
been a past history of selection on this trait. Yet,
low levels of genetic variation for desiccation
resistance appear to be preventing any further
increases in resistance in this rainforest species
despite ample genetic variation in other traits
and at neutral markers as evident from the
microsatellite results. Our results show that ge-
netic variation in neutral markers can provide
an incomplete picture of the evolutionary po-
tential of populations, consistent with the weak
association between genetic diversity as mea-
sured by quantitative methods and that mea-
sured by molecular methods (25). The absence
of a selection response for traits linked to cli-
matic stress in this study and in a few other
cases (26) suggests that levels of variation must
be evaluated for ecologically relevant traits in
those species that are threatened by climate
change and fragmentation, including endan-
gered species (27).
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Inferring Genetic Networks and
Identifying Compound Mode of
Action via Expression Profiling
Timothy S. Gardner,1* Diego di Bernardo,1,2* David Lorenz,1

James J. Collins1†

The complexity of cellular gene, protein, and metabolite networks can hinder
attempts to elucidate their structure and function. To address this problem, we
used systematic transcriptional perturbations to construct a first-order model
of regulatory interactions in a nine-gene subnetwork of the SOS pathway in
Escherichia coli. The model correctly identified the major regulatory genes and
the transcriptional targets of mitomycin C activity in the subnetwork. This
approach, which is experimentally and computationally scalable, provides a
framework for elucidating the functional properties of genetic networks and
identifying molecular targets of pharmacological compounds.

Efforts to systematically define the organiza-
tion and function of gene, protein, and me-
tabolite networks include experimental and
computational methods for identifying mo-
lecular interactions (1–3), global structural
properties (4, 5), metabolic limits (6), and
regulatory modules and characteristics (7–9).
These methods have provided valuable in-
sights in many applications, but they often
provide only structural information or require
extensive quantitative information, which is
not generally available, particularly for larger
regulatory networks. In previous computa-
tional studies (10–12), alternative methods
have been proposed that would enable rapid
deduction of network connectivity and func-
tional properties solely from temporal gene-
expression data. However, the acquisition of
adequate temporal expression data remains
difficult, and the practical utility of such ap-
proaches has not been determined.

Here, we present a rapid and scalable meth-
od that enables construction of a first-order
predictive model of a gene and protein regula-
tory network using only steady-state expression
measurements and no previous information on
the network structure or function. We use mul-
tiple linear regression to determine the model
from RNA expression changes resulting from a
set of steady-state transcriptional perturbations.
The model can be used to identify the regula-
tory role of individual genes in the network,
useful control points in the network, and genes
that directly mediate a pharmaceutical com-
pound’s bioactivity in the cell. The method,
called network identification by multiple re-
gression (NIR), is derived from a branch of

engineering called system identification (13), in
which a model of the connections and func-
tional relations between elements in a net-
work is inferred from measurements of sys-
tem dynamics (e.g., the response of genes
and proteins to external perturbations).

To apply a system-identification method,
we assume that the behavior of a gene, protein,
and metabolite regulatory network can be mod-
eled by a system of nonlinear differential equa-
tions (14, 15). Near a steady-state point (e.g.,
when gene expression does not change substan-
tially over time), such a nonlinear system may
be approximated to the first order by a linear
system of equations describing the rate of ac-
cumulation of each network species resulting
from a transcriptional perturbation:

dx/dt � Ax � u (1)

where x is a vector representing the concen-
trations of N RNAs, proteins, and metabolites
in the network; dx/dt represents the rate of
accumulation of the species in x; u is a vector
representing an external perturbation to the
rate of accumulation of the species in x; and
A, the network model, is an N � N matrix of
coefficients describing the regulatory interac-
tions between the species in x. Next, we
identify the coefficients of A using only RNA
expression changes that result from steady-
state transcriptional perturbations. Because
we measure RNA but not protein or metabo-
lite species in this study, variables represent-
ing proteins and metabolites are not explicitly
represented in the network model. Thus, reg-
ulatory connections in the model are not, in
general, physical connections; rather, they
represent effective functional relations be-
tween transcripts.

Under the steady-state assumption (dx/dt �
0), Eq. 1 reduces to Ax � �u. To identify the
network model, we could, in principle, make N
distinct perturbations, u, to the RNAs in a par-
ticular network, recover N sets of RNA concen-
trations, x, and solve directly for A (16). How-
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ever, in larger networks it may be impractical to
perform a full set of N perturbation experi-
ments, and thus our problem would remain
underdetermined. Even with a full set of per-
turbation experiments, RNA expression data
are prone to high levels of measurement noise,
making the direct solution unreliable. To over-
come this problem, we assume that most bio-
chemical networks are not fully connected (17,
18, 19), that is, some of the coefficients of A are
zero. Thus, by assuming a maximum of k non-
zero regulatory inputs to each gene (where k �
N), we can transform our underdetermined
problem into an overdetermined problem, mak-
ing it robust both to measurement noise and
incomplete data sets.

We next apply multiple linear regression
(20) to calculate the model coefficients for
each possible combination of k regulatory
inputs (k coefficients) per gene. The k coef-
ficients for each gene that fit the expression
data with the smallest error are chosen as the
best approximation of A. Using the standard
errors on the RNA measurement data, the
algorithm also computes the statistical signif-
icance of each recovered coefficient of A and
the overall fit of A. A complete description of
the algorithm is provided in the supporting
online text.

We applied the NIR method to a nine-
transcript subnetwork of the SOS pathway in
E. coli (the “test network”). The SOS path-
way, which regulates cell survival and repair
after DNA damage, involves the lexA and
recA genes, more than 30 genes directly reg-
ulated by lexA and recA, and tens or possibly
hundreds of indirectly regulated genes (21–
25). We chose the nine transcripts in our test
network (Fig. 1) to include the principal me-
diators of the SOS response (lexA and recA),
four other regulatory genes with known in-
volvement in the SOS response (ssb, recF,
dinI, and umuDC ), and three sigma factor
genes (rpoD, rpoH, and rpoS) whose regula-
tory role in the SOS response is not fully un-
derstood. Because much of the regulatory struc-
ture of our test network has been previously
mapped, it serves as an excellent subject for the
validation of our method. In addition, it serves
as an entry point for further study of the SOS
pathway, which regulates genes associated
with important protective pathways relevant
to antibiotic resistance (23, 26).

We applied a set of nine transcriptional
perturbations to the test network in E. coli
cells (27). In each perturbation, we overex-
pressed a different one of the nine genes in
the test network with an arabinose-controlled
episomal expression plasmid (fig. S1). We
grew the cells in batch cultures under con-
stant physiological conditions to their steady
state (�5.5 hours after the addition of arabi-
nose). Cells were maintained in the exponen-
tial growth phase throughout all experiments.
For all nine transcripts, we used quantitative

real-time polymerase chain reaction (qPCR)
to measure the change in expression relative
to that in unperturbed cells. For each tran-
script, two qPCR reactions from each of eight
replicate cultures were obtained, and qPCR
data were filtered to eliminate aberrant or
inefficient reactions (27). The mean expres-
sion changes for each transcript in each
experiment (x in Eq. 1) were calculated (27),
and only those changes that were greater than
their standard error were accepted as significant
and used for further analysis (that is, xi � 0
if �xi� � Sxi

, where xi is the mean expression
change and Sxi

is the standard error for tran-
script i).

Using the nine-perturbation expression data
set (the training set, tables S6 to S8) and the NIR
algorithm described above, we solved Eq. 1 for
A, the model of the regulatory interactions in the
test network (table S1). The number of input
connections per gene (k) was chosen such that
the solved model provided a statistically signif-
icant fit (as determined by an F test), was dy-
namically stable, and provided the best balance
between coverage and false-positives (27). To
evaluate the performance of the algorithm, we
determined the number of connections in the test
network that were correctly resolved in the mod-
el, A. A resolved connection was considered
correct if there exists a known RNA, protein, or
metabolite pathway between the two transcripts
and if the sign of the net effect of regulatory
interaction (that is, activating or inhibiting) is
correct, as determined by the currently known
network in Fig. 1.

The algorithm correctly identified the
key regulatory connections in the network.
For example, the model correctly shows

that recA positively regulates lexA and its
own transcription, whereas lexA negatively
regulates recA and its own transcription. In
addition, the model correctly identified
recA and lexA as having the greatest regu-
latory influence on the other genes in the
test network (table S5). Overall, the perfor-
mance (coverage and false-positives) of the
NIR algorithm was equivalent to that
expected on the basis of simulations of 50
random nine-gene networks (Fig. 2). More-
over, for the subnetwork of six genes typ-
ically considered part of the SOS network
(recA, lexA, ssb, recF, dinI, and umuDC),
the performance of the algorithm improved
substantially. This suggests that some of
the false-positives identified for the three
sigma factors in our model (rpoD, rpoH,
and rpoS) may be true connections mediat-
ed by genes not included in our test net-
work. Furthermore, our simulation results
suggest that even small reductions in the
measurement noise observed in our exper-
iments [mean noise level � mean(Sxi

)/
mean(xi) � 68%] could lead to substantial im-
provements in coverage and errors in the net-
work model (Fig. 2). Reductions in experimen-
tal noise could be achieved with improved
RNA measurement technologies such as com-
petitive PCR coupled with matrix-assisted
laser desorption/ionization–time-of-flight
(MALDI-TOF) mass spectrometry (28).

We also tested the performance of the
NIR algorithm with an incomplete training
set consisting of perturbations to only seven
of the nine genes. We solved for network
models using all 36 combinations of seven
perturbations and found that the algorithm

Fig. 1. Diagram of inter-
actions in the SOS net-
work. DNA lesions
caused by mitomycin C
(MMC) (blue hexagon)
are converted to single-
stranded DNA during
chromosomal replica-
tion. Upon binding to
ssDNA, the RecA protein
is activated (RecA*) and
serves as a coprotease
for the LexA protein. The
LexA protein is cleaved,
thereby diminishing the
repression of genes that
mediate multiple pro-
tective responses. Boxes
denote genes, ellipses
denote proteins, hexa-
gons indicate metabo-
lites, arrows denote pos-
itive regulation, filled
circles denote negative
regulation. Red empha-
sis denotes the primary
pathway by which the
network is activated af-
ter DNA damage.
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also performed comparably to simulations,
albeit with slightly reduced performance in
comparison with the full nine-perturbation
training set (Fig. 2).

Much of the value of the network model
lies in its predictive power, that is, its ability
to predict expression changes and network
behaviors that fall outside the training data
set used to solve the model. Here, we dem-
onstrate its predictive power by using it to
distinguish the transcripts that are directly
targeted by a pharmacological compound (the
compound’s mode of action) from transcripts
that exhibit secondary responses to the ex-
pression changes of the direct targets. Thus,
the direct targets represent the minimal subset
of transcripts in the model that will produce
the observed expression pattern if externally
perturbed. Because proteins and metabolites
are not measured in this study, the compound
may not physically interact with transcripts

identified as direct targets but instead may
interact with protein or metabolite intermedi-
ates that are not explicitly represented in the
network model.

To identify direct transcriptional targets of
a compound, we first measure RNA expres-
sion changes (xp) resulting from treatment
with the compound. The activity of the com-
pound is treated as a set of unknown tran-
scriptional perturbations (up) that produce the
measured expression changes. From Eq. 1,
we calculate the unknown perturbations as
up � �Axp (27). The direct transcriptional
targets of a compound are those that exhibit
statistically significant values in up. Calcula-
tion of the statistical significance of up is
described in the supporting online text.

We first applied our scheme to RNA expres-
sion changes that result from the simultaneous
controlled perturbation of the lexA and recA
genes. This perturbation might represent the
effects of a hypothetical compound and serves
as a well-defined input for validating the pre-
dictive power of our model. Although five of
the nine test-network genes responded with sta-
tistically significant transcriptional changes
(Fig. 3A), application of our network model
correctly identified only lexA and recA as the
perturbed genes (2/2 � 100% coverage, 7/7 �
100% specificity) (Fig. 3B).

We next applied a mitomycin C (MMC)
perturbation to determine whether our
scheme could identify the transcriptional
targets of MMC bioactivity in the SOS
network. Perturbed cells were grown in
0.75 �g/ml MMC, and transcriptional
changes were measured relative to those in
control cells grown in the normal baseline
condition (0.5 �g/ml MMC). All genes in
the test network showed statistically signif-
icant transcriptional increases (Fig. 3C).
When we applied the network model to the
expression data, we correctly identified
recA as the transcriptional target of MMC

bioactivity, with only one false-positive,
umuDC (1/1 � 100% coverage, 7/8 � 88%
specificity) (Fig. 3D). Moreover, recA was
identified at a higher significance level
(P � 0.09) than was umuDC (P � 0.22),
suggesting that it is the more likely, if not
the only, true target. It is also possible,
however, that umuDC interacts with gene,
protein, or metabolite targets of the com-
pound that are not represented in our mod-
el. Therefore, umuDC may have been cor-
rectly identified as a target in our model.
We also found that a model recovered with
a seven-perturbation training set that ex-
cludes the lexA and recA training perturba-
tions performs nearly as well as the model
recovered with a full training set (see sup-
porting online text and fig. S3).

The NIR method, a form of system iden-
tification based on multiple linear regres-
sion analysis of steady-state transcription
profiles, provides a framework for rapidly
elucidating the structure and function of
genetic networks with no prior information.
The method is robust to high levels of
measurement noise, scalable for larger bio-
chemical networks (27 ), and equally appli-
cable to transcript, protein, and metabolite
activity data. With advances in high-
throughput measurement methods, it may
soon be feasible to include protein and
metabolite measurements on a large scale.
The model recovered with this method en-
ables the identification of key properties of
the network, such as the major regulatory
genes, and it provides a mechanism for
efficiently identifying the mode of action of
uncharacterized pharmacological com-
pounds. These capabilities may facilitate
optimization of cellular processes for bio-
technology applications and the develop-
ment of novel classes of therapeutic drugs
that account for and utilize the complex
regulatory properties of genetic networks.

Fig. 3. Cells were per-
turbed either with a
lexA-recA double pertur-
bation or with MMC.
The mean relative ex-
pression changes (x),
normalized by their
standard deviations (Sx),
are illustrated for the
lexA-recA double pertur-
bation (A) and the MMC
perturbation (C). Arrows
indicate the genes
known to be targeted by
the perturbation. Pre-
dicted perturbations in
the lexA-recA experi-
ment (B) and the MMC
experiment (D) were calculated from the expression data in (A) and (C) using the SOSmodel solved with the
nine-perturbation training set (27). The predicted perturbations to each gene (u) were normalized by their
standard deviations (Su) to determine statistical significance. In all panels, black bars indicate statistically
significant and gray bars indicate statistically nonsignificant. Horizontal lines denote significance levels: P �
0.3 (dashed), P � 0.1 (solid).

Fig. 2. NIR algorithm performance. (A) Coverage
(correctly identified connections/total true con-
nections) and (B) false-positives (incorrectly iden-
tified connections/total identified connections)
were calculated for SOS models solved with a
nine-perturbation training set (main panels) and a
seven-perturbation training set (insets). Error bars
are not included in the insets for clarity. Experi-
ment (open triangles): Coverage and false-
positives were calculated by comparing the
solved model (table S1) to connections described
in the literature (table S4 and Fig. 1). Because a
nonsignificant fit was obtained for recF, the
weights for inputs to recF were set to zero in the
model. The mean noise observed on the mRNA
measurements in our experiments was 68%
(noise� Sx/�x, where Sx is the standard deviation
of the mean of x, �x). Simulations (filled
squares): Simulated perturbations were ap-
plied to 50 randomly connected networks of
nine genes with an average of five regulatory
inputs per gene. For each perturbation to
each random network, the mRNA expression
changes at steady state were calculated. The
noise on the perturbations was set to 20%,
equivalent to that observed on perturbations
in our experiments. The noise on the mRNA
concentrations was varied from 10 to 70%.
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Intracellular Bacterial Biofilm-Like
Pods in Urinary Tract Infections
Gregory G. Anderson,1* Joseph J. Palermo,1* Joel D. Schilling,1

Robyn Roth,2 John Heuser,2 Scott J. Hultgren1†

Escherichia coli entry into the bladder is met with potent innate defenses,
including neutrophil influx and epithelial exfoliation. Bacterial subversion of
innate responses involves invasion into bladder superficial cells. We discovered
that the intracellular bacteria matured into biofilms, creating pod-like bulges
on the bladder surface. Pods contained bacteria encased in a polysaccharide-rich
matrix surrounded by a protective shell of uroplakin. Within the biofilm, bac-
terial structures interacted extensively with the surroundingmatrix, and biofilm
associated factors had regional variation in expression. The discovery of in-
tracellular biofilm-like pods explains how bladder infections can persist in the
face of robust host defenses.

Urinary tract infections (UTIs) result in $1.6
billion in medical expenditures in the United
States each year (1), with uropathogenic strains
of Escherichia coli (UPEC) accounting for 70 to
95% of all UTIs (2). With the advance of multi–
drug-resistant UPEC (3), it is important to deter-
mine the pathogenic mechanisms of UPEC. In
animal models, UPEC pathogenesis initiates
with bacterial binding of superficial bladder ep-
ithelial cells via the adhesin FimH at the tips of
bacterially expressed type 1 pili (4). Initial col-
onization events activate inflammatory and apo-
ptotic cascades in the epithelium, which is nor-
mally inert and only turns over every 6 to 12
months (5). Bladder epithelial cells respond to
invading bacteria in part by recognizing bacterial
lipopolysaccharide (LPS) via the Toll-like recep-

tor 4 ( TLR-4)–CD14 pathway, which results in
strong neutrophil influx into the bladder (6). In
addition, FimH-mediated interactions with the
bladder epithelium stimulate exfoliation of su-
perficial epithelial cells, causing many of the
pathogens to be shed into the urine. Genetic
programs are activated that lead to differenti-
ation and proliferation of the underlying tran-
sitional cells in an effort to renew the exfoli-
ated superficial epithelium (7). Despite the
robust inflammatory response and epithelial
exfoliation, UPEC are able to maintain high
titers in the bladder for several days (8–13).

A bacterial mechanism of FimH-mediated
invasion into the superficial cells apparently al-
lows evasion of these innate defenses (9); sub-
sequent replication as disorganized bacterial
clusters inside superficial cells leads to high
bacterial titers in the bladder. Bacteria in these
intracellular niches [which we termed “bacterial
factories” (9)] create a chronic quiescent reser-
voir in the bladder, which can persist undetected
for several months without bacteria shedding in
the urine. These bacteria are completely resistant
to 3- and 10-day courses of antibiotics (9, 14).

Thus, in addition to the intestine and vagina as
reservoirs for UPEC, the bladder itself may serve
as the source for recurrent cystitis and asymp-
tomatic bacteriuria seen in a large proportion of
women with UTIs (9, 14, 15).

To define bacterial-specific effects on UTI
progression, we studied acute UTIs initiated by
clinically isolated UPEC or laboratory (K-12)
strains in TLR-4 mutant C3H/HeJ mice, which
lack an intact innate immune response (16, 17).
C3H/HeJ mice were inoculated with UPEC
strain UTI89 (9) or type 1–piliated K-12 strain
MG1655 (18), and numbers of colony-forming
units (CFU) were determined in bladders at early
time points after inoculation (fig. S1) (10, 19).
While UTI89 levels increased nearly two orders
of magnitude over 24 hours to about 6 � 106

CFU per bladder, MG1655 levels decreased over
this time period to 103 CFU per bladder.

To investigate the increase in UPEC bacte-
rial load at 24 hours, we performed scanning
electron microscopy (SEM) (8, 10) of infected
C3H/HeJ mouse bladders, which revealed nu-
merous, large protrusions, or pods, on the sur-
face of bladders infected with UPEC strain
UTI89 (Fig. 1, A to C) (fig. S2). This was a rare
event with the K-12 strain of E. coli, MG1655,
because pods were not detected at this time
point (Fig. 1D). In contrast, other clinical iso-
lates such as UPEC strain NU14 (9, 10) also
elicited abundant pod formation. SEM and he-
matoxylin and eosin (H&E) staining of the pods
revealed that bacterial replication resulted in
large bacterial colonies that extended above the
lumenal surface (Fig. 1E). Video microscopy
revealed that the previously described bacterial
factories undergo a maturation process (20),
whereby the loose collections of UPEC rods
converted into a uniform coccoid morphology.
This process was coupled with the organization
of the bacteria into tightly packed biofilm-like
pod structures (Fig. 1E) (20), Mutations in
fimH completely abolish this pathogenic cas-
cade (10).
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