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We  introduce  a  method  of  functionally classifying genes by using 
gene expression data  from DNA microarray  hybridization  experi- 
ments.  The method is based on  the  theory  of support  vector 
machines (SVMs). SVMs  are considered  a supervised computer 
learning  method because they  exploit  prior  knowledge  of  gene 
function to  identify  unknown genes of similar function  from 
expression data. SVMs avoid several  problems associated with 
unsupervised  clustering  methods, such  as hierarchical clustering 
and  self-organizing maps. SVMs have  many  mathematical  features 
that  make  them  attractive  for  gene expression  analysis, including 
their  flexibility in choosing a similarity  function, sparseness of 
solution when dealing  with large data sets, the  ability  to  handle 
large feature spaces, and  the  ability  to  identify  outliers.  We  test 
several SVMs that use different  similarity metrics, as well as some 
other  supervised  learning  methods, and  find  that  the SVMs best 
identify sets of genes with  a common  function  using expression 
data. Finally, we use SVMs to predict  functional roles for unchar- 
acterized  yeast ORFs based on  their expression  data. 

D NA microarray technology provides biologists with the 
ability to measure  the expression levels of thousands of 

genes in a single experiment.  Initial  experiments (1) suggest that 
genes of similar function yield similar expression patterns in 
microarray hybridization experiments. As data  from such exper- 
iments accumulates, it will be essential to have accurate  means 
for extracting biological significance and using the  data  to assign 
functions to genes. 

Currently, most approaches to the computational analysis of gene 
expression data  attempt to learn functionally significant classifica- 
tions  of genes in an unsupervised fashion. A learning method is 
considered unsupervised if it learns in the absence of a teacher 
signal. Unsupervised gene expression  analysis methods begin  with 
a definition of similarity (or a measure of distance) between 
expression patterns, but with no prior knowledge of the  true 
functional classes of the genes. Genes are then grouped by using  a 
clustering algorithm such as hierarchical clustering (1,  2) or self- 
organizing maps (3). 

Support vector machines (SVMs) (4-6) and other supervised 
learning techniques use a training set to specify in advance which 
data should cluster together. As applied to gene expression data, an 
SVM would  begin with a set of genes that have  a common function: 
for example, genes coding for ribosomal proteins or genes coding 
for components of the proteasome. In addition, a separate set of 
genes that  are known not to be members of the functional class is 
specified. These two sets of genes are combined to form a set of 
training examples  in  which the genes are labeled positively if they 
are in the functional class and are labeled negatively  if they are 
known not to be in the functional class. A set of training examples 
can easily be assembled from  literature and database sources.  Using 
this training set, an S V M  would learn to discriminate between the 
members and non-members of a  given functional class based on 
expression data. Having learned the expression features of the class, 
the SVM could recognize new genes as memberj or as non- 
members of the class  based  on their expression data. The SVM 
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could also be reapplied to the training  examples  to  identify outliers 
that may  have  previously been assigned to the incorrect class  in the 
training set. Thus, an SVM would use the biological information in 
the investigator's training set to determine what  expression features 
are characteristic of a  given functional group and  use  this  infor- 
mation to decide whether any  given gene is  likely to be a member 
of the group. 
SVMs offer two primary advantages with  respect to previously 

proposed methods such as hierarchical clustering and self- 
organizing maps. First, although all three methods employ distance 
(or similarity) functions to compare gene expression measure- 
ments, SVMs are capable of using  a larger variety of such functions. 
Specifically, SVMs can employ distance functions that operate in 
extremely high-dimensional feature spaces,  as  described in more 
detail below. This ability  allows the SVMs implicitly to take into 
account correlations between gene expression measurements. Sec- 
ond, supervised methods like SVMs take advantage of prior 
knowledge  (in the  form of training data labels) in making distinc- 
tions between one type of gene and another. In an unsupervised 
method, when related genes end up far apart according to the 
distance function, the method has no way to  know that the genes are 
related. 

We describe here  the use of SVMs to class@  genes  based on gene 
expression. We analyze expression data from 2,467 genes  from the 
budding yeast Saccharomyces cerevzkiae measured in 79 different 
DNA microarray hybridization experiments (1). From  these data, 
we learn to recognize five  functional  classes  from the Munich 
Information Center for Protein Sequences Yeast Genome Data- 
base (MYGD) (http://www.mips.biochem.mpg.de/proj/yeast). In 
addition to SVM classification,  we subject these data to analyses by 
four competing machine learning techniques,  including  Fisher's 
linear discriminant (7), Parzen windows (8), and two decision tree 
learners (9,lO). The SVM method out-performs aU other methods 
investigated here. We  then use SvMs developed for these func- 
tional groups to predict functional associations for 15 yeast O m s  
of unknown function. 

Methods and Approach 
DNA Microarray  Data. Each  data point  produced by a DNA mi- 
croarray hybridization experiment represents the ratio of expres- 
sion levels of a particular gene under two different experimental 
conditions (11,12). The result, from an  experiment  with n genes on 
a  single chip, is a series of n expression-level  ratios.  Typically, the 
numerator of each ratio is the expression level  of the gene in the 
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varying condition of interest, whereas the denominator is the 
expression  level of the gene in some reference condition. The data 
from  a series of tn such experiments may be represented as a gene 
expression matrix, in which each of the n rows consists of an 
rn-element expression vector for a  single gene. Following  Eisen et 
a!. (l), we do not work  directly with the ratio as discussed  above but 
rather with its normalized iogarithm. We define Xi to be  the 
logarithm of the ratio of expression level EL for gene X in experiment 
i to the expression level Ri of gene X $ the reference state, 
normalized so that the expression vector X = (XI, . . . , Xn) has 
Euclidean length 1: 

The expression measurement Xi is positive if the  gene is induced 
(turned  up> with respect to  the reference state and negative if it  
is repressed (turned down) (1). 

Initial analyses described here are carried out by using  a set of 
79-element gene expression vectors for 2,467 yeast genes (1). These 
genes were selected by Eisen et al. (1) based on  the availability of 
accurate functional annotations. The  data were generated from 
spotted arrays using samples collected at various time points during 
the diauxic shift (12), the mitotic cell division  cycle (13), sporulation 
(14), and temperature and reducing shocks, and are available on the 
Stanford web site (http://rana.stanford.edu/clustering). 

Predictions of ORFs of unknown function were made by using  a 
slightly different set of data that did not include temperature and 
reducing shocks data  The  data included 6,221 genes, of which 2,467 
were the annotated genes described above. The SO-element gene 
expression vectors used for these experiments included 65 of the 79 
elements from the initial data used, plus 15 additional mitotic cell 
division  cycle time points not used by Eisen er al. (1). This  data is 
also available on the Stanford web site. 

Support Vector Machines. Each vector 2 in the gene expression 
matrix  may be thought of as a point in an m-dimensional expression 
space. In theory, a simple way to build  a binary classifier  is to 
construct a hyperplane separating class members (positive  exam- 
ples) from non-members (negative examples) in this space. Unfor- 
tunately, most real-world problems involve nonseparable data for 
which there does not exist a hyperplane that successfully separates 
the positive from the negative examples. One solution to the 
inseparability problem is to  map the  data into a higher-dimensional 
space and define a separating hyperplane there. This higher- 
dimensional space is called the feature space, as opposed to the 
input space occupied by the training examples. With an appropri- 
ately chosen feature  space of sufficient dimensionality, any  consis- 
tent training set can be made separable. However, translating the 
training set  into a higher-dimensional space incurs both computa- 
tional and learning-theoretic costs. Furthermore, artificially sepa- 
rating the  data in this way exposes the learning system to the risk 
of finding trivial solutions that overfit the  data. 

SVMs elegantly sidestep both difficulties (4). They avoid  over- 
fitting by choosing the maximum margin separating hyperplane 
from among the many that can separate  the positive from negative 
examples in the feature space. Also, the decision function for 
classlfylng points with respect to the hyperplane only involves dot 
products between points in the feature space. Because the algo- 
rithm that  finds a separating hyperplane in the feature space can be 
stated entirely in terms of vectors in the input space and dot 
products in the feature space, a support vector machine can locate 
the hyperplane without ever representing the space explicitly, , 

simply  by defining a function, called a kernel function, that plays the 
role of the dot product in the  feature space. This technique avoids 
the computational burden of explicitly representing the  feature 
vectors. 

For some data sets, the SVM may not be able to find  a separating 
hyperplane in feature space, either because the kernel function is 
inappropriate for  the training data or because the data  contains 
mislabeled  examples. The latter problem can be addressed by  using 
a soft margin that allows some training  examples to fall on the 
wrong side of the separating hyperplane. Completely  specifying  a 
support vector machine therefore requires specifying two param- 
eters: the kernel function and the magnitude of the penalty for 
violating the soft margin. The settings of these parameters depend 
on the specific data at hand. -t 

Given an expressionvectorX for each geneX, the simplest kernel 
K (X, Y) that we can use to measure the similarity betweengefles 
X and Y is the dot product in the input space K (X, Y) = X-Y = 
Z~~,XiY , .  For technid reasons (see http://w.cse.ucsc.edu/ 
research/compbio/genex), we-add 1 to this kernel, obtaining a 
kernel defined byK (X, y) = $Y + 1. When this dot product kernel 
is used, the feature space is essentially the same as the 79- 
dimensional input space,  and the SVM will  classify the examples 
with  a separating hypzrglane in  this  space. Squaring this kernel, i.e., 
defining K (X, Y) = (X-Y + 1)2, yields  a quadratic separating surface 
in the input space. The corresponding separating hyperplane in the 
feature space includes features for all  pairwise mRNA expression 
interactions X&, where 1 5 i, j 5 79. Raising the kernel to higher 
powers  yields  polynomial separating surfaces of higher degrees in 
the input sps%. In general, the kernel of degree d is defined by 
K(X, Y) = (X-Y + l)d. In the feature space of this kernel, for any 
geneX there are features for all d-fold interactions between mRNA 
measurements, represented by terms of the form Xt,Xi2. . .X,,, where 
1 5 il,. . . , id 5 79. We experiment here with  these kernels for 
degrees d = 1, 2, and 3. 

We also experiment with  a radial_basis_kemel(15), which has a 
Gaussian form K (X, Y) = exp(-ll X - Y 1I2/2a2),  where a is the 
width of the Gaussian. In our experiments, cy is set equal to the 
median of the Euclidean distances from each  positive  example to 
the nearest negative  example (16). 

The gene functional classes  examined here contain very few 
members relative to the total number of genes in the  data set. This 
leads to an imbalance in the number of  positive and negative 
training examples that, in combination with  noise in the data, is 
likely to cause the SVM to make incorrect classifications.  When the 
magnitude of the noise in the negative  examples  outweighs the total 
number of positive  examples, the optimal  hyperplane  located by the 
S V M  will be uninformative, classifymg all members of the training 
set as negative  examples.  We combat this  problem by modifying the 
matrix of kernel values computed during SVM optimization. L e t  
x"), . . . ,X(") be the genes in the training set, and let K be the matrix 
defined by the kernel function K on this training set;  i.e., K, = K 
(Si),JP). By adding to the diagonal of the kernel matrix  a constant 
whose magnitude depends on the class of the training example, one 
can control the fraction of  misclassified points in the two  classes. 
This technique ensures that the positive points are not regarded as 
noisy  labels. For positive  examples, the diagonal element is modi- 
fied by K,, := Gj + A(n+/N), where nf is the number of positive 
training examples, N is the total number of training examples, and 
A is scale factor. A similar formula is  used for the negative  examples, 
with n+ replaced by n-. In the experiments reported here, the scale 
factor is set to 0.1. Amore mathematically detailed discussion of the 
techniques employed here is  available at http://www.cse.ucsc.edu/ 
research/compbio/genex. 

Experimental  Design Using the class definitions made by the 
MYGD, we trained S V M s  to recognize six functional  classes: 
tricarboxylic  acid (TCA) cycle, respiration, cytoplasmic  ribosomes, 
proteasome, histones, and helix-turn-helix proteins. The MYGD 
class definitions come from biochemical and genetic studies of gene 
function whereas the microarray  expression data measures mRNA 
levels of genes.  Many  classes in MYGD, especially structural classes 
such as protein kinases,  will be unlearnable from expression data by 
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any  classifier. The first  five  classes were selected because they 
represent categories of genes that are expected, on biological 
grounds, to  exhibit  similar expression profiles. Furthermore, Eisen 
el al. (1) suggested that the  mRNA expression  vectors for these 
classes cluster well using hierarchical clustering. The sixth  class, the 
helix-turn-helix proteins, is included as a control group. Because 
there is no reason to  believe that the members of this class are 
similarly regulated, we did not expect any  classifier to learn to 
recognize members of this class based on mRNA expression 
measurements. 

The performance of the SVM classifiers  was compared with that 
of four  standard machine learning algorithms: Panen windows, 
Fisher’s linear discriminant, and two decision tree learners (C4.5 
and MOC1). Descriptions of these algorithms can be found at 
http://w.cse.ucsc.edu/research/compbio/genex. Performance 
was tested by using a three-way cross-validated experiment. The 
gene expression vectors were randomly divided into three groups. 
Classifiers were trained by using  two-thirds of the  data and were 
tested on the remaining third. This procedure was then repeated 
two more times, each time using a different third of the genes as test 
genes. 

The performance of each Classifier  was measured by examining 
how  well the classifier identified the positive and negative examples 
in the test sets. Each gene in the test set can be categorized in one 
of four ways: true positives are class members according to both the 
classifier and MYGD, true negatives are non-members according 
to both; false positives are genes that the classifier  places  within the 
given  class, but h4YGD classifies as non-members; false negatives 
are genes that the classifier places outside the class, but MYGD 
Classifies as members. We report the number of genes in each of 
these four categories for each of the learning methods we  tested. 

To judge overail performance, we define the cost of using the 
method A4 as C(M) = fi(M) + 2.fi(M), wherefi(M) is the number 
of false positives for method M, andfi(M) is the number of false 
negatives for method M. The false negatives are weighted more 
heavily than  the false positives because, for these data,  the number 
of positive examples is small compared with the number of nega- 
tives. The cost for each method is compared with the cost C(N) for 
using the null learning procedure, which  classifies all test examples 
as negative. We define the cost savings of using the learning 
procedure M as S(M) = C(N) - C(M). 

Experiments predicting functions of unknown genes were per- 
formed by first training SVM classifiers on  the 2,467 annotated 
genes for the five ieamable classes. For each class, the remaining 
3,754 genes were then classified by the SVM. 

Results and Discussion 
SVMs Outperform Other Methods. Our experiments show that some 
functional classes of genes can be recognized by using SVMs trained 
on DNA microarray expression data.  We compare SVMs to four 
non-SVM methods and find that S W s  provide superior perfor- 
mance. 

Table 1 summarizes the results of a three-fold cross-validation 
experiment using all eight of the classifiers tested, including four 
SVM variants, Parzen windows, Fisher’s linear discriminant, and 
two decision tree learners. Performance is evaluated in the standard 
machine learning setting, in which each method must produce a 
positive or negative classification label for each member of the test 
set based  only on what it has learned  from  the training set. The first 
four columns are the categories false positive (FP), false negative 
(FN), true positive (TP),  and true negative (TN), and the fifth is a 
measure of overall performance. 

For every class  (except the helix-turn-helix  class), the best- 
performing method is a support vector machine using the radial 
basis or a higher-dimensional dot product kernel. Other cost 
functions, with different relative weights of the false positive and 
false negative rates, yield similar rankings of performance. In five 
separate tests, the radial basis SVM performs  better than Fisher’s 
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Table 1. Comparison of error  rates for various classification 
methods 
Class Method FP FN TP TN S(M) 

TCA 

Resp 

Rib0 

Prot 

Hist 

HTH 

D-p 1  SVM 
D-p 2  SVM 
D-p 3  SVM 
Radial SVM 
Parzen 
FLD 
c4.5 
MOCl 
D-p 1  SVM 
D-p 2  SVM 
D-p 3  SVM 
Radial SVM 
Parzen 
FLD 
c4.5 
MOCl 
D-p 1 5VM 
D-p 2  SVM 
D-p 3  SVM 
Radial SVM 
Parzen 
FLD 
c4.5 
MOCl 
D-p 1  SVM 
D-p 2  SVM 
D-p 3  SVM 
Radial SVM 
Parzen 
FLD 
c4.5 
MOCl 
D-p 1  SVM 
D-p 2  SVM 
D-p 3  SVM 
Radial SVM 
Parzen 
FLD 
c4.5 
MOCl 
D-p 1  SVM 
D-p 2  SVM 
D-p 3  SVM 
Radial SVM 
Parzen 
FLD 
c4.5 
MOCl 

18 
7 
4 
5 
4 
9 
7 
3 

15 
7 
6 
5 

22 
10 
18 
12 
14 
9 
7 
6 
6 

15 
31 
26 
21 

6 
3 
2 

21 
7 

17 
10 
0 
0 
0 
0 
2 
0 
2 
2 

60 
3 
1 
0 

14 
14 
2 
6 

5 
9 
9 
9 

12 
10 
17 
16 
7 
7 
8 

11 
10 
10 
17 
26 
2 
2 
3 
5 
8 
5 

21 
26 
7 
8 
8 
8 
5 

12 
10 
17 
2 
2 
2 
2 
3 
3 
2 
5 

14 
16 
16 
16 
16 
16 
16 
16 

12 
8 
8 
a 
5 
7 
0 
1 

23 
23 
22 
19 
20 
20 
13 
4 

119 
119 
118 
116 
113 
116 
100 
95 
28 
27 
27 
27 
30 
23 
25 
18 
9 
9 
9 
9 
8 
8 
9 
6 
2 
0 
0 
0 
0 
0 
0 
0 

2,432 
2,443 
2,446 
2,445 
2,446 
2,441 
2,443 
2,446 
2.422 
2,430 
2.431 
2,432 
2,415 
2,427 
2,419 
2,425 
2,332 
2,337 
2,339 
2,340 
2,340 
2,331 
2,315 
2,320 
2.41 1 
2,426 
2,429 
2,430 
2,411 
2.425 
2,415 
2.422 
2,456 
2,456 
2,456 
2,456 
2,454 
2,456 
2,454 
2,454 
2,391 
2,448 
2,450 
2,451 
2.437 
2,437 
2,449 
2,445 

6 
9 

12 
11 
6 
5 

-7 
-1 
31 
39 
38 
33 
18 
30 
8 

-4 
224 
229 
229 
226 
220 
217 
169 
164 
35 
48 
51 
52 
39 
39 
33 
26 
18 
18 
18 
18 
14 
16 
16 
10 

- 56 
-3 
- 1  

0 
-14 
-14 

-2 
-6 

ThemethodsaretheSVMsusingthescaleddotprodudkernelraisedtothe 
first,  second, andthird  power,  the  radial  basisfunction SVM, Parzen  windows, 
Fisher’s  Linear  Discriminant,  and the two  decision  tree  learners, C4.5 and 
MOC1. The  next  five  columns  are the false  positive,  false  negative,  true 
positive,  and true  negative  rates  summed  over  three  cross-validation  splits, 
followed  by the  total cost savings [S(M)I. as defined  in  the  text. 

linear discriminant. Under the null  hypothesis that the methods are 
equally  good, the probability that the radial  basis SVM would be the 
best  all  five  times  is 0.03. The results also show the inability of all 
classifiers to learn to recognize genes that produce helix-turn-helix 
proteins, as expected. 

The results shown in Table 1 for higher-order SVMs are con- 
siderably better than the corresponding error rates for clusters 
derived  in an unsupervised fashion. For example, using hierarchical 
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Table 2. Consistently misclassified genes 

Class Gene Locus Error Description 

TCA 

Resp 

Rib0 

Prot 

Hist 

YPROOlW 
YOR142W 
YLRl74W 
YlL125W 
YDR148C 
YBLOl SW 
YPR191W 
YPL271W 
YPU62W 
YMLl2OC 
YKL085W 
YGR207C 
YDL067C 
YPL037C 
YLR406C 
YLR075W 
YDL184C 
YALOO3W 
YHR027C 
YGR27OW 
YGR048W 
YDR069C 
YDLO2OC 
YOLOl2C 
YKL049C 

CIT3 
LSCl 
lDP2 
KGD 1 
KGD2 
ACH 1 
QCR2 
ATP1 5 
FUMl 
NDI1 
MDH1 

cox9 
EGD1 
RPL3 1 B 
RPLlO 
RPL41A 
EFB 1 
RPNl 
M A 7  
UFDl 
DOA4 
RPN4 
HTA3 
CSE4 

FN 
FN 
FN 
FN 
FN 
FP 
FN 
FN 
FP 
FP 
FP 
FN 
FN 
FP 
FN 
FP 
FN 
FP 
FN 
FN 
FP 
FN 
FN 
FN 
FN 

Mitochondrial  citrate synthase 
a subunit  of succinyl-CoA  ligase 
lsocitrate  dehydrogenase 
a-ketoglutarate  dehydrogenase 
Component of a-ketoglutarate  dehydrog.  complex  (mito) 
Acetyl CoA hydrolase 
Ubiquinol  cytochrome-c  reductase  core  protein  2 
ATP synthase E subunit 
Fumarase 
Mitochondrial  NADH  ubiquinone 6 oxidoreductase 
Mitochondrial  malate  dehydrogenase 
Electron-transferring  flavoprotein, fi chain 
Subunit  Vlla of  cytochrome c oxidase 
p subunit of the nascent-polypeptide-associated  complex 
Ribosomal protein L31B  (L34B)  (YL28) 
Ribosomal protein L10 
Ribosomal protein L41A (YL41) (L47A) 
Translation  elongation  factor EF-lp 
Subunit  of 265 proteasome (PA700 subunit) 
Member of CDC48/PASl/SEC18 family of ATPases 
Ubiquitin  fusion  degradation  protein 
Ubiquitin  isopeptidase 
Involved in  ubiquitin  degradation  pathway 
Histone-related protein 
Required for  proper  kinetochore  function . .  

Thetablelistsall25genesthataremostconsistentlymisclassifiedbytheSVMs.Twotypesoferrorsareincluded: 
a false positive (FP)  occurs when  the SVM includes the gene in  the  given class but  the MYGD classification does 
not; a false negative (FN)  occurs when the SVM  does not include the gene in  the given class but  the MYGD 
classification does. 

clustering, the histone cluster  only identified 8 of the 11 histones, 
and  the ribosome cluster only found 112 of the 121 genes and 
included 14 others that were not ribosomal genes (1). 

We repeated the experiment with all four SvMs four more times 
with different random splits of the data. The results show that the 
variance introduced by the random splitting of the data is small, 
relative to the mean. The easiest-to-learn functional classes are 
those with the smallest ratio of standard deviation to mean cost 
savings. For example, for the radial basis SVM, the mean and 
standard deviations of the cost savings for the two  easiest classes- 
ribosomal proteins and histones-are  225.8 % 2.9 and  18.0 ? 0.0, 
respectively. The most difficdt class, TCA cycle, had a mean and 
standard deviation of 10.4 5 3.0. Results for the  other classes and 

Fig. 1. Expression profile of YPLO37C compared with  the MYGD class of 
cytoplasmicribosomalproteins.YPL037Cisdassifiedasaribosomalproteinbythe 
SVMs but is not included in the class by MYGD. The figure shows the expression 
profile  for YPLO37C along with standard deviation bars for the class of cytoplas- 
mic  ribosomal proteins.Ticksalong thexaxis  representthe  beginningsof exper- 
imental series. 
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other kernel  functions are similar (http://www.cse.ucsc.edu/ 
research/compbio/genex). 

Significance of Consistently  Misclassified  Annotated Genes. The five 
different three-fold cross-validation experiments, each performed 
with four different kernels, yield  a total of  20 experiments per 
functional class. Across all five functional classes  (excluding  helix- 
turn-helix) and all 20 experiments, 25 genes are misclassified in at 
least 19 of the 20 experiments (Table 2). In general, these disagree- 
ments with MYGD reflect the different perspective provided by the 
expression data, which represents the genetic response of the cell, 
and the MYGD definitions, which have been arrived at through 
experiments or protein structure predictions. For example, in 
MYGD, the members of a  complex are defined by biochemical 
co-purification whereas the expression data may identify proteins 
that are not physically part of the complex but contribute to proper 
functioning of the complex. This will lead to disagreements in the 
form of false positives. Disagreements between the SVM and 
MYGD in the form of false negatives may occur for a number of 
reasons. First, genes that are classified  in MYGD primarily by 
structure (e.g., protein kinases)  may have very different expression 
patterns. Second, genes that are regulated at the translational level 
or protein level, rather  than at the transcriptional level as measured 
by the microarray experiments, cannot be correctly classified by 
expression data alone. Thud, genes for which the microarray data 
is corrupt may not be correctly classified. False positives  and  false 
negatives represent cases in  which further biological experimenta- 
tion  may be fruitful. 

Many of the false positive  genes in Table 2 are known from 
biochemical studies to beimportant for the functional class  assigned 
by the SVM, even though MYGD has not included  these  genes in 
their classification. For example, YAM03W and YPM37C, as- 
signed repeatedly to  the cytoplasmic ribosome class, are not  strictly 
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Table 3. Predicted functional classifications for previously  unannotated  genes 

Ctass  Gene  Locus  Comments 

TCA  YHR188C  Conserved in  worm, Schizosaccharomyces pombe,  human 
YKL039W  PTM 1 Major transport  facilitator  family;  likely  integral  membrane 

protein; similar  YHL017w not co-regulated. 
Resp  YKR016W Not highly conserved,  possible homolog in 5. pombe 

YKR046C  No  convincing  homologs 
YPRO2OW  ATP20 ’ Subsequently annotated:  subunit  of  mitochondrial ATP 

synthase  complex 
YLR248W  CLKl/RCK2  Cytoplasmic  protein  kinase  of  unknown  function 

Ribo  YKL056C Homolog  of  translationally  controlled tumor protein, 
abundant, conserved  and ubiquitous  protein  of 
unknown  function 

YNLl19W Possible remote  homologs  in  several  divergent  species 
YNL255C  GI52  Cellular  nucleic  acid binding  protein  homolog, seven 

YNL053W  MSG5 Protein-tyrosine  phosphatase,  overexpression  bypasses 

YNLZlNV Similar to bis (5’  nucleotidy1)-tetraphosphatases 

YJLO36W Member  of  sorting  nexin  family 
YDL053C  No  convincing  homologs 
YLR387C Three  C2H2 zinc fingers,  similar  YBR267W not coregulated 

CCHC (retroviral) type zinc fingers 

growth arrest by mating  factor 

Prot  YDR330W  Ubiquitin  regulatory  domain  protein, 5. pombe homolog 

The table  liststhe names  for  unannotated genesthatwere classified as membersof a particular  functional class 
by  at  least three  of  the  four SVM methods.  No unannotated histones  were  predicted. 

ribosomal proteins; however, both are important for proper func- 
tioning of the ribosome. YAL003W encodes a translation elonga- 
tion factor, EFB1, known  to be required for the  proper functioning 
of the ribosome (17). YPLO37C, EGD1, is part of the nascent 
polypeptide-associated  complex,  which has been shown to bind 
translating ribosomes and help target nascent polypeptides to 
several  locations,  including the endoplasmic reticulum and mito- 
chondria (18). The cell ensures that expression of these proteins 
keeps pace with the expression of ribosomal proteins, as shown  in 
Fig. 1. Thus, the SVM classifies  YAL003W and YPLO37C with 
ribosomal proteins. 

A false  positive in the respiration class,  YML120C, encodes 
NADHxbiquinone oxidoreductase. In yeast, this enzyme  replaces 
respiration  complex 1 (19) and is crucial for transfer of high energy 
electrons from NADH to ubiquinone, and thus for respiration (19, 
20). A consistent false positive in the proteasome class is 
YGRO48W (TJFD1). Although not strictly part of the proteasome, 
YGRO48W  is necessary for proper functioning of the ubiquitin 
pathway  (21),  which  delivers proteins to the proteasome for pro- 
teolysis. Another interesting false positive  in the TCA class  is 
YBLOl5W (ACHl), an acetyl-coA hydrolase. Although this en- 
zyme  catalyzes  what  could be considered an unproductive reaction 
on a key TCA cycle-glyoxylate  cycle substrate, its activity could be 
very important in regulating metabolic flux. Hence, it may be 
significant that expression of this enzyme parallels that of true TCA 
cycle  enzymes. 

A distinct set of false positives puts members of the TCA 
pathway,  YPL262W and YKLO85W,  in the respiration class. Al- 
though MYGD  separates the TCA pathway and respiration, both 
classes are important for the production of ATP. In fact, the 
expression  profiles of these two classes are strikingly similar (data 
not  shown). Thus, although MYGD considers these two classes 
separate, both the expression data and other experimental work 
suggest that there is significant regulatory overlap. The current 
SVMs may lack sufficient sensitivity to resolve two such  intimately 
related functional classes using expression data alone. 

Some of the false negatives occur when  a protein assigned to a 
functional  class based on structure has a special function that 
demands a different regulation strategy. For example,  YKU)49C is 
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classified as a histone protein by MYGD based on its 61% amino 
acid  similarity with histone protein H3. YKLo49C is thought  to  act 
as a part of the  centromere (22); however, the expression data 
shows that it is not co-regulated with histone genes.  A  similar 
situation arises  in the proteasome class.  Both  YDL020C and 
YDR069C may be loosely associated with the proteasome (23-25), 
but the SVM does not classify them as belonging to the proteasome 
because they are regulated differently from the rest of the protea- 
some during sporulation. 

One limitation inherent in the use of gene expression data is that 
some genes are regulated at the translational and protein levels. For 
example, four of the five genes that the SVM was unable to identify 
as members of the  TCA class are genes encoding enzymes  known 
to be regulated allosterically by ADP/ATP, succinyl-CoA,  and 
NAD+/NADPH (26). Thus, the activities of these  enzymes are 
regulated by means  that do not involve changes in mRNA level. If 
their  mRNA levels do not  keep pace with those of other TCA cycle 
enzymes, the SVh4 will not be able to classify them correctly by 
expression data alone. 

Other discrepancies appear to be caused by corrupt data. For 
example, the SVM classifies YLR075W as a  cytoplasmic  ribosomal 
protein, but MYGD did not. However, YLRO75W  is a  ribosomal 
protein (27,28), and the original annotation in MYGD has  since 
been corrected. Some proteins-for  example, YGR207C and 
YGR270W-may be prematurely placed in functional classes  based 
only on protein sequence similarities. Other errors occur in the 
expression data itself. Occasionally, the microarrays contain bad 
probes or  are damaged, and some locations in the gene  expression 
matrix are marked as containing corrupt data. Four of the  genes 
listed in Table 2 (YPROOlW, YPL271W, YHR027C, and 
YOM12C) are marked as such. In addition, although the SVM 
correctly assigns YDL075W to  the ribosomal protein class, 
YLR406C, essentially a duplicate sequence copy of YDM75W, is 
not assigned to that class.  Similarly, YDL184C is not assigned to the 
ribosome class despite the correct assignment of its near twin 
YDL133C-A. Because pairs of nearly identical genes  such  as  these 
cannot be distinguished by hybridization, it  is likely that the 
YLR406C and YDLlS4C data is also questionable. 
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functional Class Predictions for Genes of Unknown  Function. In 
addition to validating the cIassification accuracy of SVM methods 
using genes of known function, we used SVMs to classify  previously 
unannotated yeast genes. A common trivial outcome of this exper- 
iment predicts a function for ORFs that overlap or  are adjacent to 
annotated class members, a situation that occurs numerous times  in 
the current set of predicted ORFs in the yeast genome. Because the 
expression array data is gathered with dsDNA, and because in many 
cases the extent of mRNAtranscription beyond ORFs is not known, 
adjacent or overlapping ORFs cannot always be distinguished, and 
we ignored these predictions. Table 3 lists the 15 unannotated genes 
that are predicted to  be class members by at least three of the four 
SVMs. The S V M s  agree  that these genes are  near  the indicated 
functional class members in expression space. 

The predictions below  may merit experimental testing. In some 
cases  described in Table 3, additional information supports the 
prediction. For example, a recent  annotation shows that a gene 
predicted to be  involved  in respiration, YPR020W, is a subunit of 
the ATP synthase complex, confirming this prediction (29). 
YKM56C, a highly conserved protein homologous to the mam- 
malian translationally controlled tumor protein (30), is co-regulated 
with  ribosomal proteins, the first hint concerning its function. A 
protein containing seven retroviral type zinc fingers is also co- 
regulated with ribosomal proteins, a compelling finding considering 
the activity of this type of protein as an RNA chaperone (31). In the 
proteasome class, YDR330W has homology to ubiquitin regulatory 
protein domains, suggesting a role in ubiquitin-dependent protea- 
some activity. The gene YJLQ36W is a member of the sorting nexin 
family (32), and  we  would predict that it is involved in the delivery 
of proteins to the proteasome. Further biological  work on these 
genes  will be neessary to determine whether their regulation is 
truly  providing clues to their function. 

Conclusions 
We have demonstrated  that  support vector  machines  can accu- 
rately classify genes into  some functional  categories based on 
expression data  from DNA microarray hybridization experi- 
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ments and have made predictions aimed at identifying the 
functions of unannotated yeast genes. Among the techniques 
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