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ABSTRACT A system of cluster analysis for  genome-wide 
expression  data  from DNA microarray  hybridization is de- 
scribed  that  uses standard statistical algorithms  to  arrange 
genes  according to similarity in  pattern  of  gene  expression. 
The output is displayed  graphically,  conveying  the clustering 
and the underIying expression data  simultaneously  in  a  form 
intuitive for biologists. We have found  in the  budding  yeast 
Saccharomyces cerevisiae that clustering gene  expression data 
groups  together efficiently genes  of  known similar function, 
and  we find a similar tendency in human data. Thus  patterns 
seen in genome-wide  expression  experiments  can  be  inter- 
preted as indications of the status of cellular processes. Also, 
coexpression of genes  of  known  function  with  poorly  charac- 
terized or novel  genes  may  provide  a simple means  of  gaining 
leads  to the functions of many genes  for  which  information is 
not  available  currently. 

The rapid advance of genome-scale sequencing has driven the 
development of methods to exploit this information by char- 
acterizing  biological processes in  new  ways. The knowledge of 
the coding sequences of virtually every gene in an organism, 
for  instance, invites development of technology to study the 
expression of all of them  at  once, because the study of gene 
expression of genes one by one  has already provided a wealth 
of biological  insight. To this end,  a variety of techniques has 
evolved to monitor, rapidly and efficiently, transcript  abun- 
dance an inclusive analysis of the entire  repertoire of transcripts,  a continuing comprehensive window into  the state of a cell  as  it  goes through a biological process. What is needed instead is a holistic approach to analysis of genomic data that focuses on illuminating order in the entire  set of observations, allowing biologists to integrated  understanding of the 

process being studied. 

A natural basis for organizing gene expression data is to 
group  together genes with similar patterns of expression. The 
first step to this end is to adopt  a mathematical description of 
similarity. For any series of measurements,  a  number of 
sensible measures of similarity in the behavior of two genes can 
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be used, such  as the  Euclidean  distance, angle, or dot products 
of the two n-dimensional vectors representing a series of n 
measurements. We  have found that the  standard  correlation 
coefficient (Le., the  dot  product of two normalized vectors) 
conforms well to the intuitive biological notion of what it 
means  for two genes to be “coexpressed;” this may be because 
this statistic  captures similarity in “shape” but  places no 
emphasis on  the  magnitude of the two series of measurements. 

It is not  the  purpose of this paper to survey the various 
methods available to cluster genes on the basis  of their 
expression patterns, but  rather  to  illustrate how  such methods 
can  be  useful to biologists in the analysis of gene expression 
data. We  aim to use these  methods to organize, but not to alter, 
tables  containing primary data; we  have thus used methods 
that can be reduced, in the  end,  to  a  reordering of lists of genes. 
Clustering methods can be divided into two general classes, 
designated supervised and unsupervised clustering (4). In 
supervised clustering, vectors are classified  with respect to 
known reference vectors. In unsupervised clustering, no pre- 
defined  reference vectors are used. As we  have little a priori 
knowledge of the  complete  repertoire of expected gene ex- 
pression patterns  for any condition, we  have  favored unsuper- 
vised methods  or hybrid (unsupervised followed by super- 
vised) approaches. 

Although various clustering methods can  usefully organize 
tables of gene expression measurements, the resulting ordered 
but still  massive collection of numbers remains difficult to 
assimilate. Therefore, we  always combine clustering methods 
with a graphical representation of the primary data by repre- 
senting each data point with a color that quantitatively and 
qualitatively reflects  the original experimental observations. 
The end product is a  representation of complex gene expres- 
sion data that, through statistical organization and graphical 
display,  allows  biologists to assimilate and explore the data in 
a  natural intuitive manner. 

To illustrate this approach, we  have applied pairwise  aver- 
age-linkage cluster analysis (5) to gene expression data col- 
lected in our laboratories. This  method is a form of hierarchical 
clustering, familiar to most  biologists through its application in 
sequence  and phylogenetic analysis. Relationships among ob- 
jects (genes) are  represented by a  tree whose branch lengths 
reflect  the  degree of similarity between the objects, as assessed 
by a pairwise similarity function such as that described above. 
In sequence comparison, these  methods  are used to infer the 
evolutionary history of sequences being compared. Whereas 
no such  underlying tree exists for expression patterns of genes, 
such methods  are useful  in their ability to represent varying 
degrees of similarity and  more  distant relationships among 
groups of  closely related genes, as well as in requiring few 
assumptions about the  nature of the data.  The  computed  trees 
can be  used to  order genes in the original data table, so that 
genes or groups of genes with  similar  expression patterns are 
adjacent. The  ordered  table can then be  displayed  graphically, 
as  above,  with a  representation of the tree to indicate the 
relationships among  genes. 
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FIG. 1. Clustered  display of data  from  time  course of serum 
stimulation of  primary  human  fibroblasts.  Experimental  details  are 
described  elsewhere (11). Briefly,  foreskin  fibroblasts  were  grown in 
culture  and  were  deprived of serum  for 48 hr.  Serum  was  added  back 
and  samples  taken at time 0,15 min, 30 min, 1 hr, 2 hr, 3 hr, 4 hr, 8 
hr, 12 hr, 16 hr, 20 hr, 24 hr.  The  final  datapoint  was  from a separate 
unsynchronized  sample.  Data  were  measured by using a cDNA 
microarray  with  elements  representing  approximately 8,600 distinct 

regulation.  Finally, this result  also indicates that noise present 
in  single observations does not  contribute significantly  when 
genes are compared across even  a  relatively  small number of 
nonidentical conditions. Therefore, when.  designing  experi- 
ments, it may be more valuable to sample a wide variety of 
conditions than to make repeat observations on identical 
conditions. 

Genes of Similar Function  Cluster  Together.  A far more 
striking result is found  when larger groups of clustered genes 
are examined, where we observe a strong tendency for these 
genes to  share common roles in cellular  processes. This 
relationship is clearest in data from experiments on  the 
budding  yeast S. cerevisiae, where arrays representing essen- 
tially  all of the genes from this organism are available (8) and 
for which  a  large fraction of the identified genes (more than 
35%) have been studied in some detail. Fig. 2A represents a 
clustering  analysis of 2,467 genes, all the genes that currently 
have  a functional annotation in the Saccharomyces Genome 
Database (12). As can be seen in  Fig.  2 B-K, numerous  groups 
of coexpressed genes representing diverse expression patterns 
across the sampled conditions are involved in common cellular 
processes. Although one might be concerned about the pos- 
sibility of crosshybridization, it is clear in the examples  below 
that genes of unrelated  sequence  but similar function cluster 
tightly together. 

A  particularly dramatic example  is the extensive cluster 
(shown  in  Fig. 21) of 126 genes strongly down-regulated in 
response to stress (after  each of the shocks, at  the  latter stages 
of the diauxic shift where glucose levels are diminished, and 
after transfer to nutrient-limited sporulation media), and 
which covary throughout the cell  cycle. This cluster is domi- 
nated by genes encoding ribosomal proteins (112 genes) and 
other proteins involved in translation (initiation and elonga- 
tion factors and tRNA synthetases). It has  been  reported that 
yeast responds to  favorable growth conditions by increasing 
the production of ribosomes (13) through transcriptional 
regulation of genes encoding ribosomal proteins (14). 

Mitochondrial protein synthesis genes were also expressed 
concordantly along with a number of genes involved  in  respi- 
ration (Fig. 2F) in a pattern roughly  similar to a large cluster 
of coexpressed genes involved in ATP synthesis (predominant- 
ly members of the FlFO ATPase complex) and oxidative 
phosphorylation (Fig. 2G). Oxygen-related transcriptional 
regulation of genes involved in  oxygen  utilization has been 
characterized extensively (15). 

The genes encoding the bulk of the components of the 
proteasome (Fig. 2C) and  the mini-chromosome maintenance 
DNA replication complex (Fig. 2J) are also coexpressed. In 
addition, there  are many examples of coexpressed genes that 
share a common or related function but  are not members of 
large protein complexes, such as genes encoding numerous 
glycolytic  enzymes  (Fig. 2E) ,  genes involved in the tricarbox- 

human genes. All measurements are relative  to  time 0. Genes were 
selected  for  this  analysis if their expression  level  deviated  from time 0 
by at  least a factor of 3.0 in at least 2 time  points.  The  dendrogram and 
colored  image  were  produced as described in the text;  the  color  scale 
ranges  from  saturated  green  for log ratios -3.0 and  below to  saturated 
red  for log ratios 3.0 and  above.  Each  gene  is  represented by a single 
row of colored  boxes;  each  time  point  is  represented by a single 
column.  Five  separate  clusters  are  indicated by colored bars and by 
identical  coloring  of the corresponding  region of the dendrogram. As 
described in detail in ref.  11,  the  sequence-verified  named  genes in 
these  clusters  contain  multiple  genes  involved in (A)  cholesterol 
biosynthesis, ( B )  the  cell  cycle, (C)  the  immediate-early  response, (D) 
signaling  and  angiogenesis,  and ( E )  wound  healing  and  tissue  remod- 
eling.  These  clusters  also  contain  named  genes  not  involved in these 
processes  and  numerous  uncharacterized  genes. A larger  version of 
this  image,  with  gene  names,  is  available  at http://rana.stanford.edu/ 
clustering/serum.html. 
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FIG. 2. (Legend  appears at the bottom of the opposite page.) 
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applied to all of the approximately 6,200 genes  of S. cerevisize, the 
clusters of functionally related genes are maintained, but are 
usually expanded with the addition  of  uncharacterized  genes  (the 
results of  this  analysis  will be the subject  of a subsequent  report). 
On  the basis of our observations here, it is  probable that many  of 
these  genes  will also share common  functions.  While not based on 
biological  necessity,  similarity of pattern of expression  may be  the 
easiest  available  means of making at  least provisional  attribution 
of function on a genomic scale. 

Finally, the functional  concordance of coexpressed genes 
imparts biological significance to  the  broad  patterns seen in 
images like those of Figs. 1 and 2. For example, the represen- 
tation  of the transcriptional response of human fibroblasts to 
serum shown in Fig. 1 is not simply a list of genes and  their 
associated expression patterns,  nor is it  an arbitrary structure 
that is  being seen, but  rather  it is a comprehensive represen- 
tation of the  state of the cell throughout  its response to serum. 
Likewise, for yeast experiments,  information on  the  state of 
many cellular processes can  be  inferred quickly  by combining 
and  comparing new experiments  with the  data presented here. 
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