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Modeling the structure of  biological molecules is critical  for  understanding how these 
structures perform their  function,  and  for designing compounds to modify or 
enhance this  function (for medicinal or industrial  purposes).  The  determination of 
molecular structure involves defining  three-dimensional positions for  each of the 
constituent atoms  using a variety of experimental,  theoretical  and  empirical  data 
sources. Unfortunately, each of these  data  sources  can  be noisy or  not available in 
sufficient abundance to  determine  the  precise  position of each atom.  Instead,  some 
atomic positions are precisely defined by the  data,  and  others are poorly defined. An 
understanding of structural  uncertainty is critical  for  properly  interpreting  structural 
models. We have developed  a Bayesian approach  for  determining  the  coordinates of 
atoms in a three-dimensional space. Our  algorithm  takes as input  a  set of 
probabilistic constraints on the  coordinates  of  the  atoms,  and an a priori distribution 
for each atom location. The output is a  maximum u posteriori (MAP) estimate of the 
location of each  atom. We introduce  constraints as updates  to the  prior  distributions. 
In this paper, we describe  the  algorithm  and show its performance  on  three  data sets. 
The first data set is synthetic  and  illustrates the  convergence  properties of the 
method. The other data sets comprise real biological data for a protein  (the  trp 

' repressor molecule) and  a nucleic acid (the transfer RNA fold). Finally, we describe 
how we have  begun to  extend the  algorithm  to  make it suitable for non-Gaussian 
constraints. 

1. Molecular structure 

The determination of molecular  structure is critical for many pursuits in biomedicine 
and industry, including the study of how  molecules  perform  their function and the 
design of drugs to remove,  modify or  enhance this function. It is estimated  that  there 

structures are known and  stored in the  protein  structural  data  bank (Bernstein, 
Koetzle, Williams,  Meyer, Brice, Rodgers,  Kennard,  Shimanouchi, & Tasumi, 1977). 
As the human genome  project  produces  large  amounts of information  about  the 
atomic makeup of individual molecules, it becomes critical to devise methods for 
estimating molecular structure-that is, for  determining how the atoms within 
molecules arrange themselves in order to form  three-dimensional  structures. 

BioIogical macromolecules  can be divided into  proteins  and nucleic acids (Stryer, 
1988).  Nucleic  acids, such  as DNA and RNA, encode  the genetic blueprints  for all 
living organisms as a linear  sequence of four chemical building blocks. Although the 
structure of nucleic  acids  was. once thought  to  be  uniform and  geared  only  towards 
compact storage of information, it has  become  clear  that  the three-dimensional 
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Y are  about 1OOooO different proteins in the human  body, but only a few  hundred 
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structures of these molecules are varied and  able to carry out many important 
functions. Proteins, on  the  other hand,  have long been recognized as the major 
effectors of function, including signal transduction, locomotion, chemical  catalysis, 
and control of transport across membranes. Macromolecules normally have in the 
order of 1000-10000'atoms, and so we must estimate 3000-30000 coordinates to 
define  a  structure. The primary source for structural information has been 
experimental  techniques of X-ray crystallography (Blundell & Johnson, 1976), and 
more recently, nuclear  magnetic  resonance (NMR) (Wuthrich, 1986).  X-ray crystal- 
lography has limited .applicability because not  all proteins can be crystaIlized.  NMR 
spectroscopy has technical limitations on the size of proteins that can be studied, and 
produces  data  that is somewhat.uncertain. 

Very often,  therefore,  structures must be computed with information gathered 
from multiple sources: experimental,  theoretical and empirical/statistical observa- 
tions. These  data  provide  structural  information ranging from geometric distances 
and angles to global measures of volume, shape and proximity to  the surface. The 
problem of defining a  structure  from .insufficient and  noisy constraints is often 
underdetermined  and  leads  to multiple solutions. It is therefore important to 
develop  methods  for combining evidence about structure  that can represent the 
uncertainty explicitly. Moreover, it  is critical that such methods produce not  merely 
a single reasonable  candidate  structure,  but also give some idea of the certainty 
associated with a position of each atom.  Although  there have been a few efforts to 
determine  structure from combinofions of experimental, statistical and theoretical 
data (Crippen & Havel, 1990; Sippl, 1990; Friedrichs, Goldstein, & Wolynes,  1991), 
not one of these methods is explicitly probabilistic, and the reliability of the solution 
is sometimes  hard to gauge. 

constraints  on  structure  and  produce  estimates of the mean and three-dimensional 
variance in the  position of each  atom  (Altman, 1989). The principle advantage of 
our approach is that  data  from  disparate sources can be combined using the common 
language of probabilities-either determined objectively through statistical analysis, 
subjectively by expert  estimation,  or (most commonly) a combination of both. The 
goal of this paper is twofold: (1) to describe the methodology, and (2) to show  its 
performance on three different  data sets. The ideas used  in our work should be 
useful in a variety of settings  where probabilistic algorithms are searching a large 
space. Our method  can be viewed as  a  nonlinear Bayesian maximum u posteriori 
estimator. 

There  are two lines of research  that are  related  to the work described here. The 
first is that of molecular structure  determination. Disrance geometry, is  an algorithm 
which takes as input a set of distances between atoms within a molecule. It employs 
a  clever eigenanalysis of a matrix derived from  these distances to estimate the 
coordinates of the  structure (Havel, Kuntz, & Crippen, 1983; Havel & Wuthrich, 
1984). It takes as input the minimax boundaries on parameter values, and produces 
as  output a single solution. To estimate the uncertainty in the structure, it  is 
necessary to  run the algorithm 'many times and collect statistics over the resulting 
population of structures.  Some  implementations of distance geometry have been 
shown to sample space in a biased, non-systematic manner (Metzler, Hare, & Pardi, 
1989). Distance geometry is prone  to local minima, does not have well defined 

\ We have developed an algorithm that can take  a wide range of probabilistic 
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behavior for non-exact distances, and is limited to distance  data only. Energy 
minirnizarion and molecular dynamics are algorithms  for  structure  determination 
which are based on the assumption that  the  proper conformation of a molecule is 
the one that has the lowest free energy (Levitt & Sharon, 1988; Nemethy & 
Scheraga, 1990). Energy terms that  describe the interactions  between all pairs of 
a t o m  within a structure can  be defined, and optimization  methods can be applied to 
find the conformation of  the  structure  that  has the lowest energy. Uncertainty is 
represented within the energy profiles (which are related to probabilities by the 
Boltzmann relation). However, these algorithms are based on physical forces, and it 
is  difficult to know  how to combine them with statistical  and empirical sources of 
data.  Because these algorithms are  prone to local minima, they are most commonIy 
used for refinement of existing  high resolution structures,  and  for simuIation of their 
Local dynamics. A detailed comparison between our method  and  these  other 
approaches (varying constraint abundance, precision of constraints, size of molecule) 
has been published (Liu, Zhao,  Altman, & Jardetzky, 1992). The key advantage of 
our method is the natural representation of constraint  information  as probability 
distributions, facilitating the combination of disparate  data sources. 

2. Probabilistic representation and computation 

There  are three types of information that  our  method uses: an estimate of the mean 
position of each point (or atom), an  estimate of the variance/covariance between all 
coordinates of all points, and a  representation of the underlying model of the  data 

> and its sources of noise. The notation used here is borrowed  from Gelb (1984) and 
‘from Smith, Self,  and Cheeseman (1986). As will be discussed in detail in this 
section, the algorithm iteratively estimates  the  mean values (as well as positional 
variances and covariances) of the  points using all  available  data. The algorithm 
leaves local optima by resetting the elements of the variance/covariance matrix 
elements to high values before each cycle.of the iteration. The increased variance of 
the elements allows  unsatisfied (relatively low-variance) uon. 
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element  of x, and off-diagonals that contain the covariances between the elements 
within x: 

Because the coordinates can be logically grouped  into triplets (representing the x,  y ,  
and z coordinates for a single atom), we can also consider C(x) to be  a matrix with 
submatrices. 

where each of the  submatrices  represents the variance of a single atom (diagonals), 
or  the covariance between two atoms (off-diagonals). 

Our representation allows us simultaneously to display information about 
molecular structure  and  uncertainty. The  mean values for the coordinates of each 
atom .can be  taken  from the vector, x, and  plotted.  In addition, the variance of each 
coordinate of an atom can be extracted  from the diagonal and provides the 
uncertainty along each axis of the mean  estimate. In fact, with the full 3 X 3 
variance/covariance information, we can estimate the uncertainty in,  any direction. 
Figures 2 and 3(a)  illustrate the mean  positions  and ellipsoidal uncertainties for two 
molecuIes. The ellipsoids are drawn  at  two  standard deviations assuming a 
three-dimensional Gaussian  distribution.? 

The off-diagonal elements of the variance/covariance matrix contain information 
about the  dependence between the coordinates of two atoms (that is, the dependence 
of the position of one  atom on the position of the other).  Each off-diagonal element 
is a  linear  estimate of the relationship  between  two coordinates. It is related to  a 

+Given  the covariance matrix, C, for an atom  (as in Equation 4) we can compute the ellipsoid of 
uncertainty assuming a three-dimensional Gaussian in the following  manner. We diagonalize C = RTDR, 
so that D contains the lengths of the principal axes of the ellipsoid (in  units of variance), and R describes 
the rotation of the ellipsoid in  the global coordinate system. If we want to draw an ellipsoid at N standard 
deviations, we. calculate NVo for each of the diagonal elements of D, render an  ellipsoid  with these 
semiaxis lengths, rotate  the ellipsoid  with R, and  translate  to  the mean  position. 
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FIGURE 1. (a) Each of three  strategies for ordering  constraints is compared with respect to the marimurn 
error of all  constraints as a  function of cycle number. Sorted constraints were introduced in reverse order 
of satisfaction  at  the “reorder”  step of the algorithm as presented in the  pseudocode summary. Random 
constraints  were  introduced  in  random order, and fixed  order constraints were introduced in the  same 
(arbitrary) order each cycle. This  result shows that  the  sorting step is  effective in helping the algorithm 
quickly find a good solution.  Random  ordering is also  effective, probably because  it allows different 
constraints to rearrange  atoms  early in each cycle. Fixed order is. as might be expected, less efficient 
because the same  constraints are always used to  start  each cycle, and so the chance of escaping a minima 
is lower. Nevertheless, it  is reassuring that‘ all  three  methods do converge. (b) Each of three  strategies for 
ordering  constraints  are  compared with respect to average error of all-constraints  as a function of cycle 
number.  Sorting  strategies are  the same  as in Figure l(a). Sorted  constraints  lead to more rapid 
convergence. (-): sorted; (- - -): random; (- - -): fixed order. 

correlation coefficient  by a  normalization  term. If the element is positive, then the 
\two coordinates  are positively correlated.  This  information is critical to the search; a 
%ange  in any atom position affects the position of other atoms  through this first 
order  estimate of their covariation. Thus, the off-diagonal 3 X 3 submatrices 
represent  a  linear  summary of how the position of one atom  changes  as  the position 
of another is modified. There is a strong network aspect to this representation. As 
more is learned about  the relationships between  atoms,  the  network of dependencies 
grows  (for  example, see Figure 3(b)). Eventually, the movement of any atom results 

. in the  concerted  movement of all other atoms  based on this covariance information. 
The precise mechanisms for updating estimates of the mean vector and covariance 
matrix are discussed  in the next section. 

In practice, we must assign values to  the x and C(x) variables before the 
introduction of constraints. This  represents our prior model of the structure. If we 
have no information about  structure, then we can generate random coordinates for 
the  mean positions, and generate  an uncorrelated covariance matrix with diagonals 
that reflect uncertainty in the  mean positions (based, for example,  on the expected 
volume of the points in space), and with off-diagonals of zero. On the  other hand, if 
we have  infomation  about  the  general  shape of the  structure, we  may be able to 
assign reliable starting mean positions, as well as information about  the variance at 
each of these positions. This approach is useful, for  example,  when modeling an 
unknown  structure  that is thought  to  be similar to a set of previously determined 
structures.  These previously determined  structures define the  bounds within  which 
the new  structure must  fall. 
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FIGURE 2. The structure of the  trp  repressor  dimer  as calculated by the single component algorithm. The 
dimer is  made of two symmetric components  (dark gray,  light gray) that  are intertwined, with a symmetr). 
axis  running through the middle of the  structure vertically. The three-dimensional ellipsoid of uncertainty 
is drawn for each atom at 0.5 S.D. The main backbone atoms  are connected with a solid line. The central 

'., part of each component is composed of atoms that are, on average, very  well  defined. The far left  and far 
right of the dimer, however, have much. larger average structural uncertainty. These  areas of large 
uncertainty are the regions of the molecule responsible for binding DNA.  Subsequent work  has 
demonstrated  that these uncertainties reduce markedly upon binding DNA. The large ellipsoids in the 
absence of DNA indicate,  in this case, that the atoms  are mobile compared with the central,  more stable 
structural scaffolding. 

2.1. REPRESENTATION OF CONSTRAINTS 

We take a constraint to be any information that constrains the possible values of the 
coordinates. In  general, we model constraints in the following form: 

z = h(x) + v, 

where z is the measured constraint  (that is, the value provided by the experimental, 
theoretical or statistical source of information). z can be scalar or vector. It is 
modeled as 
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Thus,  for example,  a  measurement of distance  between two points would be 
represented as a function of six elements of the mean  vector, x: 

If the distance measurement refers to  the distance  between  two  carbon atoms in a 
chemical  bond,  then  the variation in v is extremely small (the covalent bond distance 
varies less than 0.1 A). If the  distance  measurement  refers to an  experimental 
measurent from, for example, a study using NMR, then v will have larger variation 
(NMR distances vary as much as 5A) (Wuthrich, 1986). For many problems, 
distance constraints are  the  primary form of available structural information. We 
have shown elsewhere (Arrowsmith, Pachter,  Altman, & Jardetzky, 1991;  Liu el al., 
1992), however, that the constraint *model (Equation 5 )  is general  and extends to 
bond angles (a nonlinear  function of nine coordinates),  dihedral angles (a nonlinear 
function of 12 coordinates), and  any  other  measurement that is a function only of 
the atomic coordinates within the vector x. 

2.2. ImRODUCING CONSTRAINTS TO  UPDATE MODELS 

Having established our  representation for atomic  position,  atomic uncertainty, and 
constraints, we- can understand the mechanism for  introducing constraints and 
updating our estimates of the  state vector, x, and the covariance  matrix, C(x). The 
standard Kalman filter employs a  static  measurement update algorithm of the 
following form (Gelb, 1984):t 

x(new) = x(o1d) + K[z - h(x(old))] (7 ) 
C(new) = C(o1d) - KHC(o1d) (8) 

where 

and 

K = C(old)HTIHC(old)HT + C(v)]-’ 

Simply stated,  Equation 7 specifies that  the new estimate of mean position 
(x(new)) is based on  the old estimate of mean  position  that is corrected by a 
weighted difference between the observed value of the measurement, z, and the 
value  that would be predicted from  the old model, h(x(o1d)). Note  that  the matrix, 
K, depends on the  ratio of the uncertainty  in the  predicted constraint value (in the 
numerator, which depends  on a linearized constraint  value, H, and the  state vector 

t In general, the Kalman filter  allows for a timedependent  modeling of how x and h(x) change.  We 
assume a static molecule and do not introduce  any  timedependent model of change. We  therefore  are 
interested in calculating a single estimate  that, for example, corresponds to a single point in  time.  In 
principte all constraints can be introduced simultaneously by creating a large vector of measurement 
values. However, this leads  to the requirement for a large matrix inversion (as seen in Equation 9). since 
v becomes a vector and C(v). the variance of v, becomes a matrix. We have shown elsewhere (Chen, 
Singh, Poland & Altrnan. 1994). that small groups of constraints  can  be  introduced efficiently. 
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FIGURE 3. (a) The calculated structure of a composite tRNA molecule  based on statistical data inferred 
from analysis of multiple tRNA sequences. Each RNA base is represented as a single pseudoatom for the 
purposes of this calculation. The familiar L-shape of the molecule is  clearly evident, even  with this low 



COMPUTING UNCERTAIN BIOLOGICAL STRUCTURES 601 

uncertainty, C), and the  uncertainty in the measured value (in the  denominator,  a 
linear estimate of the  uncertainty  in z). If the measured data, z, have high variance 
compared with our estimated variance in our certainty in h(x), then K is small, and 
the new state estimate will not be updated by much. If, on the other hand, the 
measured data, z, have low variance  compared with the estimate, h(x), produced by 
the old coordinate estimates, then K is large, and the new coordinate estimate will 
be substantially different from the old estimate. In general, the magnitude of the 
update in the coordinate vector will reflect the relative certainties of the measured 
and predicted values for each constraint. Thus, early in the problem solving, when 
few constraints have been  introduced (assuming we introduce constraints one at a 
time), it  is relatively easy to  move  atoms  around because they have a large initial 
covariance. Later in problem solving, however, when the estimate of the uncertainty 
in the positions is lower, it  is much more difficult to move atoms unless there  are 
very certain (that is, low-variance) measurements. 

The measurement update  Equations 7-10 are  optimal estimators when h(x) is 
linear (GeIb, 1984). When h(x) is nonlinear,  the  static measurement update 
equations for the extended, irerated Kalman filter can be used. Tnese equations 
perform  a local search iteratively around h(x(o1d)) to find the locally optimal value 
for x: 

x(new), = x(o1d) + Ki(z - h(x(new)j-, + H(x(o1d) - ~(new)~-,)]  (11) 
(where i is the local iteration  counter). Kj is recalculated, as in Equation 9, for each 
local iteration from the improved x(new),. C(x) is as defined in Equation 8. 

The extended,  iterated Kalman filter, measurement update equations are  the 
optimal linear approximation to  the actually nonlinear solution. Unfortunately,  the 
noniinearities of structural  determination  are such that  the residual errors of 

‘\, structures calculated by sequentially introducing constraints using these update 
’equations  are still too large. However,  the solution produced by these  equations 
typically satisfies the input constraints better than the  starting  estimate (but not well 
enough). One might postulate that, by serially introducing the constraints a second 
time,  the estimate would improve even more. However, because the 
variance/covariance estimates decrease monotonically with the introduction of each 
constraint, it becomes harder  and  harder to move atoms’out of the local  minima 
defined by these  update  equations. In general, parameters whose variance is 
estimated to be small cannot be  updated  far from their mean without overwhelm- 
ingly certain data. However, parameters with large variances are “looser” and more 

FIGURE 3. (Continued) 
resolution representation. Double helical regions of the RNA are also clear in the regions of low 
structural variance  (small  ellipsoids). The  regions of larger structural variance occur mostly at the tips of 
the molecule, and are  the  areas whose structural details differ among  the different tRNA molecules. 
Conversely, the areas of low variance are  the regions that are structurally conserved  across  different 
tRNA molecules. Thus, the  representation immediately suggests  which areas confer the molecule-specific 
properties-the more  highly variable sections. (b) The full covariance matrix computed for the tRNA 
structure shown in Figure  3(a). In this illustration, low values are black  and  high  values are white. The 
diagonal going from  lower left to upper right is  the variance of the atoms, as reflected in the size of the 
ellipsoids in  Figure  3(a). There  are  three  elements of high structural variation corresponding to the three 
white diagonal areas centered at 18,35  and 55. The 06-diagonal elements are the estimates of covariation 
between parameters. For example, there  are  areas of high covariation between bases 18 and 58, 5 and 70. 
and 14 and 47. There  are  areas of low covariation between bases 34 and 58. 
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able to  respond to data by changing values. This  forms  the key intuition for our 
heating strategy discussed in Section 2.4. 

2.3. EVALUATING THE MODELS 

Given an estimate of mean structure, x, its variance, C(x), and a set of constraints of 
the form shown in Equation 5, we evaluate  the quality of the estimate by comparing 
the value of the observed value, z, with the value of the estimated value from our 
modeI, h(x). We normalize for the  expected  noise in the  input value, a2(v) =the 
variance of v, and then for each constraint  calculate  an error 

We can then examine the distribution of these  errors as weli as  the maximum and 
average errors. Good solutions should have low average error (approaching zero, if 
our assumption that v is distributed around  zero is valid), and  an  error distribution 
thai follows a Gaussian distribution (also  because or  our assumptions about v). 

Although  Equation  12 is a  reasonable  error  measure, it is not perfect because the 
information in the covariance matrix, C(x), is  not used. An alternative metric 
compares the variance, a*(h), in the  estimated  value of h(x), as well as the variance 
a’ (v )  of the measurement is z. a2(h) can be estimated using a first order 
linearization of h(x): 

rz(h(x)) - HTC(x)H, (13) 

$ where H and C(x) are given in Equations 10 and  2, respectively. We can therefore 
evaluate the  error by comparing the observed value, z, with the estimated value, 
h(x), and normalize by the error in the estimate, 

Whereas  Equation 12 tells us how  well the solution satisfies the input data (and 
its variance), Equation 14 tells us how well the input  data satisfies the solution. In 
practice, we have found Equation  12 to  be adequate  for recognizing good solutions. 

2.4. FACILITATING  CONVERGENCE WITH A COVARIANCE MATRIX “HEATING” 

Our approach  to  the solution of the problem of local minima was inspired, in part, 
by the work in simulated annealing (Vanderbilt & Louie, 1984; van Laarhoven & 
Aarts, 1987), in which repeated cycles of heating  and cooling a  set of variables 
allows them  to find optimal values while avoiding local optima.  After serially 
introducing the constraints on,  the  structure (using Equations 11 and S ) ,  we are left 
with an improved estimate of x, but also  a covariance matrix C(x) that is “unwilling” 
to allow atoms  to move out of the local minima, in the sense  .that extremely 
low-variance measurements would be required to move an atom  far from the 
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estimate. We introduce “heat” by resetting the covariances to their initial (large) 
values (which should allow  unsatisfied constraints to have  a relatively greater effect 
on  the vector, x). We then reintroduce all the  constraints  once again, but sorted such 
that  the constraints that were least satisfied by the  previous  coordinate estimates are 
introduced  into  the solution earliest. We have  shown, in experiments described in 
Section 3.1., that by reheating the covariances and introducing  the constraints in 
reverse  order of satisfaction, we maximize the  chance  that  the atoms will be 
reorganized radically  and will jump  out of the  current minima. Since we have 
observed a consistent ability,of the  update  equations to improve upon the starting 
estimates, we simply repeat  the cycle of search, reheat, search until the residual 
errors  are acceptable (see outline of procedure).  In  essence, we are repeating the 
calculation with an improved prior distribution on  the  mean positions of all the 
points. We are still being conservative, however, because we use the  same variance 
and not a variance that has been reduced to reflect the increment in information 
contained in x. Although we have not made any formal claims about resistance to 
minima, there  are  three forces acting to help the  algorithm avoid (or leave) multiple 
minima. First, we use a covariance matrix to  capture  the first-order correlation 
between atomic coordinates; therefore, moving even  a few atoms causes changes in 
the  entire molecule (and more coverage of the  search  space). Second, the reheating 
allows atoms to move from one local minima to  another in a rational way: atoms will 
not move arbitrarily in space, but  will  move along  a vector whose magnitude is 
consistent with the prior positional variability of the  atom.  Third,  the  reordering of 
serial constraints allows the constraints that  are  violated  to  dominate  the initial 
reorganization of the structure. The convergence performance of our algorithm is 
jllustrated in  Section 3. 
! 

\ 

2.5. PHYSICAL  CONSTRAINTS ON PACKING 

The chief limitation of the method described here is the requirement  that all 
uncertainty in constraints be normally distributed with mean of zero. For many data 
sets (such as those provided by NMR spectroscopy)  this is a  reasonable assumption. 
There is one important data source, however, for which this is problematic; atoms 
must have a minimal distance from one another. Thus, there is a lower bound on the  
distance between all  pairs of atoms that is quite abrupt: distances even a few tenths 
of an Angstrom larger than the  forbidden minima are  not only possible, but 
frequently seen. If our algorithm is run without this  constraint,  then  the resulting 
structures  tend to be too dense, and  there  are  too many atoms per unit volume. 
There is a tendency for the atoms to satisfy the constraints in a tight cloud of 
positions that is just large enough to satisfy the distance constraints. Since there  are 
often no constraints which tend to .expand the  structure, we need to introduce a 
constraint on the volume of the  ensemble of points. 
The constraints on volume  and packing density are examples of global constrainrs, 

in which the constraint function, h(x), is a function of  all (or most) of the atoms and 
not just a subset of the atoms (as  is the case for distance, angle, and dihedral angle 
constraints). The most elegant way to model these constraints is to define a 
constraint function that calculates the volume occupied by a set of atoms, and 
provide a constraint on the mean value of this function  and its variance. In the 
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current  implementation, however, we handle  the packing density in a less elegant 
way. After introducing all input  constraints, we  check  all pairwise distances between 
atoms  and identify pairs of atoms that  are  too close to  one another. When such a 
pair is found, we introduce  a new distance constraint to impose the minimum 
distance criterion. This new constraint is used only once to  “push”  the  atoms away 
from one another  (it clearly also leads to minor violations of constraints that were 
previously satisfied), in order  to increase the volume of the ensemble of atoms. 
These dynamic constraints are then  discarded,  the solution is reheated,  and the 
initial constraints are used again to refine the structure. At the  end of the next cycle, 
the  dynamic  constraints are generated and applied anew. We have observed that 
repeated cycles of checking for  violations  (and introducing new constraints to 
correct  them) successfully reduces the  number of violations, and produces molecules 
with acceptable densities. 

The algorithm we use can be summarized with a pseudo-code: 

do cyc le=? ,   maxcycle  

reset cova r i ance   ma t r ix   t o  
i n i t i a l   h i 5 h   v a i u e s  

do i = l ,   n u m - c o n s t r a i n t s  

60 j = i ,   m a x i t e r  
H=d h ( x )   / d x  
K = C H t  (SCC%t+v)^( - l l  
x j = x +  

K ( z - ( h ( x j - l )  + X  ( x - x j - 1 ) ) )  

enddo 
x = x j  
C=C-K H C 

ecddo 
c h e c k c o n s t r a i n t   s a : i s f a c t i o n o f  

checkpack ing   consc ra in t s  

r e o r d e r a p p i i c a t i o n  of con- 
s z r a i n t s  

u p d a t e d   s t r u c t u r e  

enddo 

/ / o u t e r   l o o p :   r e g e a t   p r o c e s s   u n t i l  

/ / h e u r i s t i c   f o r a v o i d i n g l o c a l m i n i m a ,  
/ / s i m i l a r   t o   r e h e a t i n g   i n   s i m l a t e d  

annea l ing  
/ / a p p l y   e a c h   c o n s t r a i x   ( z = h i x )  + V I  LO 

s t r u c t u r e  
/ / i n n e r   l o o p :   l i n e a r i z e  and i t e r a t e  
/ / i i n e a r i z e  
/ /;talman fi1:er g a i n  
/ / in i : ia l iza : ion   for   inner   loop:  xO=x 
/ / e x i t  loop i f  change  (xj-x;-l)  mal!  

convergence 

enough 

/ / u p d a i e m e a n p o s i t i o n s  
/ /updete   covariance  matr ix  

/ / c h e c k   f o r   c o n v e r g e x e  ( 5 2 . 3 )  

/ /dynamical ly   produced diszance con- 

/ / h e u r i s t i c   f o r   h e l p i n g   c o n v e r g e n c e  
s:raints ( §  2.5) 

( 8 2 . 4 1  

3. Applications 

In this section we describe  three  applications of the methodology. First, we use 
synthetic  data  to  show empirically that the reheating strategy we  use converges 
reliably. Second, we describe  our use of the algorithm to  compute  the  structure of a 
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large protein  structure,  the trp repressor  dimer,  from  a relatively sparse NMR data 
set. Third, we describe our use of the algorithm to compute  the  structure Of a nucleic 
acid molecule, transfer RNA, using constraints derived solely from statistical 
analysis of sequence. 

3.1. EFFICACY OF THE REHEATING STRATEGY: TESTS WITH SYNTHETIC DATA 

To test  the convergence properties of the  method, we chose the problem of defining 
the topology of a small protein, crambin (Hendrickson & Teeter, 1981). Crambin 
contains roughly 500 atoms, but  for  the  purpose of this example, we considered only 
the 46 backbone alpha carbon  atoms  that define the general topology of the 
molecule. The structure of crambin is known, so we  generated synthetic data sets for 
these tests. In general, there are 1035 distances between 46 atom. The minimum 
number of exact distances required to define the position of N points is 4N - 10, or 
526 in the case of crambin.t The state  (coordinate) vector, therefore, has 134 
parameters  and  the covariance matrix is  134 X 134. For all calculations, the starting 
values for the x vector were generated randomly between 0 and 50 Angstroms (an 
uninformed prior). The  covariance matrix was initialized to have all diagonal 
elements at 100 (that is, a  starting variance of 100 A* for each atom, compatible with 
the expected volume of the  molecule), and off-diagonal elements set to 0 (implying 
independence of all coordinates-initially).$ For all runs,  the tolerance for exiting the 
inner loop of the  iterated,  extended Kalman filter was 0.01, and the maximum 
number of cycles, i, was three. The stopping condition for all runs {unless otherwise 
noted) was an average error  for  all constraints of 0.3 S.D. or  a maximum error of 
1.0 S.D. We performed three tests. 

'>., (1) We tested the algorithm by providing all possible exact distances (1035), with 
'extremely  low  variance. The  random starting  structure had an average error (in S.D. 
from measured value) of 60, with a maximum error of 175. With all possible exact 
distances, the algorithm converged to an average error of 0.20 S.D. (maximum error 
1.3 S.D.) in three cycles. To test  the stability of the solution, we allowed the 
algorithm  to  run  for  a  total of 1000 cycles. The solution remained stable, and the 
ultimate improvement to an average  error of 0.0007 S.D. (maximum of 0.002) was 
achieved at cycle 58. Cycles 59 through 1000 made no further improvement. The 
structure  that resulted was identical to the  target  solution, as expected. 

(2 )  To explore the dependence of convergence on  the order of constraints, we 

7 The 4N - 10 figure is derived from the following argument: given four fixed points  to describe a 
coordinate  system, any additional  point  can  be unambiguously positioned by providing the distances to 
the four fixed points (the distance to  the first point  provides a she11 of possible locations, the distance to 
the second point provides a two-dimensional circle of possible locations,  the  distance to the third point 
selects  two  points on the circle and the fourth  distance  disambiguates between these two points). 
Additional  points can then be positioned with four  distances to any of the previously  fixed  ones. Thus, for 
all  points  after the first four, we require  four  distances or 4(N - 4) = 4N - 16. In order to position the first 
four points. we need only six distances: one point can be  placed  arbitrarily  at  the origin (no distances 
required), its distance  to  the second point  enables us to place the second point on the x-axis (one 
distance). The distances of the first  two points to the  third allow us to place the third point on the positive 
xy-plane (two more distances). Finally. the fourth point can be positioned in the positive z-hemisphere 
using the distances to the first three  points (three more  distances). Thus, the  total  number of distances 
required is, minimally, 4N - 16 + 6 = 414 - 10. 

$As constraints  between  atoms are introduced and propagated, the off-diagonals of the covariance 
matrix become nonzero. 
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provided 33% of the  total  number of distances (334, a more reaIistic fraction of 
distances-and  less than  the  4N - 10 required  for a unique, low variance solution). 
Each distance constraint was provided with  low variance (<5% of magnitude of 
distance). We  varied the  strategy for ordering constraints at  the  reorder step of the 
algorithm; the strategies were  to  shuffle constraints randomly, use the same fixed 
order every  cycle, or sort constraints by decreasing error in context of current 
structure. The starting average  error was 62 S.D. (maximum, 15SS.D.). Figure 1 
illustrates the performance of each of the  three strategies for ordering constraints. 
Sorting in reverse order of error (as measured in standard deviations) Consistently 
lead to the quickest convergence. A fixed order of constraints consistently converged 
poorly. The peak at cycle 6 €or the maximum error of the fixed order constraints 
represents a jump  out of a local  minima at cycle 5,  with subsequent  convergence by 
cycle  9. All three methods  produced  structures that matched the solution to a root 
mean  squared distance (RMSD) of  0.01 A. 

(3) To explore the effects  of  noise and  sparse data, we provided a set of 10% 
(104) of possible distances chosen at random, with noise added at different levels. In 
the case of 10% of all possible exact distances, the initiaI errors were 71 S.D. 
(average) and  158 S.D. (maximum).  The  algorithm  converged to an average error of 
0.36 S.D. with a maximum of  1.9 S.D. The  structure  matched  the target solution to 
an RMSIj of 2.13 A. In  the case of the same  10% of distances with  noise added,  the 
initial errors were 36 S.D. (average) and 151 S.D. (maximum). The average error 
was 1.2 S.D., with a maximum of 8.5 S.D. The  structure resulting from  the noisy data 
has an RMSD of 5.13 A. 

The results  for these three experiments show that the algorithm performs as 
expected. The first test establishes the necessary condition that the algorithm can 

'!. .converge quickly  when provided with all possible data. The second test establishes 
that, with  more realistic subsets of data,  the algorithm converges on the correct 
solution. It also demonstrates  that a strategy of introducing constraints in reverse 
order of their error leads to quickest convergence,  and  tends to avoid local minima. 
We have reported extensive comparisons of this method with other methods for 
processing distance constraints and studied the dependence of the solution on the 
quantity and  quality of data (Pachter, Altman, Czaplicki, & Jardetzky, 1991; Liu et 
al., 1992). 

3.2. THE STRUCTURE OF THE TRP-REPRESSOR DIMER 

The  trp repressor is a protein  made of two identical subunits that binds DNA in 
order  to decrease (or repress) the expression of genes involved in the synthesis of 
the  amino acid tryptophan (trp) (Stryer, 1988). The crystallographic structure of the 
trp repressor is known,  but the conformation in the crystal lattice may be somewhat 
different born the structure in aqueous solution (a more physiologicaIly relevant 
condition). NMR experiments provide distance information that is  useful for 
elucidating the structure in solution (Arrowsmith et al., 1991). We have  computed 
the  structure of the trp  repressor (1496 atoms) using probabilistic representations of 
the  structure and NMR data. In order  to avoid bias from the crystal structure, a 
random starting conformation was generated. 5400 distance constraints were used to 
compute a structure. Of these, 821  were derived from NMR measurements,  and  the 
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rest  were from known chemical bond lengths and angles. A small number of bond 
angle and dihedral angle constraints were also introduced. After 10 cycles, the 
calculation converges to  a structure with low error. 5326 (98.6%) of the constraints 
are. satisfied to within 2.0 S.D. The resulting structure is  shown in Figure 2. The 
average uncertainty (S.D.) of atomic positions is 1.2 A, but  there. is considerable 
variation. In fact,  the most  significant biological insight gained from this computa- 
tion, is the observation that  the  part of the molecule that comes  in contact with 
DNA (when  they associate to form a complex) has the largest positional uncertainty 
(S.D. is about 2.9 A), compared to  the relatively invariant central region (1.0 S.D is 
0.8 A). The uncertainty of  the  DNA binding region results from a lack of precise 
structural information in the data set. This paucity of data usually arises from the 
motion of atoms that, consequently, do  not  produce  strong NMR spectroscopic 
signals. The observation that  the  DNA-binding  region of the  trp  repressor may be 
mobile, has important implications for how the molecule may recognize and 
associate with DNA  (Zhao & Jardetzky, 1993). 

The structure computed by our  method has subsequently been further refined 
using additional NMR data, and  has been optimized using energy-based molecular 
dynamics techniques (Zhao et al., 1993). The resulting  structures have a general 
similarity to  the crystal structure (overall RMSD  deviation of 5.8 A, with a deviation 
of only 2.0A in the core region) but differ in important ways that  provide useful 
clues about the ways  in  which this molecule performs  its function. This experiment 
demonstrates that  the algorithm scales up  to large molecules (at  the time this 
calculation was first performed, it  was the largest NMR structure  ever solved), and 
shows the value of maintaining second order information  about the positional 
variability of each atom (both for  conformational  search and for subsequent 
analysis). The ellipsoidal rendering is useful for visual summary of both  the structure 

,, and its rather  heterogenous variations. 

3.3. THE STRUCTURE OF TRANSFER  RNA 

Transfer RNA (tRNA) is a nucleic  acid molecule that is critical in the process of 
translating the genetic  code (encoded in DNA)  into  the proteins which carry out 
much of the vital functions within a cell. The tRNA molecule can be  modeled, as a 
first approximation, as a string of 76 beads (one  bead  for each constituent RNA 
base). Using a variety of statistical analysis techniques on a set of closely related 
tRNA molecules from different species or with slightly different functions, Klingler 
and Brutlag (1993) have proposed a  set of structural constraints (in the form of 
distances and angles) on  the  tRNA molecules. 
. These constraints come from a group of sequences that  are assumed to have the 
same general shape (with small variations in some regions-reflecting functional 
differences between molecules). Analysis of the sequences of these molecules leads 
to predictions that certain beads should be close to  one another,  or  have a particular 
geometry. In order  to test  the sufficiency of these  constraints  to  produce  three- 
dimensional structural models, we encoded these constraints  into probability 
distributions on distances and  angles. We had a total of 390 constraints for the 76 
atoms, and computed the structure shown in Figure  3(a) from a  random  starting 
structure, with variance of 100A2 (Altman, 1993). The final covariance matrix is 
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shown in Figure 3(b). The final structure satisfies all constraints to less than 1.2 S.D. 
The crystal structure of two tRNA molecules are known, and are quite similar to  the 
structure produced by our algorithm (10 8, RMSD deviation, which is consistent 
with the granularity of our bead  representation).  More  importantly,  perhaps, the 
solution produced by our algorithm shows which parts of the molecule have 
relatively low variance, and  are  therefore  predicted with  high confidence. As in the 
case of the  trp  repressor,  the  information  about variance can be  interpreted 
biologically: the  sections  that are most uncertain are (as would be expected) the 
sections that confer the specific functional role  to each molecule within the tRNA 
family. The common, shared  structural scaffolding of the molecules has low 
positional uncertainty. This experiment demonstrates  that  the technique is useful in 
prediction of molecular conformations from relatively weak, uncertain constraints. It 
also shows that  the  representation can be used to summarize the  structure of 
multiple; closely related  structures, while highlighting both the low-variance regions 
of common structure  and  the high-variance regions of structural difference. 

4. Extending the  algorithm for non-gaussian  noise 
The most  severe  limitation of the  algorithm,  as describe in Section 2, are  the 
assumptions of a  three-dimensional  normal distribution for  the position of each 
atom, and the assumption that  the  uncertainty in the constraint value is distributed 
normally. With respect to  the first assumption, it is clearly possible for a  data  set  to 
imply a non-Gaussian atomic distribution (for example, if the  data arise from two 
different populations of molecular structures,  then each atom might have two 

,, disjoint locations). With  respect  to  the  second assumption, it is clearly the case that 
many constraints on  structure  are  not Gaussian,  but are instead distributed as 
irregular distributions-including bimodal or trimodal distributions. For  these 
distributions, a  representation  that uses only means and variances does not  capture 
the fine structural  detail contained in the constraint distribution. Although the first 
assumption may sometimes cause us to miss variations on  the most likely structure, 
the second assumption causes us to throw away critical information that may make it 
difficult to even find the most likely structure.  We have developed an extension to 
the algorithm which allows us to address both these issues, but is primarily aimed at 
the problem of non-Gaussian constraint noise. 

The key idea for  handling constraints that  are non-Gaussian, is to represent them 
as a mixture of Gaussian distributions (Poland & Schachter, 1993). That is, each 
constraint distribution is the  sum of Gaussian components--each with a  mean, 
variance and weight (which specifies that  amount of density, between 0 and 1, 
assigned to that  component). In principle, we  can now reformulate the problem of 
solving the general non-Gaussian problem as  one  of finding and solving rhe mosr 
likely Gaussian problem. If we select one Gaussian component from each constraint, 
we  have  a single problem of the  type solved by the basic (single Gaussian 
component) algorithm, described in Section 2. Unfortunately, there  are an exponen- 
tial  number of such combinations of components,  and so we must develop a strategy 
for searching among them for  the  most likely combination. The choice of 
components can be graphically depicted as a search tree, in  which each level of the 
tree corresponds to a single constraint,  and  each branch corresponds to the choice 
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RGURE 4. (a) Srrategy  for the single component  constraint  algorithm. A starting  estimate ti1 the 
parameters  (the vector, x.,) is serially modified by the introduction of constraints (or groups of 
constraints). If the residual errors  are large at  the  end of a complete cycle, then the result is used  as a 
starting point  for  -another  round of updating (marked “Iterate & cycle”). (b) With the  multicomponent 
algorithm, each constraint is described as a mixture of Gaussian  distributions. In this  illustration,  the first 
constraint  has three components,  the second has two components,  and  these are combined to produce six 
branches.  Branching  continues until all resources are allocated. The standard single component algorithm 
is run for each path  (as in the figure on the  left),  and the results of individual calculations are recombined 

‘j IO calculate  an  intermediate  mean vector and variance/covariance matrix. The process is repeated with 
\the  next  set of constraints. After many recombination  steps, a final estimate  is  produced, xN, that can  be 
used as a starting point if residuals are too high, as in the case of the single component algorithm. 

of Gaussian  component  for  that  constraint (Figure 4(b)). We  have  reported a 
paralleI algorithm  to  search for these combinations,  along with results showing its 
effectiveness (Altman,  Chen, Poland, & Singh, 1994). 

?he algorithm, simply stated,  generates all possible combinations of constraint 
modes up to a user-specified depth in the  tree of Figure 4(b). It then solves these 
individual single component  problems using the basic algorithm described in Section 
2. We are  then left with a set of new estimates of the  parameters  that reflect some, 
but  not all of the constraints. Using Bayes’ rule,  these estimates can be  recombined 
to create a  new, aggregate estimate of structure which  is then used as a  starting point 
for  introducing  the next set of constraints. This process of expansion, calcularion  and 
recornbinarion is repeated. until  all constraints  have  been introduced. The final 
structure is evaluated by measuring the minimum distance (in S.D.) of the predicted 
constraint values from  observed constraint values. That is,  we evaluate Equation 12 
for each  component,  and  choose  the  minimum  value  among these as the error. If 
this  error is always  small. (for example, less than 2.0 S.D.) then a solution has been 
found,  and  the  proper components are  those  near which the predicted parameters 
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FIGURE 5(a).  (i) The gold standard  structure used for testing  the  multicomponent  algorithm (a h a p e n t  
of the molecule crambin). (ii) The  multicomponent  solution  computed using a data  set in which each of 
the actual  components (the component  corresponding to  the actual  distance in crambin) is contaminated 
with between one and three noise components with weights varying betwen 0.1 and 05. The 
multicomponent algorithm is able to identify the correct  components and produce the correct  structure. 
(iii) The same multicomponent solution  (and  ellipsoids) is shown superimposed with the best solution 
produced by the single component  algorithm. Each of the noise  components  described  above was 
combined with the  actual  component and summarized  as a single mean  and  variance (as is required when 
using the single component  algorithm). The resulting  structure  has  some  structural  similarity to the 
solution, but has large residual errors.  This  experiment demonstrates that the information  contained in 
the more  detailed multicomponent distributions is sufficient to reconstruct  the  structure, but is not 
sufficient to allow reconstruction if all components  are summarized with  two moments  (mean  and 
variance. (b). The performance of the single component and multiple  component  algorithms on the  data 
set used for  the  structures shown in Figure  5a. Starting with a random  structure, we provide a single 
component summary of the multiple component  distribution and run the single component algorithm. 
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most closely  fall.  If the errors  are large,  then the variance matrix is reheated, as 
described in Section 2.4 and the process is repeated. 

The performance of this algorithm can be illustrated with  two test calculations. In 
the first, we have generated a synthetic data  set in which we have added to  the 
“real” Gaussian component (describing the actual distance value in the test 
structure, crambin again)  a  number of “noise” components. We have shown, as 
detailed in Figure 5, that  the algorithm is able  to  detect  the real Components and 
converge to the  correct  structure. In the second calculation, we took two molecules 
with the same number of atoms  (structures A and B) labeled all the atoms uniquely, 
and then provided the program with two equally weighted Gaussian components for 
each constraint (one  drawn  from each structure). Thus, we removed all information 
about which components are associated with structure A and which are associated 
with structure B. The task of the algorithm was to find the sets of components  that 
are drawn from the  same  structure,  and  produce  a  coherent, low error solution. For 
N constraints, there are 2N possible combinations of modes. In our experiments, we 
have found that  the algorithm is able to find the two sets of mutually consistent 
components and compute  the  corresponding  structures.  These exciting result 
suggests that our  algorithm can solve a  combinatorial problem (that of assigning 
consistent components) using the heuristic strategy of branch, solve and recombine. 
We are further  testing this extension of the single component algorithm to 
determine its performance on actual biological data sets. 

5. Discussion 
‘.., Combining measurements with Bayesian updating has proven to be a versatile tool 

in a variety of settings. For nonlinear problems, the Kalman Filter has been ‘shown 
to be the optimal linear solution (Gelb, 1984). The measurement  update equations 
for the extended, iterated Kalman filter have  proven useful  as a suboptimal 
estimator for nonlinear  problems  as well. However, they are Suboptimal, and for 
problems requiring high accuracy, are inadequate.  In this paper, we have shown that 
iterative application of Bayesian updating along with “variance reheating” allows 
structural models to adjust effectively to poorly satisfied constraints. We  have shown 
that  our algorithm converges when computing molecular structure from uncertain 
constraints. 

The relationship of our method to  the  standard  extended, iterated Kalman filter is 
clear: We are simply reiterating and reintroducing constraints after adjusting the 
covariance matrix and  reordering our constraints. We  do not have any dynamic 
model, and  all our measurement  updates do not use the time-dependent updating 

FIGURE 5. (Continued) 
Although  the  algorithm  decreases  the  error  significantly,  it  converges only to an  average  error of about 
2.5 S.D. If this  solution is used  as  a  starting  point  for  the  multiple  component  algorithm. then the errors 
are  further  reduced  and the algorithm  eventually  converges  to  very low, near  zero  error. The starting 
error of  the  multiple component  algorithm is 7.0 S.D. (and not 25 S.D.) because only the multiple 
component  representation is used,  then the multiple  component error  function (as described in Section 4) 
is used as well.  Since  the  component  distributions  have lower variance  than the  singte  component 
distribution.  the  distance of the  structure  from  the  mean  of  the  correct  component  increases  when 
expressed in S.D. (-): single  component; (-): multiple  component. 
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capabilities of the Kalman filter. Our method is a member of the class of nonlinear 
least-squares estimators that seek the most likely set of coordinates that best satisfy 
the  input constraints. It is therefore a (MAP) estimator. The method  of  posterior 
mode analysis proposed by Shachter solves a very similar problem, and may be a 
useful alternative  to  our method for  the  case of Gaussian noise (Shachter,  Eddy, & 
Hasselblad, 1990). Our method is Bayesian because it  uses  an initial probabilistic 
model of the solution, and updates this model with data.  It can  be shown that if the 
prior probability distribution contains no information, then MAP methods  are 
equivalent  to least squares estimators (Mikhail, 1976). In these  experiments  the 
model had  low information content, since it had random  starting positions with 
large variance. Nonetheless, our knowledge of the bounds on the volume of the 
molecule provided our starting estimate of variance,since estima3
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other functions, will depend critically on such assessments of the reliability of a 
structural model. 

5.1. EXTENDING THE SYSTEM WITH NEW CONSTRAINT TYPES 

Although we have concentrated in  this paper on  the use  of distance constFaints 
between points, the mathematical form of the filter makes it clear that (1) any 
function of the coordinates can be used as  a constraint model,  and (2) these 
functions need not be scalar, but rather can be vector functions. In our applications 
work so far, we have limited ourselves to distances, angles, and  dihedral angles 
because these types of constraints are sufficient for most structure  determinations 
from NMR data. However, as we  coflect statistical data on the associations between 
certain types of atoms and aggregates of atoms, we  can use statistical distributions as 
constraints on our molecule.  Since these statistical distributions will not always be 
Gaussian, we have focused attention on processing non-Gaussian constraints. Our 
success with  such constraints, described in Section 4, is preliminary. We have shown 
that  the algorithm satisfies the necessary conditions of (1) choosing a single structure 
from  a set of noise components and (2) identifying coherent  sets of components. We 
are currently testing the multicomponent algorithm on real biological structures to 
assess its performance. 

The form of equations 5-11 suigest  that the measurement z can be vector-valued. 
In principle, we can use this machinery to introduce multiple constraints simul- 
taneously in a single update. Until recently, we have avoided vector-valued 
measurements (and preferred the serial introduction of scalar constraints) in order 
to  avoid the matrix inversion (required for nonscalar variables) in Equation 9. 
Fowever, .we have recently implemented this algorithm on  a massively parallel 
$stern, and have shown that  the algorithm runs best with the parallel introduction 
of 50 to 100 constraints (that is, z is a vector of 50 distance measurements,  and v is a 
vector of their noise) (Chen er al., 1994). With the strategy of introducing many 
constraints simultaneously for  one  update,  a  greater improvement in the solution 
occurs  per cycle, but  that the cost per cycle increases. 

5.2. EFFICACY OF THE  REHEATING AND RESORTING  STRATEGIES 

Our experiments with different constraint orders confirm our hypothesis that  the 
reheating of the covariance matrix allows the solution space to  be explored more 
effectively. A fixed order of constraints is more likely to explore  the  same  general 
hypothesis space, and to converge more slowly than  either  a  random  order or an 
order  in which the most  dissatisfied constraints take  the “first shot” at altering the 
solution. In fact, the  trace of the fixed order convergence in Figure 1 shows that it is 
able to jump  out of the local minima of cycle 5 during cycle 6,  even without sorting. 
In  this  experiment,  the  sorted  run does not  seem  to fall into local minima. 

Simulated annealing is a computational method  for assisting optimization by 
providing  a powerful heuristic for efficient search (van Laarhoven er al., 1987; 
Vanderbilt er d., 1984). Based on an analogy to solid-state physics, simulated 
annealing protocols add “heat” to an optimization to increase the likelihood that  a 
solution will jump out of a local optima. The solution is then allowed to  “cool” 
slowly such that it settles into  a new  optimum-as a cooled solid might settle  into  a 
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new crystalline packing. Our method shares  many high level concepts with simulated 
anneaIing: by increasing the variances and covariances, we are increasing the range 
of possible  values for each  parameter,  and by introducing the constraints in reverse 
order of satisfaction, we  give the least satisfied constraints  a  chance to pull the 
solution out of a local minima. Although it  is heuristic in nature, we have found that 
this protocol reliably finds  low average error structures, as well as low maximum 
errors (Pachter, Altman, & Jardetzky, 1990; Liu et al., 1992). Whereas simulated 
annealing protocols for global optimization require a cooling procedure  to induce 
equilibration, our  algorithm allows the serial  introduction of constraints to cool the 
structure. We are experimenting with more sophisticated ways to  reheat the 
covariance matrix. For example, the  method,  as described here, loses the covariance 
information derived during  a single cycle when it reheats at the  end of that cycle. 
We  are experimenting with ways to retain  some of this covariance information so 
that atoms can rearange in a more concerted  fashion during subsequent cycles.  We 
are also investigating ways to adjust the  “temperature” of the  reheating  step by 
increasing the variances to lower values in later cycles when the solution begins to 
converge. 

6. Conclusions 
In this paper, we have summarized our  method,  and illustrated its performance on a 
set of three test problems. We have shown that: 
(I) a probabilistic formulation of molecular structure determination is natural, and 
provides a common language in which multiple sources can be combined. The 
primary requirement is that  the  distribution of each  data  source be modeled (either 
as a single Gaussian or a mixture). 
(2) Our program, using Bayesian measurement update’  equations,  represents  one 
possibie implementation of an engine  to  determine probabilistic  structures. It 
employs a reheating heuristic similar to simulated  annealing, and is able  to converge 
to reasonable solutions  under  a variety of circumstances, including data with varying 
levels of noise and abundance. 
(3) The program can scale to real-world problems. It has been used to soive the 
structure of the  trp  repressor, with nearly 1500 atoms (and  therefore  a  mean vector 
of 4500 parameters and a covariance matrix with 20 X lo6 elements). 
(4) The strategy of sorting constraints in order of decreasing error  (after reheating) 
leads to  a more efficient search for low average error structures, when compared 
with a random and fixed order of constraints. Each of the  three  strategies produces 
the same result eventually, but with a  different efficiency. These results support the 
contention that the reheating  step  works  because it allows local optima  to  be 
avoided. 
( 5 )  Non-Gaussian noise can be  treated with a  strategy of branch, partially solve, and 
recombine. This strategy has been implemented in a Bayesian framework  that allows 
the recombination step  to be done rigorously. The multicomponent algorithm can 
select a signal from uncorrelated noise signals, and can select  a signal from an 
alternative correlated signal. 
( 6 )  The biological implications of structural  uncertainty are critical to understanding 
the ways  in  which structure  correlates with function. 
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