data points,
respectively) (Fig. 1b). The three remaining conditions (‘phero-

mone treatment’, ‘sporulation’ and ‘unfolded protein response’)
contain fewer data points (45, 10 and 9, respectively), which may
explain the absence of a clear bimodal distribution (Fig. 1b). For our
subsequent analyses, party hubs are those with an average PCC
higher than the threshold indicated by the arrow, in at least one of
the five conditions in Fig. 1b (exact cutoffs used in Methods and
Supplementary Information). All other hubs were defined as date
hubs. Using these criteria, we found 91 date hubs and 108 party
hubs in FYI (Supplementary Table 1) after excluding ribosomal hub
proteins (Supplementary Information).

Highlighting the biological significance of our date/party hub
partitioning is the fact that average PCC values correctly predict
the expected date versus party behaviour for several well-charac-
terized protein hubs (Supplementary Table 1 and Supplementary
Information). The dynamics of interactome networks should
be considered not only by expression timing but also spatial
distribution—that is, subcellular localization. We estimated the
localization diversity of partners of hubs by using a proteome-
wide cellular localization data set12. Partners of date hubs are
significantly more diverse in spatial distribution than partners of
party hubs (protein localization diversity evaluated by entropy

Figure 1 Date and party hubs. a, In this schematic protein interaction network, proteins

are coloured according to mutual similarity in their mRNA expression patterns. ‘Party’

hubs are highly correlated in expression with their partners, and presumably interact with

them at similar times. The partners of ‘date’ hubs exhibit more limited co-expression, and

presumably the corresponding physical interactions occur at different times and/or

different locations. b, Probability densities (Supplementary Methods) of the average PCCs

were calculated from a global expression profiling compendium9 (top left panel). Average

PCCs were also independently calculated for each condition constituting the

compendium. The number n in each panel refers to the number of data points for each

gene for each condition. Average PCCs for hubs in the FYI (red curve) show a clear

bimodal distribution that is used to separate date and party hubs (located by the arrow) for

the conditions shown in the top panels. For the conditions in the bottom panels that do not

show a clear bimodal distribution, an arbitrary average PCC cutoff of 0.5 was used (details

in Methods and Supplementary Information). No bimodal distribution is observed with the

average PCCs of non-hub proteins (cyan curve) or for hubs in randomized networks (black

curve).
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calculation; Student’s t-test P , 0.05). Hence, the distinction
between date and party hubs obtained from gene expression is
recapitulated by protein localization data.

When removed from the interactome network, party and date
hubs have distinct effects on the overall topology. We used an in silico
strategy13 that simulates the effect of specifically removing (attack-
ing) hubs in the FYI network on the characteristic path length of the
main component of the network. The characteristic path length,
defined as the average distance (shortest path length) between node
pairs, reflects the overall network connectivity13. As expected,
successive attacks against FYI hubs, starting from the most con-

nected hubs, without distinguishing between party and date hubs,
have a significantly more deleterious effect on the network integrity
than the removal of random proteins (failure)13 (Fig. 2a, b).
However, this in silico experiment revealed an unexpected and
striking difference between party and date hubs. Removal of party
hubs does not affect connectivity and thus resembles failures
(Fig. 2a, b), whereas attacks directed against date hubs account
for a vast majority of the effect observed when attacking all hubs
(Fig. 2a, b).

To rule out the possibility that small variations of local topology
cause the differences observed above, we performed additional

Figure 2 Date hubs are central to network topology. a, The effects on the characteristic

path length of the network on gradual node removal. Random removal of nodes (‘failures’)

is represented by the green line, attacks against all hubs by the brown line, attacks against

party hubs by the blue line, and attacks against date hubs by the red line. The ‘breakdown

point’ is the threshold after which the main component of the network starts

disintegrating. b, Subsets of date and party hubs with comparable degree (k) and

clustering coefficients (Cv )
18 were selected for attack (lines are coloured as in a). c, The

main component of the FYI network (top panel) splits into small subnetworks (middle

panel) after the removal of date hubs, whereas it stays almost intact after the removal of

party hubs (bottom panel). d, The sizes of the largest remaining component after removing

all 78 date hubs (red arrow), all 86 party hubs (blue arrow) or 86 randomly selected

proteins (green curve). This last experiment has been repeated 1,000 times to determine

the empirical P values of recovering sizes similar to those obtained upon removal of date

and party hubs (empirical P values are equal to 6 £ 1023 and less than 1023,

respectively).
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simulations by attacking FYI with subsets of date and party hubs
that show comparable values of C v (clustering coefficient, a measure
of neighbourhood density) and k (number of interaction partners)
(see Methods). The differences between date and party hubs were
similar to those noted above (Fig. 2b and Supplementary Infor-
mation). Thus, date and party hubs have markedly different global
properties in the interactome network.

The main component that remains after the removal of party
hubs is significantly larger than that remaining after the removal of
date hubs (Fig. 2c, d, and Supplementary Fig. 5). Conversely, the
subnetworks released by date hub removals tend to be larger in size
and number than those obtained by party hub removals (Fig. 2c). To
test whether FYI subnetworks obtained after the complete removal
of date hubs corresponds to small interaction maps of specific
biological processes, or modules7, we estimated their functional
homogeneity by using annotations from the Munich Information
Center for Protein Sequences (MIPS) database14. In comparison
with control networks of the same size distribution, most FYI
subnetworks were more homogeneous in function (Fig. 3a, Sup-
plementary Information). We could assign a ‘most likely’ function
for each subnetwork by determining the most enriched function
category among all nodes over the entire FYI data set (Supplemen-
tary Table 2). Thus, subnetworks derived from the FYI by using a
definition based on non-biased functional states, and not biased by
topology alone, often correspond to known biological modules.

Subnetworks represent not only stable molecular machines or
complexes (for example the ribosomal RNA synthesis complex) but
also more loosely connected regulatory pathways (for example
osmosensing). Indeed, subnetworks have a broad range of average
values of PCCs between all protein pairs involved (Fig. 3b). Protein
pairs inside subnetworks corresponding to protein complexes tend
to show high PCC values, whereas less densely connected regulatory
pathway modules tend to show lower PCC values (Fig. 3b).

These results support a model of organized modularity for
the yeast proteome, as illustrated when date hubs are reconnected
to the modular subnetworks (module compositions at http://
vidal.dfci.harvard.edu/fyi/moduleNet.pl; Fig. 4a). In this model,
date hubs represent global, or ‘higher level’15, connectors between
modules, and party hubs function inside modules, at a ‘lower level’15

of the organization of the proteome. For example, the date
hub calmodulin (Cmd1) connects four different biological mod-
ules, ‘homeostasis of cations’, ‘protein folding and stabilization’,
‘budding, cell polarity and filament formation’ and ‘endoplasmic
reticulum’, whereas the party hubs Sec17, Sec 22 and Vti1 all
function within the ‘endoplasmic reticulum’ module (Fig. 4a, inset).

The organized modularity model predicts that experimental
perturbations of date hubs in vivo should confer different effects
from perturbations of party hubs. In single-gene knockout experi-
ments5,6, similar proportions of party and date hubs score as
essential (Fig. 4b). Although party hubs tend to mediate their role
locally within modules, they can still mediate unique functions in
essential modules and thus score as essential genes, explaining the
similar essentiality rate between date and party hubs.

In contrast, genetic perturbations of date hubs tend to sensitize
the proteome to other perturbations, more so than perturbations of
party hubs (Fig. 4c). Among all genetic interactions published by
individual laboratories and curated in MIPS14, genetic interactions
involving date hubs are twice as prevalent as those involving party
hubs or only non-hub proteins (P , 1025) (Fig. 4c and Supplemen-
tary Methods). Assuming that date hubs are not more likely to be
studied than party hubs, the higher rate of observed genetic
interactions for date hubs suggests that they have a central role in
organizing the modularity of the yeast proteome. Conversely, the
lower rate of observed genetic interactions for party hubs reflects
their localized role within isolated, encapsulated regions of the
interactome.

Figure 3 Properties of subnetworks. a, Most subnetworks generated by removing date

hubs represent functionally homogeneous modules. Grey bars represent the function

category entropy (upper panel) or diversity (lower panel) of the subnets revealed by

removing date hubs from the original largest component. Lower entropy means greater

homogeneity. Dots are the average function category entropy or diversity values of 200

control subnetworks; lines mark one standard deviation on each side of the average.

b, Subnetworks are probably both complexes and more loosely connected modules. PCC

values between all genes within eachmodule are plotted against rank on increasing PCCs.

The arrows indicate several examples.
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Thus, hubs in the yeast interactome network can be classified into
date and party hubs on the basis of their partners’ expression
profiles. This distinction suggests a model of organized modularity
for the yeast proteome, with modules connected through regulators,
mediators or adaptors, the date hubs. Party hubs represent integral
elements within distinct modules and, although important for the
functions mediated by these modules (and therefore likely to be
essential proteins), tend to function at a lower level of the organ-
ization of the proteome. We propose that date hubs participate in a
wide range of integrated connections required for a global organi-
zation of biological modules in the whole proteome network
(although some date hubs could simply be ‘shared’ between, and
mediate local functions inside, overlapping modules). Emergent
properties of the interactome network, such as genetic robustness
and plasticity towards a wide range of external conditions, might be
better understood by using such an organized modularity model as
a framework.

Presuming that a modular network organization has selective

advantages for reasons of stability and flexibility, similar partition-
ing might uncover modularity in metazoan interactome net-
works2,16. Similar temporal or spatial dynamic analysis might also
be applied to non-biological networks, such as the World Wide Web,
epidemiological networks and social networks17. Finally, it is poss-
ible that discriminating between date and party hubs might also
help to define new therapeutic drug targets. A

Methods
Protein interaction data sets
The following protein interaction lists were used to create the FYI: first, high-throughput
yeast two-hybrid (HT-Y2H) projects18–21 (5,249 potential interactions obtained from the
union of the available data sets (including single hits)); second, systematic affinity
purification of tagged proteins followed by mass spectrometric identification of associated
proteins22,23 (6,630 potential interactions obtained using a ‘spoke’ representation24 of the
union of ‘Gavin’ and ‘Ho’ data sets); third, in silico computational predictions of
interactions10 (7,446 potential interactions from the ‘von Mering’ data set obtained from
the union of gene co-occurrence25, gene neighbourhood26 and gene fusion25 predictions);
fourth, all ‘MIPS protein complexes’ published singly in the literature14 (9,597 potential

Figure 4 Organized modularity model. a, Date-hub/module network representation of the

FYI. Date hubs are represented as red circles and modules are represented as blue

squares. The inset (below left) illustrates modular organization in detail; the date hub

Cmd1 connects four modules at ‘higher level’, whereas the nearby party hub Sec22

connects to eight proteins within an ‘endoplasmic reticulum’ module. b, Date and party

hubs are both more likely to be essential than non-hubs, but their single knockout affects

cellular viability to the same extent. c, Date hubs participate in more genetic interactions

than party hubs or non-hubs, as measured by genetic interaction density (GID) based on

genetic interactions gathered at MIPS14.
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interactions obtained by using a ‘matrix’ representation; that is, all pairwise interactions
between all components of a complex), and last, the MIPS physical interactions list
(excluding genome-scale experiments: 1,285 interactions).

Transcriptome profiling data set and average PCC calculation
The ‘conditions’ expression profile compendium was obtained from ref. 9. For average
PCC calculation over all profiles, each of the five condition data sets in this compendium
was normalized with Z-score normalization10; that is, the expression measurement for
each gene was adjusted to have a mean of 0 and a standard deviation of 1 across all
conditions. For the calculation of average PCC within each condition, the original log2

fold change values were used, with or without filtering for genes that displayed at least
1.5-fold changes.

Average PCC cutoff to divide date and party hubs
For those conditions that showed a bimodal distribution, we selected the average PCC
cutoff at the valley between the two peaks. For those conditions that did not show a clear
division, we used an arbitrary cutoff of 0.5, a value slightly higher than those
corresponding to bimodal distributions. In addition, we tested an alternative method,
which yielded 104 party hubs (Supplementary Information). The data based on the second
partition are very similar to those presented in the main text (data not shown). Thus, our
partitioning strategy is tolerant to a small fraction of spillover between the date and party
hubs.

Attacking hubs with comparable clustering coefficients and degrees
The difference between local clustering density or degree distribution of the date and party
hubs could explain their different behaviour in our in silico network attacks. To refute this
hypothesis, we calculated Cv for each hub as described27 and subsequently selected a subset
of 62 date and 62 party hubs in the largest component of comparable k and C v by first
removing the 8 date hubs with the highest k and the 16 party hubs with the lowest k, and
subsequently removing the 8 date hubs with the lowest C v and the 8 party hubs with the
highest C v. This resulted in sets of date and party hubs with nearly identical average values
of k or C v (Wilcoxon rank sum test P . 0.5 for both; x2 test P ¼ 0.72 and 0.37 for C v and
k, respectively, based on counts at either side of their mean values).

Calculations
Localization entropy of partners of a hub. This was calculated as 2SLilogL i (ref. 28), where
L i is the frequency of appearance of a subcellular localization i. Li ¼ Ti=S

n
i Ti , where Ti is

the number of times that the subcellular localization i associated with all partners of a hub
and n is the number of distinct subcellular localizations associated with all partners of the
hub. A large-scale localization data set12, excluding the broad high-level categories
‘cytoplasm’ and ‘nucleus’, was used.

Function category entropy of a subnet. This was calculated as 2SFilogF i (ref. 28), where
F i is the frequency of appearance of a function category i. Fi ¼ Ti=S

n
i Ti, where Ti is the

number of times that the function category i appears in the subnetwork and n is the
number of distinct function categories present in the subnetwork. MIPS function
categories, excluding the broad high-level categories ‘cytoplasm’, ‘mitochondrion’ and
‘nucleus’, were used.

Function diversity of a subnet. This was calculated as the number of unique function
categories of a subnetwork divided by the total number of members in the subnetwork. It
measures the number of unique function categories per member and hence serves as an
intuitive way of determining functional diversity.

Genetic interaction density. This was calculated as the ratio of the actual number of
interactions found divided by the potential number of interactions11. A detailed
description can be found in Supplementary Methods.
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In addition to the apical–basal polarity pathway operating in
epithelial cells, a planar cell polarity (PCP) pathway establishes
polarity within the plane of epithelial tissues and is conserved
from Drosophila to mammals. In Drosophila, a ‘core’ group of
PCP genes including frizzled (fz), flamingo/starry night, dishev-
elled (dsh), Van Gogh/strabismus and prickle, function to regulate
wing hair, bristle and ommatidial polarity1–3. In vertebrates, the
PCP pathway regulates convergent extension movements and
neural tube closure3–5, as well as the orientation of stereociliary
bundles of sensory hair cells in the inner ear6. Here we show that
a mutation in the mouse protein tyrosine kinase 7 (PTK7) gene,
which encodes an evolutionarily conserved transmembrane
protein with tyrosine kinase homology, disrupts neural tube
closure and stereociliary bundle orientation, and shows genetic
interactions with a mutation in the mouse Van Gogh homologue

letters to nature

NATURE | VOL 430 | 1 JULY 2004 | www.nature.com/nature 93©  2004 Nature  Publishing Group




