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Proteins function mainly through interactions, especially with DNA and other proteins. While some large-scale
interaction networks are now available for a number of model organisms, their experimental generation remains
difficult. Consequently, interolog mapping—the transfer of interaction annotation from one organism to another
using comparative genomics—is of significant value. Here we quantitatively assess the degree to which interologs can
be reliably transferred between species as a function of the sequence similarity of the corresponding interacting
proteins. Using interaction information from Saccharomyces cerevisiae, Caenorhabditis elegans, Drosophila melanogaster, and
Helicobacter pylori, we find that protein–protein interactions can be transferred when a pair of proteins has a joint
sequence identity >80% or a joint E-value <10−70. (These “joint” quantities are the geometric means of the identities
or E-values for the two pairs of interacting proteins.) We generalize our interolog analysis to protein–DNA binding,
finding such interactions are conserved at specific thresholds between 30% and 60% sequence identity depending
on the protein family. Furthermore, we introduce the concept of a “regulog”—a conserved regulatory relationship
between proteins across different species. We map interologs and regulogs from yeast to a number of genomes with
limited experimental annotation (e.g., Arabidopsis thaliana) and make these available through an online database at
http://interolog.gersteinlab.org. Specifically, we are able to transfer ∼90,000 potential protein–protein interactions
to the worm. We test a number of these in two-hybrid experiments and are able to verify 45 overlaps, which we
show to be statistically significant.

[Supplemental material is available online at www.genome.org. The interologs and regulogs mapped from yeast to
other genomes are available online at http://interolog.gersteinlab.org.]

The ultimate goal of functional genomics is to determine the
functions of all gene products in newly sequenced genomes. Un-
fortunately, although there is a deluge of sequence data available,
only a small fraction has been functionally characterized (An-
drade and Sander 1997). Nevertheless, for some genomes belong-
ing to experimentally tractable model organisms, such as Saccha-
romyces cerevisiae, Caenorhabditis elegans, and Helicobacter pylori,
scientists have elucidated the functions of many of their gene
products. Given the quantity of sequence and structural data
available, a major method for assigning functions is to transfer
the existing annotation of a known gene to the newly sequenced
gene product. This is based on the concept that sequence and
structural similarities between gene products suggest functional
similarities (Bork et al. 1994, 1998; Fraser et al. 1995, 1998; Wil-
son et al. 2000; Hegyi and Gerstein 2001).

The transfer of structural annotations is well characterized.
It has been shown that structural similarity (measured as the
Root Means Square [RMS] of matching C� backbone atoms) be-
tween two proteins decreases exponentially with increased se-
quence divergence (measured as percent identity; Chothia and
Lesk 1986, 1987). Thus, the reliability of a homology-based struc-

tural annotation depends on the level of sequence similarity be-
tween homologous proteins.

Several groups have recently examined the dependency of
functional similarity on sequence and structural similarity (Bork
et al. 1994, 1998; Marcotte et al. 1999). The best matching se-
quences in a database search are often used as the basis for initial
annotations (Fraser et al. 1995, 1998). However, further work has
provided the potential for more robust annotation transfer, in-
cluding analyzing patterns of protein family occurrence in dif-
ferent phylogenetic groups (Pellegrini et al. 1999) and associating
key sequence motifs with particular functions (Bairoch et al.
1996; Attwood et al. 1997). Other work has also shown that, in
general, protein function is conserved for sequence identities
down to 40% for single-domain proteins that share the same
structural fold; however, for multidomain proteins, the pattern
of functional conservation is more complex: Proteins are most
likely to share functions if they contain similar domain combi-
nations (Brenner 1999; Wilson et al. 2000; Hegyi and Gerstein
2001).

It is difficult to evaluate the relationship between sequence
homology and function, because no clear measure of functional
similarity exists between any two proteins, and the definition of
“function” itself is often vague (Bork et al. 1998; Wilson et al.
2000; Lan et al. 2002, 2003). Previous studies, based on hierar-
chical classification systems, such as ENZYME (Webb 1992),
MIPS (Mewes et al. 2000), and GO (Ashburner et al. 2000), de-
termine functional similarity by comparing both proteins’ re-
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spective levels in the hierarchy. This is a rough definition under-
lying the difficulties inherent in the earlier work. However, an
important aspect of protein function is the physical interactions
of proteins with other molecules, in particular, with other pro-
teins or with DNA. No previous work has addressed this issue.
With recent genome-wide studies on protein–protein and pro-
tein–DNA interactions (Ito et al. 2000; Uetz et al. 2000; Iyer et al.
2001; Gavin et al. 2002; Ho et al. 2002; Horak et al. 2002; Lee et
al. 2002), it is now possible to examine the degree to which
protein–protein and protein–DNA interactions are transferred be-
tween different organisms as a function of the underlying se-
quence similarities of the interacting proteins.

To this end, Walhout et al. (2000) introduced the concept of
“interologs”: orthologous pairs of interacting proteins in differ-
ent organisms. In this study, we extend and assess this concept in
detail. We present a large-scale quantitative assessment on con-
servation of protein–protein and protein–DNA interactions be-
tween proteins and organisms. Compared with the previous sur-
vey, our investigation has greater statistical weight and precision.
In our calculations, we use almost all available genome-wide in-
teraction data sets from four model organisms (14,911 interac-
tions total). Moreover, we generalize the interolog concept and
propose that there are at least two kinds of interologs: protein–
protein interologs and protein–DNA interologs. Based on the lat-
ter idea, we also introduce a new concept, the “regulog.” Further-
more, we calibrate the ability of interologs to reliably map inter-
actions across different organisms. Combining our interolog and
regulog mapping with available large-scale interaction data for
yeast, we construct genome-wide interaction maps and regula-
tory networks for several organisms.

METHODS

Definitions and Formalism for Protein–Protein Interologs

Homologs and Orthologs
Homologs are proteins with significant sequence similarity. Op-
erationally, this can be defined as having an E-value �10�10

from BLASTP (Altschul et al. 1990). This is a similar cutoff to that
used previously (Matthews et al. 2001).

Orthologs are proteins in different species that evolved from
a common ancestor “by speciation” (Tatusov et al. 1997). Or-
thologous proteins in different organisms usually have the same
functions. Operationally, the ortholog of a protein is usually de-
fined as its best-matching homolog in another organism. Here
we define orthologs as:

1. Candidates with a significant BLASTP E-value (�10�10).
2. Having �80% residues in both sequences included in the

BLASTP alignment.
3. Having one candidate as the best-matching homolog of the

other candidate in the corresponding organism.
4. Conditions 1, 2, and 3 must be true reciprocally.

It is obvious that this operational definition of ortholog by se-
quence homology is not perfect. Actually, orthologs are not al-
ways determined as the best-matching homologs (Tatusov et al.
1997).

Interologs
Based on Walhout et al. (2000), if interacting proteins A and B in
one organism have interacting orthologs A� and B� in another
species, the pair of interactions A–B and A�–B� are called inter-
ologs (see Fig. 1A).

Joint Sequence Similarity
A goal of this work is to measure the transferability of interac-
tions based on sequence similarity. In the case of protein–protein
interactions, sequence similarities to homologs of both interact-
ing partners are important. We therefore use joint sequence simi-
larity (J) between protein pairs. There are many potential ways to
define joint sequence similarity, but our results show that differ-
ent definitions of J do not matter much. Here, we use two major
definitions of J.

Figure 1 (Continued on next page)
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Joint Sequence Identity (JI) as the Geometric Mean
of Individual Percent Identities
Percent identity is routinely used to
measure the sequence similarity be-
tween proteins. Therefore, joint similar-
ity is first defined as the geometric mean
of individual percent identities:

JI = �IA × IB

Given that protein A is known to bind to
protein B, IA represents the individual se-
quence identity of protein A and its ho-
molog. Likewise, IB is the individual se-
quence identity of protein B and its cor-
responding homolog. We calculate
individual sequence identities based on
the sequence alignment using the
Smith-Waterman algorithm in FASTA
(Pearson and Lipman 1988).

Joint E-Value (JE) as the Geometric Mean of
Individual E-Values
Measuring homology by percent iden-
tity has certain disadvantages (Wilson et
al. 2000). For instance, the length of the
matching sequences is not considered.
Naturally, the shorter the sequence is,
the higher the chance of randomly find-
ing similar sequences. Furthermore, it
has become more common to use statis-
tical scoring schemes, especially E-values
in BLAST, to measure the statistical sig-
nificance of the homology in order to
determine the orthologs across organ-
isms (Tatusov et al. 1997; Brenner et al.
1998). Therefore, we also calculate the
joint similarity as a joint E-value, that is,
the geometric mean of the individual E-
values:

JE = �EA × EB

where EA represents the BLASTP E-value
of protein A and its homolog, and EB is
the individual BLASTP E-value of protein
B and its homolog.

Joint Similarity as the Minimal Individual Similarity
Calculating the joint similarity using the
geometric mean of the individual simi-
larities places equal weight on each of
the two similarities. However, the joint
similarity could also be defined as the
smaller of the two individual similari-
ties:

JAB = min(SA, SB)

where SA and SB represent the individual
similarities, respectively, of protein A
and its homolog and of protein B and its
homolog. In this manner, JAB measures
the minimal similarity level necessary
for the reliable transfer of interaction in-
formation between protein pairs. Indi-
vidual similarities can also be deter-
mined as percent identities by FASTA or
E-values by BLASTP.

Figure 1 Schematic illustration of protein–protein interologs and the mapping methods. (A) Original
interolog mapping. Theoretically, A-A� and B-B� should be orthologs between the two organisms.
Operationally, only best-matching homologs are required. (B) Generalized interolog mapping. Proteins
A1�, A2�, A3�, and A4� in the target organism are all homologs of protein A in the source organism. These
proteins form the A� family. Likewise, protein B’s homologs (B1�, B2�, B3�) form the B� family in the
target organism. If we know that protein A interacts with B, we can predict that the A� family and the
B� family are interacting families. All possible pairs between these two families are considered as the
generalized interologs (shown as black, dashed lines with arrows). (C) Comparison with the gold
standards. After the interactions in the source organism are mapped onto the target organism, the
predictions (i.e., generalized interologs) are compared with the gold standard positives and negatives.
True positives are the predictions that overlap with the gold standard positives. False positives are those
that overlap with the gold standard negatives. (D) Schematic illustration of protein–DNA interologs
and regulogs. In the source organism, TF A binds to its binding site (SA) and regulates the downstream
gene B. To perform the regulog mapping, TF A� in the target organism needs to be the ortholog of A.
Proteins B and B� should also be orthologs. The DNA sequence upstream of gene B� needs to contain
the same motif (SA�) as SA. However, practically TF A and A� only need to share �30% identity. The
interaction between TF A� and SA� is the protein–DNA interolog of that between A and SA. The
regulatory relationships between A → B and A� → B� are regulogs.
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Source and Target Organisms
In the “source organism,” there is a set of known interactions.
The “target organism” is a fully sequenced organism onto which
the known interactions in the source organism are mapped (as
described below) based on sequence similarities (see Fig. 1C).

Interolog Mapping
“Interolog mapping” is a process that maps interactions in the
source organism onto the target organism to find possible inter-
actions (i.e., interologs) in that organism (see Fig. 1A). To assess
the performance of mapping methods, one can use known inter-
acting and noninteracting protein pairs (positives and negatives)
in the target organism as benchmarks.

Original Interolog Mapping Method: Best-Match Mapping
Previously, Matthews et al. (2001) proposed a best-match map-
ping method to transfer yeast interactions onto the worm pro-
teome. Simply put, their method selects all best-matching ho-
mologs between two organisms (E-value < 10�10). In worm, all
pairs of best-matching homologs of interacting yeast proteins are
considered as potential interologs. Using two-hybrid systems,
they tested 216 worm protein pairs and 72 yeast protein pairs.
Their results showed that only 16% to 32% of interologs pre-
d i c t e d
experimentally determined interactions correctly.

A New Method: Reciprocal Best-Match Mapping
A more stringent derivative of this original method would be to
use only the reciprocal best matches in mapping interologs be-
tween organisms (Li et al. 2004). In this paper, we present results
from both approaches.

Generalized Interolog Mapping
Both interolog mapping methods, using only the best matches,
suffer from low coverage of the total interactome and low pre-
diction accuracy. This is discussed further in the next section. To
address the problem of low coverage, we introduce a new “gen-
eralized interolog mapping” method using all possible homologs
of interacting proteins. For any given protein in one organism, all
of its homologs in another organism are considered as a homolog
family (or simply family). Two families of two interacting pro-
teins are called interacting families, that is, at least one member
of one family interacts with a member of the other family. All
possible protein pairs between the two interacting families are
called generalized interologs (see Fig. 1B). This method has the
advantage of sidestepping some of the ambiguities in defining
orthologs.

Gold Standard Target Data Sets

Set of Gold Standard Positives P
To assess the performance of interolog mapping, we need a group
of known interactions as positives in the target organism. This set
is called the gold standard positives and is denoted by P. The
total number of elements in this set is |P|.

As the most extensive and reliable interaction data sets exist
for S. cerevisiae, we use it first as the target organism. In S. cerevi-
siae, the MIPS complex catalog, which contains 8250 unique in-
teracting protein pairs, has previously been used as a standard
reference for known interactions (Mewes et al. 2000; Edwards et
al. 2002; von Mering et al. 2002; Jansen et al. 2003). Therefore,
we consider the MIPS interactions as gold standard positives in
the next section. To compile a reference data set with the lowest
false-positive rate, we consider two proteins as interaction part-
ners if and only if they are in the same complex of the highest
level in the catalog. At the end of the paper, we reverse this

situation and use S. cerevisiae as the source organism and map its
reliable interaction information (from the complex catalog) onto
other eukaryotes (such as Arabidopsis thaliana) to build an intero-
log database.

It should also be noted that proteins in the same complex do
not necessarily interact with each other directly. Here, we use the
term “interaction” to signify “complex association,” that is, two
protein subunits may belong to the same quaternary complex
but not physically interact. Therefore, the number of complex
associations of a protein may be larger than the number of its
pairwise physical associations.

To probe the direct physical interactions more closely, we
constructed a refined, smaller data set comprising 1867 interac-
tions between 1391 proteins. In parallel to our “gold standard”
nomenclature, we call this the platinum standard data set.
Briefly, the data set contains physical interactions from complex
protein structures in the Protein Data Bank (Westbrook et al.
2003), verified interactions from small-scale experiments (Mewes
et al. 2000; Xenarios et al. 2002; Bader et al. 2003), and protein
pairs from small MIPS catalog complexes (�4 subunits). The data
set and a detailed explanation of its construction are available
from our Web site. The platinum standard data set is of equally
high quality as the gold standard set, but differs as it describes
physical pairwise interactions between proteins rather than com-
plex associations. As shown below, the two data sets yield very
similar results, indicating a good correspondence between physi-
cal interactions and complex associations. However, because bet-
ter statistics are obtained from a larger data set, we perform the
bulk of the analysis in this paper using the gold standard inter-
actions.

Set of Gold Standard Negatives N
We also need a set of negatives (i.e., noninteracting proteins) in
the target organism to assess our method. This set is called gold
standard negatives and is denoted by N.

Previously, Jansen et al. (2003) considered pairs of proteins
in different subcellular compartments as good estimates for non-
interacting pairs (Kumar et al. 2002). In total, there are 2,708,746
such protein pairs.

However, sometimes not all interolog features could be de-
fined for each of the pairs in the gold standard. In this case, we
use alternate sets P� and N�, subsets of P and N with defined
features.

Source Data Sets
To assess the interolog mapping method, we need source organ-
isms with known interaction data. In this paper, C. elegans, D.
melanogaster, and H. pylori are used as source organisms. We then
map the interactions in these organisms onto the S. cerevisiae
genome. These are the only three organisms, besides S. cerevisiae,
for which large-scale interaction data sets are available.

C. elegans Interaction Data Set
For C. elegans, there are 410 interactions from two-hybrid experi-
ments (Walhout et al. 2000; Davy et al. 2001; Boulton et al.
2002).

D. melanogaster Interaction Data Set
For D. melanogaster, there are 4786 interaction pairs from two-
hybrid experiments (Giot et al. 2003).

H. pylori Interaction Data Set
For H. pylori, there are 1465 interaction pairs from two-hybrid
experiments (Rain et al. 2001).
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Assessment Parameters
As shown in Figure 1C, based on interactions in the source or-
ganisms, all generalized interologs with joint similarities larger
than a certain cutoff (J) are considered possible interactions in
the target organism. We then assess these predictions (thin red
solid lines) against gold standard positives (thick, black, solid
lines) and negatives (dashed lines) in the target organism. The
assessment parameters are as follows.

G(J)
The set of generalized interologs in the target organism at a cer-
tain joint similarity level (J) is denoted by G(J).

T(J)
The set of the true positives in G(J) is denoted by T(J), that is,
T(J) = G(J) ∩ P. We define the number of true positives at a given
J as TP = |T(J)|.

F(J)
The set of false positives in G(J) is denoted by F(J), that is,
F(J) = G(J) ∩ N. We define the number of false positives at a
given J as FP = |F(J)|.

V(J)
We denote V(J) as the percentage of verified predictions among
generalized interologs at a certain joint similarity level J, which is
calculated as:

V� J � =
|T� J �|
|G� J �|

× 100%

We also call V a level of verification (or loosely, an accuracy).
Please note that V calculated here may be a lower bound estimate
because the MIPS complex catalog is not complete.

L(J)
We denote L(J) as the likelihood ratio for a generalized interolog,
with a certain joint similarity (J), to be a true prediction. L(J) can
be calculated by a Bayesian approach. This is a straightforward
extension of the formalism described previously (Jansen et al.
2003). If we know the number of positives (Np) among the total
number of protein pairs (Nt), the probability of finding an inter-
acting pair in the genome, P(pos), can be defined as Np/Nt. There-
fore, the “prior” odds of finding a positive are:

Oprior =
P� pos�

P�neg�
=

P� pos�

1 − P� pos�

In contrast, the “posterior” odds are the odds of finding a positive
given that, in another organism, its generalized interolog with a
joint similarity J is a known interaction:

Opost =
P� pos| J �

P�neg| J �

The likelihood ratio L defined as

L� J � =
P� J|pos�

P� J |neg�
=

TP
|P|
FP
|N|

relates prior and posterior odds according to Bayes’ rule:

Opost = L(J)Oprior

As Oprior is fixed for a given organism, Opost is proportional to L(J),
that is, the higher the likelihood ratio, the more likely the pre-
diction is true. In a naive Bayesian network where there are no

correlations between features, this procedure can be iterated. Spe-
cifically, Opost can be multiplied again by another L for a different
feature. In doing so, one could combine many different features
within a uniform framework of likelihood ratios. In particular, it
would allow us to combine our likelihood ratios from interologs
with the other features in Jansen et al. (2003).

Definitions and Formalism for Protein–DNA Interologs
and Regulogs

Protein–DNA Interologs and Mapping
If transcription factor (TF) A with binding site SA has, in another
species, an ortholog A� with binding site SA� of identical DNA
sequence, A�-SA� is a protein–DNA interolog of A-SA (see Fig. 1D).

We can extend protein–protein interolog mapping to pro-
tein–DNA interolog mapping. In this process, we transfer the
DNA-binding information of a given TF A to its ortholog A� as a
function of the sequence similarity between A and A�.

Regulogs
TFs bind to DNA to regulate the expression of downstream genes.
Therefore, there is a regulatory relationship between a given TF
and its target. Suppose that TF A and its target B in one organism
have orthologs A� and B�, respectively, in another organism. Fur-
thermore, suppose that in the second organism, A� is also a TF
regulating B�, then we call A� → B� a regulog of A → B.

Source Data Sets
For practical calculations, we used TF families as described pre-
viously (Luscombe and Thornton 2002). Target-binding se-
quences of individual factors were obtained from the TRANSFAC
database (Wingender et al. 2001). All known protein–DNA inter-
actions are considered as positives. We do not have negative data
sets for protein–DNA interologs and regulogs.

Assessment Parameters
The parameters involved in assessing the conservation of pro-
tein–DNA interologs are analogous to those for protein–protein
interologs. They are given as follows:

G(I)
The set of predicted protein–DNA interologs with the sequence
identities between TFs larger than a certain cutoff (I) is denoted
by G(I).

T(I)
The set of the transcription factor pairs that share the same DNA-
binding sites in G(I) is denoted by T(I).

V(I)
We denote V(I) as the percentage of verified predictions among
the predicted protein–DNA interologs at a certain sequence iden-
tity level, I. This is calculated as:

V�I � =
|T�I �|
|G�I �|

× 100%

We calculate Vs both for TFs within each family separately and
for all TFs together (see Fig. 1D). Due to the relatively small
amount of TF-binding data, we aggregate all of our predictions.
This procedure is described in the Supplemental material.
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RESULTS AND DISCUSSION

Assessment of Interologs on Current Interaction
Data Sets

Conservation of Generalized Interologs

Relationships Between V and J
To measure the conservation of interactions between homolo-
gous protein pairs, we assessed the chance (V) that two proteins
interact with each other as a function of their joint sequence
identities (JI) with other known interacting pairs. First, we
mapped only worm interactions onto the yeast genome. As there
are not many data points, we grouped all the generalized inter-
ologs into three bins based on their joint identities: low, medium
and high. Figure 2A shows a clear monotonic relationship be-
tween V and JI. This confirms that the higher the joint identity,
the more likely the predicted interolog is true.

To get better statistics, we mapped interactions in S. cerevi-
siae, C. elegans, D. melanogaster, and H. pylori onto the S. cerevisiae

genome, assessing them against our gold standards described
above. (In this case, S. cerevisiae functions as both a source
and a target organism.) In Figure 2B, the relationship be-
tween V and JI is the weighted average (based on the total num-
ber of true positives in each data set) of the relationships in all
four mapping processes. The plot exhibits a sigmoidal relation-
ship with a sharp decrease around 80% JI. This indicates that all
protein pairs having JI � 80% with a known interacting pair will
interact with each other, whereas few pairs interact at JI < 40%.
These results confirm that pairs of proteins with sufficient se-
quence similarity tend to share the annotation of protein–
protein interactions.

Furthermore, we performed a similar analysis using joint
E-values (JE). Figure 2C shows the same monotonic relationship
as that in Figure 2A, when we mapped worm interactions onto
yeast genome. In Figure 2D, the weighted average curve also has
a sigmoidal characteristic. Overall, more than half of the protein
pairs with JE � 10�70 indeed bind to each other. Therefore, JE of
10�70 could be used as a good threshold to reliably transfer the
annotation of interactions.

Figure 2 Conservation of protein–protein interactions between homologous protein pairs. (A,B) Relationships between V and JI. (C,D) Relationships
between V and JE. (E,F) Relationships between L and JE. (A,C,E) Calculated based on the results from worm-yeast mapping. (B,D,F) The weighted average
obtained when the interactions in all four organisms (i.e., S. cerevisiae, C. elegans, D. melanogaster, and H. pylori) were mapped onto yeast. (A) Low:
JI � 10%; Medium: 20% � JI � 30%; High: JI � 40%. (C,D) Low: 10�40 � JE � 10�10; Medium: 10�100 � JE � 10�50; High: JE � 10�110. Error bars
represent 95% CI calculated by a resampling algorithm (see Supplemental material).
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Relationships Between L and J
The above approach (i.e., assessing the transferability of a prop-
erty between organisms by calculating the fraction sharing the
property with certain similarity) has been generally used for simi-
lar purposes (Wilson et al. 2000; Hegyi and Gerstein 2001). Here,
we apply a Bayesian network approach to further evaluate the
transferability of interactions. Likelihood ratios (L) are more di-
rectly related to probabilities and are, therefore, more quantita-
tive and precise in describing the transferability of the interactions.

As we did for V above, we calculated the relationships be-
tween L and JE for two mappings: worm-to-yeast and a weighted
average of all four organisms to yeast (Fig. 2E and 2F, respec-
tively). Both figures exhibit positive relationships between L and
JE, suggesting that the better the joint E-values, the higher the
likelihood ratios. This further confirms the relationships found
in Figure 2, A–D, and the validity of using joint similarities.

Conservatively, the total number of interactions in yeast
genome is ∼30,000 (Kumar and Snyder 2002). Given that there
are ∼18 million yeast protein pairs in total, the prior odds (Oprior)
would be roughly 1/600. Therefore, only protein pairs with
L > 600 would have a >50% chance of interaction. As shown in
Figure 2F, protein pairs with JE � 10�50 have L > 600. The JE
threshold (10�70), determined previously, easily satisfies this cri-
terion. If we were to use L to perform the mapping methods,
cross-validation could be applied in choosing the optimal L cut-
off as described previously (Jansen et al. 2003).

We examine the correspondence between direct, physical
interactions and complex associations, by repeating the calcula-
tions for Figure 2, B, D, and F, using the platinum standard data
set. The results show similar trends to the gold standard data set
(Supplemental Fig. 1), indicating the high correspondence be-
tween the two data sets. Due to its smaller size, the statistics for
the platinum standard data set are not as good as for the gold
standard. Owing to the similarity of results, and better statistics,
we therefore use the MIPS complex catalog as the main reference
data set in this paper.

Results of J as the Minimal Sequence Similarity Remain the Same
As discussed above, we could also use the minimal individual
similarity instead of the geometric mean to calculate J. We re-

peated all calculations in Figure 2 using this
new definition of J. The results show that
the new definition has little effect (Supple-
mental Fig. 2). Therefore, for the remaining
discussion, J is defined as the geometric
mean of the individual E-values (i.e., JE).

Comparison of Different Interolog
Mapping Methods
To compare different mapping methods, C.
elegans was used as the source organism,
and its interactions were mapped onto S.
cerevisiae genome by three different map-
ping methods as discussed above. We com-
pared the predicted interologs produced by
the different methods above against the
gold standard positives and negatives. The
results are as follows:

Best-Match Mapping Method
From 410 interacting pairs in worm, we
found 84 corresponding interolog candi-
dates in yeast. Only 25 of these pairs over-
lapped with gold standard positives, corre-
sponding to V ≈ 30% (i.e., loosely 30% ac-
curacy). This agrees with previous results
(Matthews et al. 2001).

Reciprocal Best-Match Mapping Method
In total, we determined 33 interolog candidates based on the 410
worm interactions, among which 18 pairs (54%) were true posi-
tives.

Generalized Interolog Mapping Method
Based on the 410 interacting pairs, we found 92 pairs of inter-
acting families in yeast, 91 of which contain at least one true
interaction. In total, we predicted 9317 interactions (i.e., gener-
alized interologs), among which 162 pairs (2%) are true positives.
In Figure 3, it is evident that the fraction of true positives clearly
increases as JE decreases. When only the top 5% pairs with the
best JE values are selected, V increases to 31% (35 true positives
out of 112 predictions), resulting in even better accuracy than
that of the best-match mapping method (30%).

Previously, four large-scale experimental interaction data
sets in yeast have been combined into a “PIE” (i.e., Probabilistic
Interactome Experimental), in which each interaction is associ-
ated with a particular L (Jansen et al. 2003). To assess the perfor-
mance of our method in relation to known standards, we com-
pared our results against the PIE. We show our comparison as a
TP/|P�| versus TP/FP graph, a close analog of the conventional
ROC curve. As shown in Figure 4, the coverage and accuracy of
interolog mapping are roughly comparable to those of the large-
scale experiments.

Examples of Protein–Protein Interologs
The Ste5-MAPK complex is a key six-subunit complex in the yeast
mating-pheromone response pathway (Posas et al. 1998). The
interaction partners of worm MAPK (F43C1.2a) were determined
experimentally (see Supplemental Table 1). In total, there are 26
known partners for F43C1.2a, none of which is involved in this
MAPK signal transduction pathway. However, using the general-
ized interolog mapping method, we successfully predicted five of
the six subunits in yeast based on only one MAP kinase in worm.
This illustrates the power and utility of our method (see Supple-
mental material).

Figure 3 Distribution of the number of generalized interologs as a function of joint E-value (JE).
The dashed line represents the number of all predictions above a given JE, that is, G(J). The solid line
represents the number of true positives above a given JE, that is, TP.
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Assessment of Protein–DNA Interologs and Regulogs

Conservation of Protein–DNA Interologs
As shown in Figure 5, the relationship between V and I is sigmoi-
dal, with a sharp decrease in target site conservation between
30% and 60% sequence identity. This indicates that all TFs
within a certain range of identities invariably share the same
target sequence. The specific threshold for the identities is highly
family-dependent, ranging from 30% to 60%. The hormone re-
ceptor and LacI repressor families have a higher threshold of
∼60%, whereas the other families diverge at lower thresholds of
30%. The C2H2-zinc finger family is an ex-
ception, and sequence recognition is barely
conserved even for close homologs (thresh-
old identity 80%). The main reason for this
is that the binding domains of C2H2-zinc
fingers are often very short (∼30–90 amino
acids in length) and, therefore, only a few
mutations are required to alter its specificity.

The fact that TF families have different
thresholds reflects the regulatory diversity
of different families. Families with high
thresholds contain factors that regulate
many different processes, whereas those
with low thresholds regulate only a few dif-
ferent processes (Luscombe and Thornton
2002).

We further assessed the general trans-
ferability of protein–DNA binding proper-
ties between homologous protein se-
quences by calculating the relationship be-
tween V and I for all TFs. As shown in Figure
5, ∼60% of homologous TFs share the same
binding sites at 30% sequence identity; at
50% sequence identity, 80% of TFs share
the same binding sites. Therefore, if two
proteins have �30% sequence identity,
they can be predicted to share the same

binding sites. The confidence level of the prediction is shown as
a function of sequence identity in Figure 5.

Protein–DNA Interolog (Regulog) Mapping Method
When a protein–DNA interaction is transferred across species,
the regulatory relationship between the TF and its target is also
implicitly transferred. Based on our calculations, at least three
conditions are necessary for regulogs to be transferred (see Fig.
1D):

1. TF A and its homolog A� must have �30% sequence identity.
(Note that formally A and A� should be orthologs. However,
practically this is defined here by this sequence similarity cri-
terion.)

2. Target gene B and its homolog B� must be orthologs.
3. The DNA sequence upstream of B� must contain the same

binding site as that of B.

Unfortunately, we only have large-scale transcriptional regula-
tory networks in S. cerevisiae for eukaryotes and in Escherichia coli
for prokaryotes. Because the transcription machinery differs radi-
cally between eukaryotes and prokaryotes, the performance of
our regulog mapping method cannot currently be assessed on a
large scale. However, we would like to discuss one specific ex-
ample of regulogs between S. cerevisiae and D. melanogaster to
illustrate the process of regulog mapping and its underlying
logic.

In S. cerevisiae, Cyc1 is a mitochondrial protein with elec-
tron-transport function. The Hap2–Hap3 heteromeric TF com-
plex binds to the UAS2 activation sequence (GTTGG) upstream
of CYC1 and then activates transcription of this gene (Olesen et
al. 1987; Hahn and Guarente 1988). Using the above-mentioned
three conditions, we define potential regulogs in D. melanogaster:

1. CG10447 (a TF) and CG17618 (function unknown) are fly
homologs of yeast proteins Hap2 and Hap3 with 30% and
40% sequence identities, respectively.

2. CG17903 (CD4) is a fly ortholog of Cyc1. It shows electron-
transport activities and is located in the mitochondria (Lim-
bach and Wu 1985).

Figure 5 Conservation of protein–DNA interactions between homologous TFs. The conservation
is measured as the relationships between V and I. The legend appears as an inset on the graph. The
red, bold curve was calculated for all TFs in the source data sets (see Supplementary material). Error
bars represent 95% CI calculated by the resampling algorithm.

Figure 4 Comparison of generalized interolog mapping with PIE. In
this figure, the plot (TP/|P�| versus TP/FP) is analogous to an ROC plot
(TP/P vs. FP/N). Based on this curve, the performance of our method is
comparable to that of the large-scale experimental data sets.
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3. The same UAS2 activation sequence (GTTGG) is also found in
the promoter regions of CG17903 at the appropriate position
(∼ �200 bp).

Based on the above, we predict that CG10447 and CG17618 may
also regulate the expression of CG17903. This regulatory rela-
tionship is the fly regulog of its counterpart involving the yeast
proteins Hap2–Hap3, and CYC1. Elucidating this allows us to
predict the function of an unannotated fly protein, CG17618.
Furthermore, the interactions between the two fly TFs and the
UAS2 DNA sequence are the fly protein–DNA interologs of those
between Hap2, Hap3, and the UAS2 sequence. More interest-
ingly, because Hap2 and Hap3 interact with each other, their fly
homologs CG10447 and CG17618 may also interact. This fly
interaction is a potential protein–protein interolog of that be-
tween Hap2 and Hap3.

Database of Interologs and Regulogs
Finally, having proven the feasibility of the generalized interolog
mapping method, we applied this method on the MIPS complex
data set in yeast to predict protein–protein interactions in several
other important eukaryotic organisms, including C. elegans, Can-
dida albicans, D. melanogaster, and A.
thaliana. In each organism, the top 1% of
predicted generalized interologs with the
best JEs are considered as highly reliable
interologs. Simple statistics relating to the
interolog database are shown in Table 1.

To assess the accuracy of our data-
base, we compared our predicted worm in-
teractions with those from independent
and on-going large-scale worm two-
hybrid experiments. A total of 3730 inter-
action pairs were generated. Because only
one splicing form was used for each gene
in these experiments, we removed all al-
ternative splicing forms and our predic-
tion of yeast-to-worm interologs de-
creased from 91,224 (in Table 1) to 55,223
pairs. Among these, 45 pairs were con-
firmed experimentally. We use a hyper-
geometric model (see Supplemental mate-
rial) to evaluate the significance of this
overlap. The calculated P-value is smaller
than 10�10. The P-value is the probability
of finding a certain overlap between two
independent data sets by chance within
the whole worm interactome. Therefore,
the experimental results support and vali-
date our predictions.

More interestingly, the experimen-
tally determined interaction pairs can be

further divided into different groups involved in different path-
ways, for example, the 26S proteasome (Davy et al. 2001), DNA-
damage repair (DDR; Boulton et al. 2002), and vulval develop-
ment (Walhout et al . 2000). The overlaps between
these groups and our predictions vary considerably, as shown in
Figure 6. For groups known to be well conserved in eukaryotes,
such as the proteasome and DDR (Larsen and Finley 1997; Davy
et al. 2001), the overlaps are much better than those that are not.
The nonsignificant P-value for the group “others” is also attrib-
utable to the fact that the baits in this group are specially selected
to ensure they have no yeast homologs. Thus, Figure 6 further
confirms the biological relevance of our database.

We also applied our regulog mapping method to yeast tran-
scriptional regulation data sets (Wingender et al. 2001; Horak et
al. 2002; Lee et al. 2002). The results suggest potential regulatory
networks in other eukaryotic organisms. Owing to variable TF-
binding sites and insufficient information on binding sequences,
we transferred the yeast regulatory networks using only the first
two conditions, that is, sequence homology for both TFs and
targets. In general, distant organisms share smaller sets of TFs and
targets. Using D. melanogaster as an example, our regulog method
determined 33 TFs, 621 targets, and 2936 regulatory connections

Table 1. Statistics of the Interolog/Regulog Database

Organisms
Total protein–protein

interactions

JE cutoff for
highly reliable

interologs Total TFs Total targets
Total

connectionsa

S. cerevisiae 8250 N/A 148 3380 6765
C. albicans 20,470 10�105 66 1085 2349
C. elegans 91,224 10�75 36 601 1625
D. melanogaster 101,920 10�90 33 621 2936
A. thaliana 201,754 10�90 19 165 328

aA connection is a TF–target pair.

Figure 6 Percentage of the overlaps between the predictions and different groups. (All) All ex-
perimentally determined interaction pairs; (Proteasome) interaction pairs involved in the 26S pro-
teasome; (DDR) interaction pairs involved in DNA-damage repair; (Vulval-dev) interaction pairs
involved in vulval development; (Others) interaction pairs involved in germ line, meiosis, metazoan,
mitotic machinery, dauer formation, Chromosome III, chromatin remodeling, pharynx, and immu-
nity. The P-values measuring the statistical significance of the overlaps between different groups and
the predictions are given on top of each bar, which are calculated using the hypergeometric models
(see Supplementary material).
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Figure 7 Screenshot of the interolog/regulog database.
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(see Table 1). If the requirement of having the same binding sites
is included, we were only able to determine 29 connections be-
tween 13 TFs and 5 target genes.

The results of the interolog and regulog mapping are re-
corded in an interolog/regulog database at http://genecensus.
org/interactions/interolog/ (see Fig. 7). To find possible physical
or regulatory interaction partners of one’s favorite protein, the
user simply inputs the names of the organism and the protein.
For the protein–protein interolog database, all predicted interac-
tion partners will be shown and ranked by JE. Our database also
links each protein to an external Web resource such as SGD
(Christie et al. 2004), WormBase (Harris et al. 2004), or FlyBase
(The FlyBase Consortium 2002). For the regulog database, all pre-
dicted TFs and their targets are ranked by sequence homologies
between query TFs and their yeast homologs. The layout of the
Web page is similar to that of the interolog database.

Conclusion
In this study, we comprehensively assessed the transferability of
protein–protein and protein–DNA interactions by analyzing the
relationships between sequence similarity and interaction con-
servation. A total of 14,911 interactions in four organisms are
included in our investigation. In general, the conservation of
both interaction types shows a sigmoidal relationship with se-
quence similarity. For these four organisms, protein–protein in-
teractions are well conserved between protein pairs with at least
80% JI or 10�70 JE. For protein–DNA interactions, the specific
threshold of sequence identity is highly family-dependent. In
general, 60% of TFs with 30% or more sequence identity share
the same target sites.

Previously, Walhout et al. (2000) proposed an interolog con-
cept to transfer protein–protein interactions across species. Here,
we develop this concept into a concrete interaction prediction
approach, the generalized interolog mapping method. This is
readily expandable to any newly completed genomes. Using gen-
eralized interolog mapping method, we construct several ge-
nome-wide protein–protein interaction maps.

We further introduce a new regulog concept to map regula-
tory relationships between TFs and their targets across organisms.
We apply the regulog mapping to produce genome-wide regula-
tory networks for several eukaryotic organisms. The results of the
newly produced interaction maps and regulatory networks are
stored in an interolog/regulog database.

Future Directions
There are several directions to extend this work. With respect to
the conservation of protein–protein interactions, there are many
more sequenced genomes without known genome-wide interac-
tion networks. We will apply our method to these genomes to
gain insight into their protein–protein interactions, and eventu-
ally to shed light on their functions. However, our analysis is still
hampered by not having sufficient interaction data for other or-
ganisms. Once such large-scale interaction data sets are available,
we can repeat our calculations taking into consideration the new
information, which will give results with better statistical preci-
sion. For the regulog mapping method, we are unable to evaluate
its performance at this time. When genome-wide regulatory net
works are created in other organisms, we will evaluate the feasibility
and accuracy of the regulog mapping method in a similar fashion
to that of the protein–protein interolog mapping method.
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