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FIG. 1. Clustered  display of data  from  time  course of serum 
stimulation of  primary  human  fibroblasts.  Experimental  details  are 
described  elsewhere (11). Briefly,  foreskin  fibroblasts  were  grown in 
culture  and  were  deprived of serum  for 48 hr.  Serum  was  added  back 
and  samples  taken at time 0,15 min, 30 min, 1 hr, 2 hr, 3 hr, 4 hr, 8 
hr, 12 hr, 16 hr, 20 hr, 24 hr.  The  final  datapoint  was  from a separate 
unsynchronized  sample.  Data  were  measured by using a cDNA 
microarray  with  elements  representing  approximately 8,600 distinct 

regulation.  Finally, this result  also indicates that noise present 
in  single observations does not  contribute significantly  when 
genes are compared across even  a  relatively  small number of 
nonidentical conditions. Therefore, when.  designing  experi- 
ments, it may be more valuable to sample a wide variety of 
conditions than to make repeat observations on identical 
conditions. 

Genes of Similar Function  Cluster  Together.  A far more 
striking result is found  when larger groups of clustered genes 
are examined, where we observe a strong tendency for these 
genes to  share common roles in cellular  processes. This 
relationship is clearest in data from experiments on  the 
budding  yeast S. cerevisiae, where arrays representing essen- 
tially  all of the genes from this organism are available (8) and 
for which  a  large fraction of the identified genes (more than 
35%) have been studied in some detail. Fig. 2A represents a 
clustering  analysis of 2,467 genes, all the genes that currently 
have  a functional annotation in the Saccharomyces Genome 
Database (12). As can be seen in  Fig.  2 B-K, numerous  groups 
of coexpressed genes representing diverse expression patterns 
across the sampled conditions are involved in common cellular 
processes. Although one might be concerned about the pos- 
sibility of crosshybridization, it is clear in the examples  below 
that genes of unrelated  sequence  but similar function cluster 
tightly together. 

A  particularly dramatic example  is the extensive cluster 
(shown  in  Fig. 21) of 126 genes strongly down-regulated in 
response to stress (after  each of the shocks, at  the  latter stages 
of the diauxic shift where glucose levels are diminished, and 
after transfer to nutrient-limited sporulation media), and 
which covary throughout the cell  cycle. This cluster is domi- 
nated by genes encoding ribosomal proteins (112 genes) and 
other proteins involved in translation (initiation and elonga- 
tion factors and tRNA synthetases). It has  been  reported that 
yeast responds to  favorable growth conditions by increasing 
the production of ribosomes (13) through transcriptional 
regulation of genes encoding ribosomal proteins (14). 

Mitochondrial protein synthesis genes were also expressed 
concordantly along with a number of genes involved  in  respi- 
ration (Fig. 2F) in a pattern roughly  similar to a large cluster 
of coexpressed genes involved in ATP synthesis (predominant- 
ly members of the FlFO ATPase complex) and oxidative 
phosphorylation (Fig. 2G). Oxygen-related transcriptional 
regulation of genes involved in  oxygen  utilization has been 
characterized extensively (15). 

The genes encoding the bulk of the components of the 
proteasome (Fig. 2C) and  the mini-chromosome maintenance 
DNA replication complex (Fig. 2J) are also coexpressed. In 
addition, there  are many examples of coexpressed genes that 
share a common or related function but  are not members of 
large protein complexes, such as genes encoding numerous 
glycolytic  enzymes  (Fig. 2E) ,  genes involved in the tricarbox- 

human genes. All measurements are relative  to  time 0. Genes were 
selected  for  this  analysis if their expression  level  deviated  from time 0 
by at  least a factor of 3.0 in at least 2 time  points.  The  dendrogram and 
colored  image  were  produced as described in the text;  the  color  scale 
ranges  from  saturated  green  for log ratios -3.0 and  below to  saturated 
red  for log ratios 3.0 and  above.  Each  gene  is  represented by a single 
row of colored  boxes;  each  time  point  is  represented by a single 
column.  Five  separate  clusters  are  indicated by colored bars and by 
identical  coloring  of the corresponding  region of the dendrogram. As 
described in detail in ref.  11,  the  sequence-verified  named  genes in 
these  clusters  contain  multiple  genes  involved in (A)  cholesterol 
biosynthesis, ( B )  the  cell  cycle, (C)  the  immediate-early  response, (D) 
signaling  and  angiogenesis,  and ( E )  wound  healing  and  tissue  remod- 
eling.  These  clusters  also  contain  named  genes  not  involved in these 
processes  and  numerous  uncharacterized  genes. A larger  version of 
this  image,  with  gene  names,  is  available  at http://rana.stanford.edu/ 
clustering/serum.html. 
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FIG. 2. (Legend  appears at the bottom of the opposite page.) 
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ylic  acid  cycle and oxidative phosphorylation (Fig. 2 9 ,  and 
genes  involved in mating (not shown). These examples em- 
phasize that  the observed coregulation occurs primarily at the 
level of cellular function and  not only with the exact protein 
function  (e.g.,  enzymic reaction catalyzed) of the gene product. 

Finally, there is  an  extremely tight cluster of eight histone 
genes (duplicates of each of histones H2A, H2B, H3, and H4). 
It is  well known that these genes are coregulated and are 
transcribed at a particular point in the cell  cycle  (16). 

In human data sets, relationships among the functions of 
genes in clusters are obscured somewhat by the less complete 
functional annotation of human gene sequences. Nonetheless, 
when the composition of the clusters is  examined,  they are 
often found to contain genes known to  share a common role 
in the cell. This observation is well illustrated in the  data from 
the response of human tissue culture cells to serum  after  serum 
starvation (Fig. 1). When  available functional information on 
the genes studied in this experiment was  examined, keeping in 
mind the often poor  state of annotation of the human genome, 
the clusters of genes indicated by colored branches were found 
to generally contain genes  involved  in cholesterol biosynthesis 
(cluster A), the cell  cycle (cluster B), the immediate-early 
response (cluster C), signaling and angiogenesis (cluster D), 
and tissue remodeling and wound healing (cluster E); a 
detailed description of these observations is contained in ref. 
11. 

DISCUSSION 
Microarray-based genomic surveys and  other high-throughput 
approaches (ranging from genomics to combinatorial chemis- 
try)  are becoming  increasingly important in  biology and chem- 
istry. As a result,  we need to  develop our ability to “see” the 
information in the massive tables of quantitative measure- 
ments that these approaches produce. Our approach to this 
problem can be generalized as follows. First, we  use  a common- 
sense approach to organize the  data, based on order  inherent 
in the  data. Next,  recognizing that  the rate-limiting step in 
exploring and searching large tables of numerical data is a 
trivial  one: reading the numbers (human brains are not well 
adapted to assimilating quantitative data by reading digits),  we 
represent  the quantitative values in the  table by using  a 
naturalistic color scale rather  than numbers. This alternative 
encoding preserves all the quantitative infomation, but  trans- 
mits it to  our brains by  way  of a much higher-bandwidth 
channel than the “number-reading” channel. 

A natural way of viewing complex data  sets is first to scan 
and survey the large-scale features  and  then to focus  in on the 
interesting details. What we  have found to be  the most valuable 
feature of the approach described here is that it  allows  this 
natural and intuitive process to be applied to genomic data 
sets. The approach is  a general one, with no  inherent specificity 
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FIG. 3.  To  demonstrate the  biological  origins of patterns  seen in 
Figs. 1 and  2, data  from  Fig. 1 were  clustered by using  methods 
described  here  before  and  after  random  permutation within rows 
(random l), within  columns  (random 2), and  both  (random 3). 

to the particular method used to acquire data or even to 
gene-expression data. It is therefore likely that very  similar 
approaches may be applied to  many other kinds of  very  large 
data sets. In each case, it may be necessary to find  alternative 
algorithms and computation methods to bring out inherent 
structures in the  data, and, equally important, to find dense 
naturalisticvisual representations that convey the quantitative 
information effectively. We recognize that  the particular  clus- 
tering algorithm we  used  is not the only, or even the best, 
method available. We have  used and  are actively  exploring 
alternatives such as parametric ordering of genes (9) and 
supervised clustering methods based on representative hand- 
picked or computer-generated expression profiles  (10). The 
success of these very  simple approaches has  given us confi- 
dence to face  the coming flood of functional genomic data. 

The examples  presented here demonstrate a feature of gene 
expression that makes  these  methods  particularly  usefuI,  namely 
the tendency of expression data to organize  genes  into  functional 
categories. It is, of course,  not very surprising  that  genes  that  are 
expressed  together share common  functions.  Nonetheless,  the 
extent to which gene  expression patterns suffice  to  separate  genes 
into  functional  categories  across  a  relatively  small  and  redundant 
collection of conditions is  surprising. It seems  likely that the 
addition of more and diverse  conditions  can only enhance  these 
observations.  When the clustering  analysis  described  here  is 

FIG. 2. (On the opposite page.) Cluster  analysis  of  combined yeast data sets.  Data  from  separate time courses  of gene expression in the yeast 
S. cerevisiue were  combined  and clustered.  Data were  drawn  from  time  courses  during the  following  processes:  the  cell  division  cycle (9) after 
synchronization by alpha  factor  arrest  (ALPH, 18 time  points);  centrifugal  elutriation (ELU; 14  time  points), and with a temperature-sensitive cdcl5 
mutant (CDC15; 15 time  points);  sporulation (10) (SPO, 7 time  points  plus  four  additional  samples);  shock by high temperature (HT, 6 time  points); 
reducing  agents (D, 4 time  points)  and  low temperature (C; 4 time  points)  (P. T. S., J. Cuoczo,  C.  Kaiser, P.O. E., and  D. B., unpublished work); 
and the diawic  shift (8) (DX, 7 time  points). All  data were  collected by  using  DNA  microarrays  with  elements  representing  nearly  all  of  the ORFs 
from  the fully sequenced S. cerevisiae genome (8); all measurements  were  made  against a time 0 reference  sample  except  for  the cell-cycle 
experiments,  where  an  unsyncbronized  sample  was  used. All genes (2,467) for which functional  annotation  was  available in the Saccharomyces 
Genome  Database  were included (12). The  contribution to the gene  similarity score of each  sample  from a given  process was weighted  by the inverse 
of the  square  root of the  number of samples  analyzed  from  that  process.  The  entire  clustered  image  is  shown in A; a larger  version  of  this  image, 
along  with  dendrogram  and  gene  names,  is  available  at http://rana.stanford.edu/clustering/yeastall.html. Full gene  names are shown for 
representative  clusters  containing  functionally  related  genes  involved in ( B )  spindle  pole  body  assembly  and  function, (C) the proteasome, (D) 
mRNA splicing, (E)  glycolysis, ( F )  the mitochondrial  ribosome, ( C )  ATP  synthesis, ( H )  chromatin  structure, ( I )  the  ribosome  and  translation, (J) 
DNA  replication,  and ( K )  the tricarboxylic  acid  cycle  and  respiration.  The  full-color  range  represents log ratios of  -1.2 to 1.2 for  the  cell-cycle 
experiments, - 1.5 to 1.5 for the shock  experiments, -2.0 to 2.0  for the  diauxic  shift,  and -3.0 to  3.0for  sporulation.  Gene  name,  functional  category, 
and  specific  function  are  from  the Saccharomyces Genome  Database  (13).  Cluster I contains 112  ribosomalprotein  genes,  seven  translation  initiation 
or elongation  factors,  three  tRNA  synthetases,  and  three  genes of apparently  unrelated  function. 0 8.79.3 347 223 46112nd  respial3.2 TF13 3 Tc 7 0seven.  The  full-4.6itifull- 100.6 55.2 Tm(- )Tjsevenal  anslation  iTc 0.03999 g, 
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applied to all of the approximately 6,200 genes  of S. cerevisize, the 
clusters of functionally related genes are maintained, but are 
usually expanded with the addition  of  uncharacterized  genes  (the 
results of  this  analysis  will be the subject  of a subsequent  report). 
On  the basis of our observations here, it is  probable that many  of 
these  genes  will also share common  functions.  While not based on 
biological  necessity,  similarity of pattern of expression  may be  the 
easiest  available  means of making at  least provisional  attribution 
of function on a genomic scale. 

Finally, the functional  concordance of coexpressed genes 
imparts biological significance to  the  broad  patterns seen in 
images like those of Figs. 1 and 2. For example, the represen- 
tation  of the transcriptional response of human fibroblasts to 
serum shown in Fig. 1 is not simply a list of genes and  their 
associated expression patterns,  nor is it  an arbitrary structure 
that is  being seen, but  rather  it is a comprehensive represen- 
tation of the  state of the cell throughout  its response to serum. 
Likewise, for yeast experiments,  information on  the  state of 
many cellular processes can  be  inferred quickly  by combining 
and  comparing new experiments  with the  data presented here. 
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