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Statistics of sequence-structure threading 

Stephen H Bryant and Stephen F Altschul 

National Institutes of Health, Bethesda, USA 

The  past two years  have  seen  the rapid development of new  recognition 
methods  for protein structure  prediction. These algorithms  ‘thread‘ the 
sequence of one protein through  the known structure of another,  looking for 
an  alignment  that  corresponds  to  an  energetically  favorable  model  structure. 
Because they  are based on energy  calculation,  rather  than  evolutionary 
distance,  these  methods  extend  the possibility of structure  prediction by 
comparative modeling to a lawr class of new sequences,  where  similarity 
to known structures is recognizable by no other  means.  The  strength of the 
evidence  they  offer  should be judged by  objective statistical tests, however, 
so as to rule  out  the  possibility  that  favorable scores arise  from  chance 
factors  such as similarity  of length,  composition,  or the consideration of 
a  large  number of alternative  alignments.  Calculation of objective  pvalues 
by  analytical  means is not  yet  possible, but it would appear  that  approximate 
values  may be obtained  by  simulation, as they  are in gapped,  global  sequence 
alignment.  We  propose  that  the  results of threading  experiments  should 
include 2-scores relative to the  composition-corrected  score  distribution 

obtained  for  shuffled  and optimally aligned  sequences. 
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Introduction 

Today, in the age of genome’projects, it would be hard 
to find a biologist  unaware of  the importance of meth- 
ods for automatic sequence  comparison.  Searches of 
sequence  databases  routinely identifi molecules  homo- 
logous to a newly  discovered protein, and often allow 
reliable  inference concerning its  biological function. Re- 
searchers  engaged in this work  are also well  aware of the 
‘twilight  zone’ phenomenon: that there  exists a range  of 
simibrity scores where statistical  significance  must be ex- 
amined very carefdly.  Calculating  reliable  significance 
estimates has been a difkult problem in the past,  and 
biologists have often relied on ‘rules of thumb’,  based 
on experience, to decide  if a given  score  is  significant 
and  indicative of evolutionary  relationship. This situ- 
ation has changed  dramatically  in the past  few  years, 
however.  For  some  alignment  models  accurate  p-val- 
ues  may be calculated  analytically, and are available as 
a search is performed. For other alignment  models the 
distribution of scores expected by chance remains less 
tractable, but in this day of fast computers approximate 
p d u e s  may be had  rapidly  by  simulations that employ 
random  sequences  similar in length, composition, and 
other variables that affect the score distribution (for re- 
views, see [1,2*]). In either case one may  answer the 

question,  “Are  these  sequences  signif!cantly  similar?” 
with an answer of the form, “The probability that the 
observed  score  would  be  obtained by chance is x or less.” 

In the past three years a new  class of molecular com- 
parison  algorithms have  appeared based on  the idea 
of ‘threading’ a sequence  through. a known three- 
dimensional structure (for  reviews, ‘see [3-10,11*]). 
These methods  offer a means of recognizing  similarity 
in cases where  evolutionary  relationship is distant, and 
where the protein ‘fold‘  has  been  conserved to a greater 
extent than  its  sequence [12]. It is also widely  believed 
that natural  proteins will fill into a relatively s m a l l  num- 
ber ofdiscrete folds [13,14], and  that the general problem 
of predicting protein three-dimensional structure may 
approach  that of fold  recognition within the database 
of known structures. Though new, threading methods 
already  offer  some hints of  their ultimate success. The 
structural similarity of actin  and  heat-shock  protein 70 
can be recognized,  even  though sequence similarity is 
well  within the ‘twilight  zone’ [lS], and accurate thread- 
ing alignments  have also been reported in cases of low 
sequence  similarity  such as globins and phycocyanin, or 
immunoglobulin  domains [16,17,18*,19*]. Several  pre- 
dictions have appeared  recently in the literature, which 
will be tested as the corresponding experiments are done 
[20-23], and many ‘blind’  predictions correct to differ- 
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ing degrees  were reported at a recent workshop  devoted 
to critical  assessment of these new techniques  (Meeting 
on  The Critical Assessment of Techniques for Protein 
Structure Prediction, Asiiomar.  California,  December 
1994) [24]. 

The statistical interpretation of threading  scores has, to 
date,  largely  followed  rules  of thumb developed  with  ref- 
erence to scores for hown true positives  (proteins  that 
are structurally similar to each other). It is well known 
to investigators in this field,  however,  that other vari- 
ables  such as length,  composition and  the number of 
alternative alignments &ct the distribution of thread- 
ing scores one may expect by chance,  and  that sta- 
tistical significance  must  be  evaluated  critically.  It  has 
even  been  suggested, for example, that the favorable 
score of the heat-shock  protein  sequence, when threaded 
through the actin  structure, is not  due  to recognition  of a 
common fold by the  sequencestructure scoring poten- 
tial, but instead to the chance fict that their sequences 
are of very  neatly the same length [4]. In t h i s  review, 
we s u m m a r k  briefly some important results h m  the 
statistics of  sequenc-equence  comparison. We also ex- 
amine  current methods for evaluating  threading  scores, 
which  to varying  degrees correct for known statistical 
effects. We  suggest that the strength of the evidence  for 
structural similarity  offered by afivorable threading  score 
should be subjected to rigorous  significance tests analo- 
gous to those used in  gapped  sequence  alignment.  To 
illustrate the power of statistical  tests  we  present control 
experiments in ‘forward’ and ’reverse’  fold lecognition, 
comparing the recognition specificity  obtained  with  raw 
threading scores ro that obtained with Zscores relative 
to  the distriiution for shuWed sequences of the same 
lengh, composition, and number of alternative align- 
mens. The latter, we believe,  yield  approximate pvalues 
which are readily  interpretable. 

Sequence comparison statistics 

. L o c a t  alignment statistics 
Because proteins ofien contain only  isolated  regions 
or domains of similarity, the most  widely used algo- 
rithms for  sequence  comparison [24-261 employ  rneas- 
ures of local simiIarity. ‘Substitution scores’ are  assigned 
to &ped pain of amino acids, and lengthdependent 
‘gap scores’ to  runs of residues  inserted or deleted  in  ei- 
ther sequence; the score for an ahgnment is simply the 
sum of these  scores.  Sequence  alignments  are  considered 
‘local‘ as opposed to ‘global’ when only segments of the 
sequences being compared need be aligned,  and  these 
segments may be chosen to optimize the score. If the 
substitution and  gap  scores  used  are too high, the opti- 
mal local  alignment of two random sequences of roughly 
equal length will tend  to involve  virtually the complete 
sequences 1273 as for global alignments, to  be dixussed 

later.  Little is known about the score distributions of 
such  alignments. For sufficiently low scores,  however, 
the optimal  local alignment of two random sequences 
will  tend to involve only a short segment h m  each 
[27]. It  is about this scoring regime that  much can be 
said. 

The case for  which the asymptotic score distribution is 
fully understood is that of local alignments with gaps 
disallowed.  Briefly, one assumes a probability distribu- 
tion Over a set of letters, two random sequences of 
lengths m and n of independently sampled letters,  and 
a set of substitution scores with negative expected value. 
Then the  number  of distinct segment pain with a score 
of at least S is approximately Poisson distributed. with 
parameter K m n  e= where K and h are  calculable  pa- 
rameters [28.29]. This implies  that the highest score 
follows an  ‘extreme  value distribution’ (301. The the- 
ory has been extended to sequences of Markov depen- 
dent letters [31], and to the  distribution of the sum of 
the r highest  segment-pair  scores [32]. Similar  results are 
available  for the longest run of identical letters in two 
sequences  allowing a specified number of mismatches 
[33], and  weaker ones for a specified proportion of 
mismatches [34]. Once gaps are permitted,  there are 
no results h m  which p-values  can be calculated  for 
local  alignment  scores.  Neverrheless,  assuming that the 
substitution and gap scores are sufficiently low [27], 
analogy to the cases jusr  described  suggests that the 
optimal local alignment scores should also follow  an 
extreme value distribution [30]. Computational ex-peri- 
ments using real protein sequences or simulated random 
ones permit the parameters for such a distribution to be 
estimated [35-39]. 
A less  widely  used definition of local sequence similarity 
involves a ‘sliding window’ of fixed length. For any pair 
of segments with this length, the scores for all aligned 
residue  pairs  are  summed.  Given a random model, the 
score distribution for a single window location may be 
calculated  explicitly  by convolution [40]. Assuming all 
window positions to be independent introduces only a 
small error in  estimating the maximum score  achieved 
between two sequences [a]. 

Global alignment  statistics 
The scores of global  alignments provided the first meas- 
ure of sequence  similarity [41-43]. Unfortunately, the 
statistical distribution of these  scores  can not as yet be de- 
scribed  analytically- The expected score h m  the align- 
ment of two  random sequences of length n is known in 
the limit to grow  linearly with n. and for certain scor- 
ing systems, upper and lower bounds on the constant 
of proportionality are available [44]. There is no reason 
to believe that the andom score distribution is normal. 
but for a particular scoring system computational eqe r -  
iments can provide  estimates for the mean and  standard 
deviation of random  similarity  scores [453. The usual ap- 
proach to evaluating the significance of a given global 
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alignment  is  thus to aiign  and  score  a  large number 
of shuffled  versions of the original  sequences [46,47]. 
One  dificulty with this procedure is that, ulliess one 
may  assume  that the shuffled  scores  follow a particu- 
Iar known distribution, the smallest  p-value  that  can 
be  rigorously  claimed is the reciprocal of the number 
of shuffled  alignments performed. In the case of multi- 
ple  tests, one may require a very small nominal  p-value 
in order to claim  significance,  and  practical  limitations 
due to available computer  time may  arise. The simula- 
tion method is quite practical in most cases of pairwise 
comparison, however, where one asks, “What  are  the 
odds that  the similarity  score I see  for  sequences A 
and B would arise by chance?” If the alignment  score 
is greater than that for any of a 1000 pairs of shuf- 
fled  sequences, then the p-value  may  be  estimated  as 
0.001 or less.  P-values  calculated in this  way may ob- 
viously be used to eliminate  ‘filse positives’ encountered 
in a database  search, for example  those due to  unusual 
amino acid  composition.  Alignment  scores may  also be 
expressed in standard  deviation  units  relative to the dis- 
tribution for shuffled and optimally  aligned  sequences, as 
Z-scores, and used in  this  way to rank the ‘hits’  obtained 
in a database  search. 

Threading statistics 

StatisticaI effects on threading scores 
What distinguishes threading methods fiam sequence 
alignment is the matching scores  they employ. Rather 
than the cost of a residue  substitution,  threading 
methods consider the energetic cost of placing  an 
amino acid of a given type at a particular  site in 
the structure, with a characteristic  structural  envi- 
ronment. In place of a  table of log-odds  scores for 
residue-residue  substitution,  threading  methods use ta- 
bles giving the log-odds of a  residue  type  occur- 
ring in a given environment, as observed in the 
database of known three-dimensional  structures, or per- 
haps as estimated by other means [48-50]. The de- 
tailed manner in which ‘structural environments  are 
classified  differs greatly among current  methods. They 
may be grouped loosely  as  methods  which  associate 
an environment category with individual  residue  sites 
[15,48,51-53,54’,55-57,58’,59] or with pairs of sites 
forming a contact [16,17,18*,19*,49,50,6043,64~,65’], 
but there are other dserences as well, which we will 
not attempt to describe  here.  We  note only that the pri- 
mary component of the threading score is in all cases  a 
sum taken over  residue-environment  energies,  similar in 
form to the sum of substitutibn costs  used in sequence 
alignment. 

As a result of this similarity in the form  of  score  calcu- 
lation one may expect the statistical distribution of ‘ran- 
dom’ scores in threading and sequence  comparison to 

have some  similarities.  When the expected  score for 
a residue,  site  pair is  positive, as when the alignment 
space is large,  then  the  expected  effect of increasing 
alignment  length is to increase the score.  Thus,  in the 
optimal  alignment, against two different  structures, of a 
long,  randomly shuffled  sequence, one may expect the 
longer alignment to obtain the better score, in rough 
proportion to the number of residue  sites it contains. 
One may  also expect  composition  effects,  in the sense 
that the mean  and  variance  of the score distribution ob- 
tained  for  random  shuffles  of an aligned  sequence need 
not  be the  same  between  sequences that differ in their 
amino acid  content. This effect  is  a consequence of us- 
ing a  scoring  table  derived fiom a  particular  database, 
with a  certain  composition. The scoring tables  are not 
intended  to measure  composition  preferences, but se- 
quences which differ hrn the implicit composition 
model used in  their  derivation will nonetheless  have 
different  expected scores. The effects of local composi- 
tion bias on sequence  comparison  scores are well known 
[2*,66,67]. Threading scores are perhaps more sensitive, 
as they  are  strongly  affected by overall  hydrophobicity of 
the aligned  residues,  and  sometimes  employ  potentials 
where ‘composition’ must be interpreted to include the 
interval  separation of residue  types, and may be quite 
different among candidate  alignments 168). 
Threading methods also bear some resemblance to se- 
quence comparison  algorithms in  the way in which 
they  constrain  alignments. Threading is intended to 
detect  remote  relationships,  where protein evolution  is 
expected  to  conserve  a ‘core’ substructure consisting of 
helices  and Bstrands dispersed throughout the sequence 
[12]. Threading  methods  thus  consider  alignments that 
are  global  with  respect  to  the known structure, so that 
they  include  most ofits core, but gaps are allowed, so that 
the expected  variation  in  the length and conformation 
of loop regions  will not prevent  recognition of the com- 
mon fold. The techniques by which such alignments  are 
determined differ  among  current  methods.  Many em- 
ploy  variations of the dynamic programming algorithms 
used for sequence  alignment, with gap penalties that ef- . 
fectively  exclude  alignments  that do  not contain most 
of the core  substructure, or that  imply  large  variation 
in loop lengths [15-17,19’,48,52,53,54*,5~57,58.,59]. 
Some methods in this group also  penalize  gaps at  the 
ends of the aligned  sequence [54*]. For methods  using 
gap penalties, the exact  choice ofpenalty is quite impor- 
tant [19’,58’], as in sequence  Comparison [69,70=], and 
an  additional  complication arises for the subset that de- 
fines  structural  environment in terms of pairs of residue 
sites, where alignment scorn are  non-local, and heuris- 
tic  application of dynamic  programming may find fivor- 
able but  not necessarily  optimal  alignments [16,17]; An- 
other group of threading  alignment methods avoids gap 
penalties  altogether. They ‘instead define ‘core  elements’ 
which correspond to the B-strands and helices of a smuc- 
ture,  and  consider only alignments that contain no gaps 
internal to a core element [18*.65*]. By making  explicit 
the assumption  that  core  elements are conserved, these 
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Fig. 1. The  sequence of whale myoglobin threaded  through  the  cores of known structures  (an  example of a 'forward  folding' search). Open 
bars in the histograms indicate non-globin scores, and solid bars the scores for  true  globins. Bars for globins  are  staggered by half of the bar 
width so that no false positives are obscured. The  uppermost  panel  gives the  raw  threading scores for  the  most  favorable  alignment identified 
for each of 321 d .s t ruc tu res  small enough to be threaded by the myoglobin sequence, the quantity defined as -Ac[rlm) in 11 8.1. The 
second p a n e l  shows comp i t i on -comed  scores for these  core  structures, the quantity defined as ar lm)  in I1 8'1. The third panel shows 
threading Z-scores relafive tu the distribution of a d m )  obtained for 50 randam shuffles of the myoglobin sequence. The towermost panel 
&OWS the probability  of this 2-xore in a standard normal distribution. True positives are Protein Data  Bank ID codes (in alphabetical order) 
1 ECA, 1 HBC, 1 tTH A, l L H l ,  IMBA, ZLHB,  2M65, 2MHB 6, 3SDH A The  highest  score (2=7.86). corresponds to the native sttycture of 
whale myoglobin, 2MB5, where  alignment is completely correct and  the flexible core algorithm draws most residue  sites into the model 
(5H Bryant, unpublished data). Alignments  for  other  true  positives  are  largely  correct, with  a mean  alignment  error of approximately  two 
residues, conesponding to occasional 'register  shifts' of one helical turn (SH  Bryant, unpublished data).  Core subnrudures were defined for a 
mredundant  subset of 438 proteins from the April 1994 release of the  Protein  Data  Bank [72]. The core definition algorithm identifies large 
helices and &strands and then removes residue  sites  from  their  ends, until  only 60% of contacts  remain. In threading,  the  precise endpoints of 
core elements  were  allowed to vary from this minimum  up to  the midpoint of the  loops linking each  element to its neighbors.  The  lengths of 
l o o p s  were constrained to fall  within the  length  range  seen in the database for comparable  loops Ir Madej, J-F Cibrat, SH Bryant, unpublished 
data). Favorable  alignments of the myoglobin sequence with each  core  were found  by a Monte Carlo  procedure  that samples simultaneously 
the alignment of each ungapped  core  element with the sequence and  its  precise  endpoints in the strumre. Alignment and  inclusion of 
residue  sites beyond ttn minimum core are thus determined  on  the  basis of the compositioncorrected threading score, without reference to 
gap penalties (Ski Bryant, unpublished data). 

methods reduce the space of alternative alignments to The similarity of the alignment models for threading 
the point that the o p h u m  may be found by emmer- and sequence comparison also implies similarities in 
ation [18*,20] or a h r h  and bound  procedure 165'1, the statistical distribution of matching scores, in partic- 
or fivorable alignments identified heuristically  by  Monte ular a c o m m o n  dependence on the number of alterna- 
Carlo sampling ([21]; SH Bryant, unpublished data). tive alignments considered. In threading two randomly 
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shuffled  sequences  through  a  structure,  for  example, one 
may expect that the longer  sequence  will obtain a better 
score: when more alternatives  are  considered, one can 
expect to find a better alignment  by  chance. A simi- 
lar effect occurs when comparing  threading  scores  for 
structures that may be of the same length, but where 
one structure allows more gaps than another, because 
of differences in position-dependent  gap  penalties or the 
presence of a larger number of core  elements. In this  case 
one may expect to find a better  score for the structure 
with more  gaps  allowed,  because the effective  number 
of alternative a l imen t s  is greater. This effect is similar 

ties, where an  alignment with lower gap penalties wili 
always  get a better score. For threading methods that 
employ  gap  penalties the dependence of  the score  dis- 
tribution on relative  lengths is similar to that for se- 
quence comparison. In threading a sequence of length 
N through structures of lengths N and 2N, for example, 
one may expect that scores for  the latter will be lower, 
because all alignments  must contain gaps of greater ag- 
gregate  length. These statistical  factors may clearly sect 
the raw threading  scores obtained in a database  search 
for auctures compatible with, a  sequence, or sequences 
compatible with a structure, and calculations  ofstatistical 

to that of sequence alignmeit with differing  gap  penal-  significance  must  .clearly take them into account. 
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Fig. 2. Sequences of known ~ructures threaded  through  the  core of whale myoglobin (an example of a 'reverse folding' search).  Raw  thread- 
ing scores for the sequences from 359 proteins  that  are long enough to thread  the myoglobin core are displayed in the uppermost  panel, 
including  nine true positives as described in the caption to Fig. 1. Lower  panels display cornpith-corrected scores, threading 2-scores, 
and pvalues as described in Fig. 1. The highest score for  the  positives  corresponds  to the native sequence, and mean alignment accuracy 

definition algorithm to include six helical regions:  residue sites 8-1 6, 23-32, 62-74, 85-93, 104-11 5 and 130-1 45. Looplength constraints 
is  approximately two residues, as described in Fig. 1. The minimal core for whale myoglobin, 2MB2, was defined by the automatic  core 

were defined automatically to be 8, 33, 12, 12 and 13 residues, respectively. 



interpretations of threading score 
Threading methods  are  new,  and  many  investigators  have 
attempted to evaluate their initial results  by  simply 
comparing raw scores,  perhaps  re-scaling them  to re- 
flect the range  of  values obtained in a database  search, 
or  the difference in the best  and  next-best  scores 
[15,16,48,52,53,57,58*,~*]. Fold recognition accuracy 
in control experiments has been  good nonetheless, in- 
dicating that threading potentials and  associated  gap 
penalties  encode much relevant information, although 
we  note that some initial studies  considered only match- 
ing scores. and not alignment accuracy.  In the compari- 
son of raw scores,  however, there is no way to allow  for 
statistical eEects  arising h m  differences  in length, com- 
position, or the effective number of alternative align- 
ments considered. Some investigators have thus  proposed 
corrected scores that take into  account  one  or more of 
these hctoa. Johnson and colleagues [54*,55] and  Mat- 
suo and  Nishikawa [22], for example, divide threading 
scores by alignment length, to correct in an  approxi- 
mate fishion for the higher scores expected by chance 
with k g e r  structures, where more sites  may contribute 
to the s u m  of residue-environment  potentials. Bryant 
and  colleagues [18*,20,21] correct for the effect of dif- 
ferences in amino  acid cornposition,by  determining  the 
distribution of scores expected foraandom shuffles of  the 
aligned  residues, and considering 2-scores  relative to this 
empirical  distribution. Sippl and colleagues [19*] com- 
pare raw scores to the distribution obtained by threading 
the aligned  residues through a ‘polyprotein’ formed by 
concatenation of database structures. This measure  cor- 
rects for the statistid dects  of composition merences, 
and similarly  produces a 2-score relative to a set of ‘ran- 
dom’ models with the same composition. These statistics 
may be thought of as compositionsorrected thread- 
ing scores,  and  they  appear to improve  specificity in a 
threading  search [lSm,19]. 
Some investigators  have also attempted to correct for dif- 
ferences in the number of alternative  alignments  consid- 
ered  in  each  pairwise comparison of a database  search. 
Bryant and  colleagues [18*,20) proposed an  approximate 
calculation to correct for merences in  the size of  the 
alignment  space  based on an  assumption concerning 
the effective  size of this space, and  the  form  of  the 
expected  score distribution. Godzik and  colleagues [17] 
and Blundell  and  colleagues [54.] proposed  an empirical 
method  to correct for differences in  the effective  size  of 
the alignment space and for the effect of gap  penalties 
as a hnction of diflierences in relative length. They ex- 
pres the raw threading  score in standard  deviation  units 
relative to the distribution obtained by  randomly  shuf- 
Aing the threaded sequence many  times,  and  optimally 
thrrading.it through the  structure. As relative lengths and 
gap penalties are identical among  the shuffled  sequences, 
the threading 2-scorej calculated in this way correct for 
differences in the number  of alternative  alignrhents con- 
sidered  and are comparable a k  the ‘hits’ obtained in 
a database  search. They are also easy to read. A thread- 
ing score that is no better than chance has an expected 

value of zero. A score of 3 is three  standard  deviation 
units  &om the mean  value  expected for random  se- 
quences, and  relatively  unlikely to arise by chance d i f f e 1  T f  - 0 . 0 2  T c T m 
 ( a n d  ) 8  6 2 b a s e   s e a 3 . 8 7 5 t h r e e   s t . 0 1 5 7 6 9  0  T l t i  u n l i k e l t i e s  e x p e c t e d  has 
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tive to the distribution of such  scores obtained by ran- 
domly  shuffling the complete  sequence  involved in each 
comparison,  and  optimally  aligning it to corresponding 
structure.  We  convert  these  scores to p-values,  assum- 
ing arbitrarily, and for  purposes of illustration,  that the 
distribution of optimal  threading  scores  across  randomly 
shuffled  sequences  is  normal.  This procedure illustrates 
our suggestion as to how score  distributions  relative to 
shuffled  sequences may be used to control for the  statis- 
tical  effects we mention, and  to  derive an approximate 
pvalue indicating the odds that the threading score  for 
a  pairwise  comparison  would  arise  by  chance. 

The plots  show the effect on the rank ordering of the 
m e -  and Mse-positive  'hits' of the  successive  corrections 
for  composition and numbers of alternative  alignments. 
As noted before [18',20], correction for the statisti- 
cal eEect of aligned-residue  composition  dramatically 
reduces the number of false  positives. Comparison to 
the composition-corrected  score  distribution  for  shuf- 
fled and optimally  threaded  sequences further reduces 
false positives  and  yields  scores where the expected 
value for a random sequence is  zero. The right  tail of 
this  distribution is enriched  in true positives,  and the 
&e  positives  in both searches  are  proteins  which  are 
for the most  part s t r u c t u ~ y  related. For the 'forward 
folding' search in Fig. 1, for  example, the first  filse  pos- 
itive, at a threading 2-score of 4.76, is the B chain of 
phycocyanin,  a  structurally  related protein [73]. For the 
'reverse  folding'  search in Fig. 2, the first  false  positive 
at Z =3.76 is the heme-binding  domain of cytochrome 
p450, an all-helical  protein; the fourth at Z ~ 2 . 9 4  is the 
C-terminal domain of colicin A, a structurally  related 
protein. We note that the greater number of false pos- 
itives for the reverse  folding  search is a  consequence 
of the search  strategy  employed. The threading  align- 
ments  considered  here  are  global with respect ro the 
structure, but local with respect to  the sequence,  an - "asymmetry" 158.1 intended to  detect  any  globin-like 
domains in larger  proteins.  Long  sequences may thus 
be aligned with the myoglobin  core in more ways than 
the myoglobin  sequence  may  be  aligned with other core 
structures, which must  contain  fewer  residues. One thus 
expects to find more false  positives  as a  consequence of 
the increased  alignment  space.  Sequences which are 'too 
long' may of course be excluded from consideration in a 
reverse  folding  search, by gap  penalties or other means, 
but w e  have not  done so, in  order to illustrate the ef- 
fect of alignment  space. Quantifjmg this  effect is one  of 
the issues to be addressed  in  estimating the numbers of 
&e positives expected in a threading  search of an  entire 
database [ P I .  
The approximate  p-values  shown in the last  panel of Figs 
1 and 2 may. be expected to be  accurate only in the re- 
gion corresponding to the inverse of  the number of times 
the sequence was shuffled  and  optimally  aligned,  here 
around  p =0.02. It is  satisfying to note  that the approx- 
imate  p-values of true positives  are  uniformly  smaller 
than this value,  indicating  that the shuffled  sequence 

test  offers  clear  evidence of non-random  compiemen- 
tarity of sequence  and structure in either the forward 
or reverse folding  experiments. One may conclude  that 
the  threading  potential  is suficiently sensitive to recog- 
nize  this  complementarity,  even among the  billions of 
alternative  alignments  allowed  for  each of the shumed 
and  optimally  threaded  sequences. I t  would be  desirable, 
of course,  if  there  were no fdse positives  below some 
objectively  defined  level of structural  similarity,  and it 
is unclear whether this  can be achieved. One may well 
imagine  that  some  fake  positives  are due to the strict  na- 
ture  of  the  shuffled-sequence  test  proposed, in the sense 
that many  all-helical  proteins  might be expected to fit a 
globin  core  better  than would a  purely  random  sequence. 
It  is  impossible to tell,  however, whether &e  positives 
are  a  consequence ofthe statistical  test or of the  threading 
potential, which, afier  all,  examines  only  local  contacts, 
and  might be expected to have some  difficulty  in  dis- 
tinguishing  helical  proteins of different  topology [5S0]. 
We  will know the answer to this question only when 
the same  statistical  tests are  applied  with other thread- 
ing potentials,  and when tests  that  similarly  account  for 
the statistical  effects of length,  composition,  and  align- 
ment  space  are  compared to the shuffled-sequence  test 
we  consider  here. 
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