

mailto:hyper.stanford.edu

Dynamic 1 Program

a b ¢ d e

LSQ Fit

Dynamic l Program

a b ¢ d e

c d o
LSQ Fit
a B - B

a b e . Y -

Figure 2; Schematic showing how pairwise structural alignment works. TOP-LEFT shows two structures (abcde and
ofy) in a random initial orientation. All pairwise distances are calculated between atoms in abcde to those in offy. These are
converted into similarities (see text) and put into a matrix (TOP-RIGHT). Normal dynamic programming is performed on this
matrix to find equivalences between atoms in the two structures (TOP-MID-RIGHT). Unlike sequence alignment, these
equivalences are not globally optimal . To refine them, they are used to fit afy onto abcde in a least-squares sense. This gives
ﬁ}e structures a new relative orientation as shown in MID-LEFT. Then the procedure is repeated: all pairwise inter-molecular
distances are calculated between the structures (MID-LEFT), a matrix of similarities is formed (BOT-MID-RIGHT), and
dynamic programming is done (BOT-RIGHT). This gives a second set of equivalences. These are used to refit the structures
(BOT-LEFT), and everything is repeated iteratively until the procedure converges — i.e. there is no change in the
€quivalences between iterations.

Gerstein 61

Using Cp3 atoms

The simplest improvement was to use CP rather than Cat
atoms for the computation of distances djj. Using Cp atoms
makes misalignments by one residue in helices and
especially strands more difficult. Misalignments by a single
residue are not serious in terms of matching the overall fold
but give nonsensical alignments in detail. For instance, in
the case of strands they often lead to mismatching of
hydrophobic and hydrophilic residues.

Secondary Structure Dependent Gap Penalties

Because of the similarity between our structural alignment
procedure and normal sequence alignment, it is possible to
incorporate variable, position-dependent gap penalties into
the alignment in a very straightforward fashion. Since we
know the secondary structure of the two proteins we are
aligning (e.g. from DSSP, Kabsch & Sander, 1983) we can
make it more difficult to introduce a gap at a position in a
secondary structure (i.e. strand or helix). This is similar to
sequence alignment methods that make the penalty for
opening a gap depend on where it starts (Lesk et al., 1986;
Smith & Smith, 1992; Vingron & Waterman, 1994).

We derived specific values for the gap penalties by
empirically testing them on a number of protein families.
‘We found that as the gap opening penalty is decreased in
secondary structure relative to that in loops and coils, one
obviously increases the number of spurious gaps in strands
and helices. This suggests that very high gap penalties in
strands and helices might work well. However, we also
found that such high gap penalties make it more difficult to
align secondary structural elements (which often vary
slightly in size); in fact, a penalty that is too high leads to
completely mismatching secondary structures. (For
instance, instead of aligning two helices of slightly
different size through introducing a gap into the longer
helix, the program might introduce many gaps into a loop
preceding one helix and align this helix against a loop and
the second against the introduced gaps). The specific
values we chose are a compromise between these two
competing effects. We always set the gap extension penalty
to be a small constant value (0.025 M). We arranged the
gap opening penalties for each structure into a vector a(k),
indexed by the sequence position i or j. Initially, the o(k)
values were set to 2 in sheets and helices and 1 otherwise.
(k) 1s then smoothed (by convolution with a gaussian) and

rescaled so that the overall average gap penalty @ (K) is
half the maximum match score M.

As described in figure 3, the introduction of variable gap
penalties makes the dynamic programming rather complex,
though it is still possible to achieve in roughly N2
operations (where N is the average size of the sequences
being aligned).

62 ISMB-96

1 a
b
c
i1 d
j e @
f X

Figure 3: The Complexities Introduced by Variable
Gap Penalties. In normal sequence alignment (Needleman
& Wunsch, 1971), one constructs a sum matrix Sjj (shown
below) where each entry represents the best possible score
for an alignment that ends with position i and j
equivalenced. In building up this matrix, one often makes
the assumption (e.g. see Gribskov and Devereux, 1992)
that if i and j are aligned (“~” in figure) the best previous
alignment must have ended in either the previous row (i-1)
or column (j-1) (hashed). This is equivalent to assuming
that the following situation never occurs:
AB-CD
abc-d

This is reasonable for sequence alignment. However, in
structural alignment one often wants pieces in both
structures to be unequivalenced, making it is necessary to
allow for this sort of double mismatch. (This would
happen, say, if one had two proteins with similar overall
folds where the residues corresponding 10 a peripheral helix
in one locally refolded into a strand in the other.) One
allows for double mismatches by no longer assuming that if
i and j are aligned the best previous alignment lies in the
hashed region but rather allowing it to occur anywhere in
the block O to i-1, 0 to j-1 (outlined box, where the best
previous alignment is shown by an “0”). Especially with
variable gap penalties, this makes the dynamic
programming rather complex. If one does not use any tricks
or make any assumptions, the alignment will be very slow

(O(N4), where N is the length the sequences being
compared). However, by assuming that the gap penalty
always increases with increasing length of gap, one can use

a caching scheme to make the overall performance N2,
This assumption is satisfied if gap penalties in both i and j
directions have the form of a(k) + (-1)B(k), where o is 2
gap opening penalty, B is 2 gap extension penalty, 1 is the
gap length, and k is a row or column index (i or j)
depending on whether this is a deletion or insertion.

Figure 4: Suboptimal Paths. This figure illustrates the
idea of possible suboptimal paths in tracing back through
the sum matrix Sjj (see figure 3). Here a sum matrix is
shown for aligning ABCxDE with AyBCDE with a match
score of 2 and gap-opening penalty of -1. To get the
optimum traceback (which is indicated by black boxes),
one starts at the overall maximum and progressively finds
each succeeding maximum in the matrix (e.g. 8 > 6 —> 5
— 3 — 2). However, if one perturbs the values in the
matrix by the addition of random noise (e.g. by adding a
series of random numbers R;j, between -2 and 2, to each
matrix element), one may find slightly suboptimal
alignments (indicated by gray boxes) now have favorable
scores. That is, it now possible that 2 + R > 3 + Rj41 for
the highlighted alternates on the second row (2 and 3).
(White boxes have much lower scores and will never be
included, even with the addition of random noise.)

>

o

N|I—=1O]|0

y
A 0]
B 2
C 1
X 1
D 1
E 1

OC|lOOC|O] O
—_—] -] N
NINIDN

4Anbn VLSEGEWQLVLHVWAKVE-—~~ADVAGHGQDILIRLFK SHPETLEKF DRFKHLKTEAEMKASEDLKKHGVTVLTALGATLKKK

1769 ---=-SISSRVKSKRIQLG---LNQAELAQKVGT-——- - - == TQQSIEQLENGK -~
1r69 --—-—--- SISSRVRSKRIQLGLNQAELAQKVGT~~=~~-- ~--TQQSTEQLENGKTK -
1r69 ——--SISSRVKSKRIQLG-—-LNQAELAQKVGT - === == === = e = m e e TOOSIEQLENGKTK-
1r69 —=—————- SISSRVKSKRIQLGLNQAELAQKVGT- e ———— e — TOOSIEQLENGKTKR
1769 ~=—=———= SISSRVKSKRIQLGLNQAELAQKVGT-- - —————— e ——————————— TQQSIEQLENGKTKR
1r69 ~===——= SISSRVKSKRIQLGLNQAELAQKVGT = -~ m e e e e e TOQSIEQLENGKTK-

22244444444444444666666666666 666666666666542

Helix 1 Helix 2 Helix 3

4mbn GHHEAELKPLAQSHATKHKTIPIKYLEFISEAIITHVLHSRHPGDFGADAQGAMNKALELFRKDIAAKYKELGYQG?

1769 ~—wmmmmmmm e e TKRPRF-LPELASALG--VSVDWLLNG= =~ ===~ === = m e = m = T
1069 ===m==———mmmmmm e e RPRF-LPELASALG-~VSVDWLLNG= == ===~ = ==~ m e m m = = 7
1769 —mmmmmmmmmm e e RPRF-~LPELASALG--VSVDWLLNG - =~ === === mm e mmmm e T
1r69 -—-- PRF1PELASALG-~~VSVDWLLNG= == === === m e m e T
1r69 -—-=-- - - PRE-LPELASALG-~VSVDWLLNG- == ==~== === mm = == T
1769 —=—~mmmmmmmmmme e RPRF-LPELASALG-—VSVDNLLNG- =~ == === e T

36661555555555 666666666

Helix 4

Helix 5

Figure 5: Sample Suboptimal Alignment. This shows what happens if 434 repressor protein (1r69) is structurally aligned to
myoglobin (4mbn} six times with the addition of noise to the alignment. Each of the six times gives a slightly different
suboptimal alignment for the less well conserved regions of the protein. This allows one to readily distinguish between easy

and hard to align regions of the protein.

Noisy, Suboptimal Structural Alignment

One of the goals in accurate structural alignment is to
separate out those regions that match really well from those
that match only partially well. We achieve this be doing a
number of noisy structural alignments and taking the
consensus. What is meant by a noisy alignment is described
below in detail.

In normal dynamic programming, one builds up a sum
matrix §jj from the similarity matrix sjj» where each entry
in Sij represents the best possible score one would get by
Starting at the beginning of the alignment and creating an
alignment that ends by equivalencing position i in' the first
Sequence with position j in the second sequence. As shown
In figure 4, to find the overall optimum path, one usually

imagines tracing back through this sum matrix starting
from the entry with the maximum score. At each aligned
point (i, j), one selects as the next aligned point the entry in
the previous part of the matrix with the highest score — i.e.
the point k,1 such that Sy is maximum and k<i and k<j .
Consequently, at each step in the traceback one is in a
sense optimizing a score. If one deviates off this optimatl
path, one gets a suboptimal path or suboptimal alignment.
One way to systematically deviate off this path is to do the
traceback in a Monte-Carle fashion, always choosing the
next point if it is much higher than its neighbors, but
sometimes choosing a non-optimal neighbor (in a
Boltzmann fashion) if it has nearly the same score. If this is
done one will get a variety of different suboptimal but still
relatively high-scoring tracebacks through the matrix.

Gerstein 63

http://hyper.stanford.edu/-mbg/Align

