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Modeling the structure of biological molecules is critical for understanding how these
structures perform their function, and for designing compounds to modify or
enhance this function (for medicinal or industrial purposes). The determination of
molecular structure involves defining three-dimensional positions for each of the
constituent atoms using a variety of experimental, theoretical and empirical data
sources. Unfortunately, each of these data sources can be noisy or not available in
sufficient abundance to determine the precise position of each atom. Instead, some
atomic positions are precisely defined by the data, and others are poorly defined. An
understanding of structural uncertainty is critical for properly interpreting structural
models. We have developed a Bayesian approach for determining the coordinates of
atoms in a three-dimensional space. Our algorithm takes as input a set of
probabilistic constraints on the coordinates of the atoms, and an a priori distribution
for each atom location. The output is a maximum a posteriori (MAP) estimate of the
location of each atom. We introduce constraints as updates to the prior distributions.
In this paper, we describe the algorithm and show its performance on three data sets.
The first data set is synthetic and illustrates the convergence properties of the
method. The other data sets comprise real biological data for a protein (the trp
repressor molecule) and a nucleic acid (the transfer RNA fold). Finally, we describe
how we have begun to extend the algorithm to make it suitable for non-Gaussian
constraints.

1. Molecular structure

The determination of molecular structure is critical for many pursuits in biomedicine
and industry, including the study of how molecules perform their function and the
design of drugs to remove, modify or enhance this function. It is estimated that there
are about 100000 different proteins in the human body, but only a few hundred
structures are known and stored in the protein structural data bank (Bernstein,
Koetzle, Williams, Meyer, Brice, Rodgers, Kennard, Shimanouchi, & Tasumi, 1977).
As the human genome project produces large amounts of information about the
atomic makeup of individual molecules, it becomes critical to devise methods for
estimating molecular structure—that is, for determining how the atoms within
motlecules arrange themselves in order to form three-dimensional structures.
Biological macromolecules can be divided into proteins and nucleic acids (Stryer,
1988). Nucleic acids, such as DNA and RNA, encode the genetic blueprints for all
living organisms as a linear sequence of four chemical building blocks. Although the
structure of nucleic acids was. once thought to be uniform and geared only towards
compact storage of information, it has become clear that the three-dimensional
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structures of these molecules are varied and able to carry out many important
functions. Proteins, on the other hand, have long been recognized as the major
effectors of function, including signal transduction, locomotion, chemical catalysis,
and control of transport across membranes. Macromolecules normally have in the
order of 1000-10 000 atoms, and so we must estimate 3000-30000 coordinates to
define a structure. The primary source for structural information has been
experimental techniques of X-ray crystallography (Blundell & Johnson, 1976), and
more recently, nuclear magnetic resonance (NMR) (Wuthrich, 1986). X-ray crystal-
lography has limited applicability because not all proteins can be crystallized. NMR
spectroscopy has technical limitations on the size of proteins that can be studied, and
preduces data that is somewhat-uncertain.

Very often, therefore, structures must be computed with information gathered
from multiple sources: experimental, theoretical and empirical/statistical observa-
tions. These data provide structural information ranging from geometric distances
and angles to global measures of volume, shape and proximity to the surface. The
problem of defining a structure from -insufficient and noisy constraints is often
underdetermined and leads to multiple solutions. It is therefore important to
develop methods for combining evidence about structure that can represent the
uncertainty explicitly. Moreover, it is critical that such methods produce not merely
a single reasonable candidate structure, but also give some idea of the certainty
associated with a position of each atom. Although there have been a few efforts to
determine structure from combinations of experimental, statistical and theoretical
data (Crippen & Havel, 1990; Sippl, 1990; Friedrichs, Goldstein, & Wolynes, 1991),
not one of these methods is explicitly probabilistic, and the reliability of the solution
is sometimes hard to gauge.

We have developed an algorithm that can take a wide range of probabilistic
constraints on structure and produce estimates of the mean and three-dimensional
variance in the position of each atom (Altman, 1989). The principle advantage of
our approach is that data from disparate sources can be combined using the common
language of probabilities—either determined objectively through statistical analysis,
subjectively by expert estimation, or (most commonly) a combination of both. The
goal of this paper is twofold: (1) to describe the methodology, and (2) to show its
performance on three different data sets. The ideas used in our work should be
useful in a variety of settings where probabilistic algorithms are searching a large
space. Our method can be viewed as a nonlinear Bayesian maximum a posteriori
estimator.

There are two lines of research that are related to the work described here. The
first is that of molecular structure determination. Distance geometry, is an algorithm
which takes as input a set of distances between atoms within a molecule. It employs
a clever eigenanalysis of a matrix derived from these distances to estimate the -
coordinates of the structure (Havel, Kuntz, & Crippen, 1983; Havel & Wuthrich,
1984). It takes as input the min/max boundaries on parameter values, and produces
as output a single solution. To estimate the uncertainty in the structure, it is
necessary to run the algorithm ‘many times and collect statistics over the resulting
population of structures. Some implementations of distance geometry have been
shown to sample space in a biased, non-systematic manner (Metzler, Hare, & Pardi,
1989). Distance geometry is prone to local minima, does not have well defined
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element of x, and off-diagonals that contain the covariances between the elements
within x:
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Because the coordinates can be logically grouped into triplets (representing the x, y,
and z coordinates for a single atom), we can also consider C(x) to be a matrix with
submatrices.
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where each of the submatrices represents the variance of a single atom (diagonals),
or the covariance between two atoms (off-diagonals).
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Qur representation allows us simultaneously to display information about
molecular structure and uncertainty. The mean values for the coordinates of each
atom <can be taken from the vector, x, and plotted. In addition, the variance of each
coordinate of an atom can be extracted from the diagonal and provides the
uncertainty along each axis of the mean estimate. In fact, with the full 3X3
variance/covariance information, we can estimate the uncertainty in any direction.
Figures 2 and 3(a) illustrate the mean positions and ellipsoidal uncertainties for two
molecutes. The ellipsoids are drawn at two standard deviations assuming a
three-dimensional Gaussian distribution.t

The off-diagonal elements of the variance/covariance matrix contain information
about the dependence between the coordinates of two atoms (that is, the dependence
of the position of one atom on the position of the other). Each off-diagonal element
is a linear estimate of the relationship between two coordinates. It is related to a

1 Given the covariance matrix, C, for an atom (as in Equation 4) we can compute the ellipsoid of
uncertainty assuming a three-dimensional Gaussian in the following manner. We diagonalize C=R7DR,
so that D contains the lengths of the principal axes of the ellipsoid (in units of variance), and R describes
the rotation of the ellipsoid in the global coordinate system. If we want to draw an ellipsoid at N standard
deviations, we_ calculate NV for each of the diagonal elements of D, render an ellipsoid with these
semiaxis lengths, rotate the ellipsoid with R, and translate to the mean position.
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FIGURE 1. (a) Each of three strategies for ordering constraints is compared with respect to the maximum
ertor of all constraints as a function of cycle number. Sorred constraints were introduced in reverse order
of satisfaction at the “reorder” step of the algorithm as presented in the pseudocode summary. Random
constraints were introduced in random order, and fixed order constraints were introduced in the same
(arbitrary) order each cycle. This result shows that the sorting step is effective in helping the algorithm
quickly find a good solution. Random ordering is also effective, probably because it allows different
constraints to rearrange atoms early in each cycle. Fixed order is, as might be expected, less efficient

because the same constraints are always used to start each cycle, and so the chance of escaping a minima
" is lower. Nevertheless, it is reassuring that' all three methods do converge. (b) Each of three strategies for
ordering constraints are compared with respect to average error of all-constraints as a function of cycle
number. Sorting strategies are the same as in Figure 1(a). Sorted constraints lead to more rapid
convergence. (—): sorted; (- --): random; (- - ~): fixed order.

correlation coefficient by a normalization term. If the element is positive, then the
two coordinates are positively correlated. This information is critical to the search; a
¢hange in any atom position affects the position of other atoms through this first
order estimate of their covariation. Thus, the off-diagonal 3 X3 submatrices
represent a linear summary of how the position of one atom changes as the position
of dnother is modified. There is a strong network aspect to this representation. As
more is learned about the relationships between atoms, the network of dependencies
grows (for example, see Figure 3(b)). Eventually, the movement of any atom results
- in the concerted movement of all other atoms based on this covariance information.
The precise mechanisms for updating estimates of the mean vector and covariance
matrix are discussed in the next section.

In practice, we must assign values to the x and C(x) variables before the
introduction of constraints. This represents our prior model of the structure. If we
have no information about structure, then we can generate random coordinates for
the mean positions, and generate an uncorrelated covariance matrix with diagonals
that reflect uncertainty in the mean positions (based, for example, on the expected
volume of the points in space), and with off-diagonals of zero. On the other hand, if
we have information about the general shape of the structure, we may be able to
assign reliable starting mean positions, as well as information about the variance at
each of these positions. This approach is useful, for example, when modeling an
unknown structure that is thought to be similar to a set of previously determined
structures. These previously determined structures define the bounds within which
the new structure must fall.
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Thus, for example, a measurement of distance between two points would be
represented as a function of six elements of the mean vector, x:

2=V(x; = ;)" + (i1 — Xj01)? + (Xivz — Xju2)* + V. (6)

If the distance measurement refers to the distance between two carbon atoms in a
chemical bond, then the variation in v is extremely small (the covalent bond distance
varies less than 0.1 A). If the distance measurement refers to an experimental
measurent from, for example, a study using NMR, then v will have farger variation
(NMR distances vary as much as 5A) (Wuthrich, 1986). For many problems,
distance constraints are the ‘primary form of available structural information. We
have shown elsewhere (Arrowsmith, Pachter, Altman, & Jardetzky, 1991; Liu er al.,
1992), however, that the constraint model (Equation 5) is general and extends to
bond angles (a nonlinear function of nine coordinates), dihedral angles (a nonlinear
function of 12 coordinates), and any other measurement that is a function only of
the atomic coordinates within the vector x. '

2.2. INTRODUCING CONSTRAINTS TO UPDATE MODELS

Having established our representation for atomic position, atomic uncertainty, and
constraints, we_can understand the mechanism for introducing constraints and
updating our estimates of the state vector, x, and the covariance matrix, C(x). The
standard Kalman filter employs a static measurement update algorithm of the
following form (Gelb, 1984):1

x(new) = x(old) + K[z — h(x(old))] . Q)
C(new) = C(old) — KHC(old) (8)
wilere
K = C(old)HT[HC(old)HT + C(v)]* )
and '
=2 (10)

Simply stated, Equation 7 specifies that the new estimate of mean position
(x(new)) is based on the old estimate of mean position that is corrected by a
weighted difference between the observed value of the measurement, z, and the
value that would be predicted from the old model, h(x(old)). Note that the matrix,
K, depends on the ratio of the uncertainty in the predicted constraint value (in the
numerator, which depends on a linearized constraint value, H, and the state vector

T In general, the Kalman filter allows for a time-dependent modeling of how x and h(x} change. We
assume a static molecule and do not introduce any time-dependent model of change. We therefore are
interested in calculating a single estimate that, for example, corresponds to a single point in time. In
principle all constraints can be introduced simuitaneously by creating a large vector of measurement
values. However, this leads to the requirement for a large matrix inversion (as seen in Equation 9}, since
v becomes a vector and C(v), the variance of v, becomes a matrix. We have shown elsewhere (Chen,
Singh, Poland & Altman, 1994), that small groups of constraints can be introduced efficiently.
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large protein structure, the trp repressor dimer, from a relatively sparse NMR data
set. Third, we describe our use of the algorithm to compute the structure of a nucleic
acid molecule, transfer RNA, using. constraints derived solely from statistical
analysis of sequence.

3.1. EFFICACY OF THE REHEATING STRATEGY: TESTS WITH SYNTHETIC DATA

To test the convergence properties of the method, we chose the problem of defining
the topology of a small protein, crambin (Hendrickson & Teeter, 1981). Crambin
contains roughly 500 atoms, but for the purpose of this example, we considered only
the 46 backbone alpha carbon atoms that define the general topology of the
molecule. The structure of crambin is known, so we generated synthetic data sets for
these tests. In general, there are 1035 distances between 46 atoms. The minimum
number of exact distances required to define the position of N points is 4N — 10, or
526 in the case of crambin.t The state (coordinate) vector, therefore, has 134
parameters and the covariance matrix is 134 X 134. For all calculations, the starting
values for the x vector were generated randomly between 0 and 50 Angstroms (an
uninformed prior). The covariance matrix was initialized to have all diagonal
elements at 100 (that is, a starting variance of 100 A? for each atom, compatible with
the expected volume of the molecule), and off-diagonal elements set to 0 (implying
independence of all coordinates-initially).t For all runs, the tolerance for exiting the
inner loop of the iterated, extended Kalman filter was 0.01, and the maximum
number of cycles, i, was three. The stopping condition for all runs {unless otherwise
noted) was an average error for all constraints of 0.3 S.D. or 2 maximum error of
1.0 S.D. We performed three tests.
. (1) We tested the algorithim by providing all possible exact distances (1035), with
extremely low variance. The random starting structure had an average error (in S.D.
from measured value) of 60, with a maximum error of 175. With all possible exact
distances, the algorithm converged to an average error of 0.20 S.D. (maximum error
1.3S8.D.) in three cycles. To test the stability of the solution, we allowed the
algorithm to run for a total of 1000 cycles. The solution remained stable, and the
ultimate improvement to an average error of 0.0007 S.D. (maximum of 0.002) was
achieved at cycle 58. Cycles 59 through 1000 made no further improvement. The.
structure that resulted was identical to the target solution, as expected.

(2) To explore the dependence of convergence on the order of constraints, we

$The 4N —10 figure is derived from the following argument: given four fixed points to describe a
coordinate system, any additional point can be unambiguously positioned by providing the distances to
the four fixed points (the distance to the first point provides a shell of possible locations, the distance to
the second point provides a two-dimensional circle of possible locations, the distance to the third point
selects two points on the circle and the fourth distance disambiguates between these two paints).
Additional points can then be positioned with four distances to any of the previously fixed ones. Thus, for
all points after the first four, we require four distances or 4(N — 4) =4N - 16. In order to position the first
-four points, we need only six distances: one point can be placed arbitrarily at the origin (no distances
required), its distance to the second point enables us to place the second point on the x-axis (one
distance). The distances of the first two points to the third allow us to place the third point on the positive
xy-plane (two more distances). Finally, the fourth point can be positioned in the positive z-hemisphere
using the distances to the first three points (three more distances). Thus, the total number of distances
required is, minimally, 4N — 16 + 6 =4N — 10.

$ As constraints between atoms are introduced and propagated, the off-diagonals of the covariance
matrix become nonzero.
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FiGure 5(a). (i) The gold standard structure used for testing the multicomponent algorithm (a fragment
of the molecule crambin). (ii) The multicomponent solution computed using a data set in which each of
the actual components (the component corresponding to the actual distance in crambin) is contaminated
with between one and three noise components with weights varying betwen 0.1 and 05. The
ulticomponent algorithm is able to identify the correct components and produce the correct structure.
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most closely fall. If the errors are large, then the variance matrix is reheated, as
described in Section 2.4 and the process is repeated.

The performance of this algorithm can be illustrated with two test calculations. In
the first, we have generated a synthetic data set in which we have added to the
“real” Gaussian component (describing the actual distance value in the test
structure, crambin again) a number of “noise” components. We have shown, as
detailed in Figure 5, that the algorithm is able to detect the real components and
converge to the correct structure. In the second calculation, we took two molecules
with the same number of atoms (structures A and B) labeled all the atoms uniquely,
and then provided the program with two equally weighted Gaussian components for
each constraint (one drawn from each structure). Thus, we removed all information
about which components are associated with structure A and which are associated
with structure B. The task of the algorithm was to find the sets of components that
are drawn from the same structure, and produce a coherent, low error solution. For
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capabilities of the Kalman filter. Our method is a member of the class of nonlinear
least-squares estimators that seek the most likely set of coordinates that best satisfy
the input constraints. It is therefore a (MAP) estimator. The method of posterior
mode analysis proposed by Shachter solves a very similar problem, and may be a
useful alternative to our method for the case of Gaussian noise (Shachter, Eddy, &
Hasselblad, 1990). Our method is Bayesian because it uses an initial probabilistic
model of the solution, and updates this model with data. It can be shown that if the
prior probability distribution contains no information, then MAP methods are
equivalent to least squares estimators (Mikhail, 1976). In these experiments the
model had low information content, since it had random starting positions with
large variance. Nonetheless, our knowledge of the bounds on the volume of the
molecule provided our starting estimate of variance, which was the primary
information contained in our prior. Our method uses a first-order approximation to
the nonlinearities of the system, and improves its performance by iteration. The idea
of combining uncertain data with a least squares criterion and computing explicit
estimates of uncertainty dates back to the nineteenth century in early work in
geodesy (measurements of distances and locations on the surface of the earth)
(Bomford, 1960). These methods did not include prior models of parameter values,
and solved nonlinear problems by finding (in an unspecified manner) an approxim-
ate solution, followed by linearization of nonlinear functions and refinement. They
did not maintain covariation information during the refinement.

Our single component algorithm produces a two-moment estimate of atomic
location (three-dimensional mean and variance). For purposes of display, we assume
that these represent the first two moments of a three-dimensional Gaussian when
drawing atomic locations. (Altman, Hughes, & Gerstein, 1995). Of course, it is
possible that some atoms will have a bimodal distribution, and we can only capture
these distributions with the multicomponent algorithm. Moving to multimodal
representations of atomic position is not a priority in our work for two reasons.
First, as more independent data sources are introduced, the three-dimensional
Gaussian becomes the most likely final distribution by the central limit theorem.
Second, there are few biological examples of significant bimodal distributions. On
the other hand, the use of multicomponent constraints is critical, and is the focus of
current effort.

Because of the matrix muitiplications required for the basic algorithm, it has a
computational complexity of O(N®). However, many of these multiplications are
sparse and can be optimized so that the algorithm is able to handle relatively large
calculations, such as that of the trp repressor described in Section 3.2. In addition,
we have recently reported an implementation of the method that takes advantage of
massively parallel supercomputers (Chen et al, 1994). The computational results
with the trp repressor and tRNA not only demonstrate that the algorithm scales up
. to solve biological problems, but also illustrate the biological utility of having
estimates of atomic positional uncertainty. In both cases, a key biological observa-
tion can be related to the pattern of atomic variation. We anticipate that many other
activities, such as the design of drugs or the re-engineering of these molecules for

T If we suspect that there may be two modes for each atom, we can modify the recombine step to
produce the best two structures instead of the best single structure as an intermediate step before testing
more constraints.
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other functions, will depend critically on such assessments of the reliability of a
structural model.

51. EXTENDING THE SYSTEM WITH NEW CONSTRAINT TYPES

Although we have concentrated in this paper on the use of distance constraints
between points, the mathematical form of the filter makes it clear that (1) any
function of the coordinates can be used as a constraint model, and (2) these
functions need not be scalar, but rather can be vector functions. In our applications
work so far, we have limited ourselves to distances, angles, and dihedral angles
because these types of constraints are sufficient for most structure determinations
from NMR data. However, as we collect statistical data on the associations between
certain types of atoms and aggregates of atoms, we can use statistical distributions as
constraints on our molecule. Since these statistical distributions will not always be
Gaussian, we have focused attention on processing non-Gaussian constraints. Our
success with such constraints, described in Section 4, is preliminary. We have shown
that the algorithm satisfies the necessary conditions of (1) choosing a single structure
from a set of noise components and (2) identifying coherent sets of components. We
are currently testing the multicomponent algorithm on real biological structures to
assess its performance.

The form of equations 5-11 suggest that the measurement z can be vector-valued.
In principle, we can use this machinery to introduce multiple constraints simul-
taneously in a single update. Until recently, we have avoided vector-valued
measurements (and preferred the serial introduction of scalar constraints) in order
to avoid the matrix inversion (required for nonscalar variables) in Equation 9.
However, -we have recently implemented this algorithm on a massively parallel
system, and have shown that the algorithm runs best with the parallel introduction
of 50 to 100 constraints (that is, z is a vector of 50 distance measurements, and v is a
vector of their noise) (Chen er al., 1994). With the strategy of introducing many
constraints simultaneously for one update, a greater improvement in the solution
occurs per cycle, but that the cost per cycle increases.

52. EFFICACY OF THE REHEATING AND RESORTING STRATEGIES

Our experiments with different constraint orders confirm our hypothesis that the
reheating of the covariance matrix allows the solution space to be explored more
effectively. A fixed order of constraints is more likely to explore the same general
hypothesis space, and to converge more slowly than either a random order or an
order in which the most dissatisfied constraints take the “first shot™ at altering the
solution. In fact, the trace of the fixed order convergence in Figure 1 shows that it is
able to jump out of the local minima of cycle S during cycle 6, even without sorting.
In this experiment, the sorted run does not seem to fall into local minima.
Simulated annealing is a computational method for assisting optimization by
providing a powerful heuristic for efficient search (van Laarhoven er al, 1987,
Vanderbilt et al., 1984). Based on an analogy to solid-state physics, simulated
annealing protocols add “heat” to an optimization to increase the likelihood that a
solution will jump out of a local optima. The solution is then allowed to ‘““cool”
slowly such that it settles into a new optimum—as a cooled solid might settle into a
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