UWBC Biotechnical Resource Series

Richard R. Burgess, Series Editor
University of Wisconsin Biotechnology Center
Madison, Wisconsin

Sequence Analysis Primer

\longrightarrow
Edited by

Michael Gribskov
and
John Devereux
the same type used to compute a dot matrix) and note the average displacements of the highest-scoring segments. This is convenienuly done using NFPR

A brute force approach of aligning sequences with the automatic inserion of gaps shows that the problem is very difficult. Simply comparing two gaps shows hat ine problem is very dificul --
might say diat, for sequence 1 and sapuence 2 numbered 1 to i and 1 to j respectively

Simple Example of Dynamic Programming Alignment
Actual alignments are calculated in two stages. First, the two sequences are arranged on a latice in much the same way as in dot matrix methods. Forcach point in the Latice, the alignment score, S_{j}, is calculated. At the same time, the position of the best alignment in the previous row or column, i.e., the score of the best previous alignment which was used to calculate $S_{j,}$, is stored. This stored value is called a pointer and is represented by an arrow. In the second stage, the alignment is produced by starting at the highest alignment score in the lattice, and building up the alignment from right to left by following the
contuining the S_{v} valluex, isfilledinf from toft to right and toptolvotom. Figure 20a shows the score matrix afier filling une first row ($i=1$). Two positions, indicaled by cireled scores, are matches and receive a score of 1 . All other positions receive scores of zero. The alignment score, $S_{i j}$, is the sum of the score for comparing the bases at i and j, plus the best previous alignment. Since all of these clements cortespond to the first base in sequence 1 , there are no best previous alignmems and no pointers are saved at this point.

Figure 20b shows a later stage in the calculation of the score matrix. $\mathrm{S}_{2,1}$ is an edge and therefore there is no best previous alignment to consider, $S_{2,1}$ has only one position that could contain a previous alignment, $S_{1,1}$, and diis is therefore the position used for the pointer. Tocalculace S, we wadd the score

Mgure 21: Effect of nol saving all puth poingers. The alignment in Figure 20 is repeated, bu only one path pointer, the one which would introduce the shortes1 gap, is saved for each position, $S_{i j}$, in the soore matrix. A. forward alignment b. reverse alignment. the same
alignment I (Figure 20c). The highroad/lowrond options will always give different alignments if there are cquivalent alignments. For long sequences there could be hundreds of equivalent alignments and it is prohibitive and confusing to list them all. The highroad/lowroad procedure can be thought of as establishing an upper and lower bound for the variation of the alignments.

Another way of detecling possible equivalent alignments is shown in Figure 21b. Simply perform the alignment a second time, keeping all
most programs have relicul on gap penallies with both a lengeld-dependent and a lenglh-independent term (equation 5).

$$
\begin{equation*}
w_{x}=g+b x \tag{5}
\end{equation*}
$$

where w_{z} is the penalty for a gap of length x
g is the length-independent term (gap opering penalty)
1 is the length-dependent term (gap extension penalty)

Fgure 23：Score matrices and path graphs for globad and local alignments．The alignment of part of the promoter regions from Phi－X174A genc and the Escherichia coli be gene Forboh alignment，matches receive a soore of 1 ，the gap opening penaly is 1.2 and the gep extension penaly is 0.3 ．In the local aligrment，mismatcher roezive a score of 0．6．The bert paths are shaded，and the highest sooring positions shown in a square．The comesponding alignments are shown below the scorefath malrices．

Extenvions

The primary drawback to dynamic programming methods is that they require a considerable amount of computation. This limits their usefulness for tasks such as database searching. One simple way to speed up the alignment is to calculate only part of the score marrix, usually a diagonal band down the center (e.g., Sankoff and Kruskal, 1983). This can be safely done, for instance, if you know the sequences are homologous and do not require large gaps in their alignment, or if you have information from a faster method, such as hashing (sec Hashing and Neighbortood Algorithms) that tells you where the most similar regions of the sequences are. Several methods that perform a banded alignment and itcratively increase the width of tie band until the optimal alignment is found have been presented (Ukkonen, 1983).

A furher great increase in alignment specd can be achieved through subdivision. If segments in each sequence can be idenuified, for instance by hashing mechods (sce Hashing and Neighborhood Algorithms), that are so similar they are unlikely to match with anything else, the alignment can be broken down into two smaller alignments, separated by the matching segment. Each equal subdivision increases the speed of the alignment by a factor of Iwo.

Once a cDNA clone is sequenced, one usually wishes to identify the protein encoded by the message. One approach is to translate all three (orsix) reading frames of the nuclecic acid sequence and use the resulting protein sequences as probes in a fast database search (e.g., TFASTA - Lipman and Pearson, 1985; TBLASTN-Gish ct al,, in preparation). Unfortunately, this adoroach con ha oulice sensitive to frameshif emors in 1 ber DNA seopence
this approach. In the absence of a single appropriate scoring table, most nucleic acid sequence alignments continue wo based on idenuity scoring systems.

Identity-based scoring systems often do not give the desired sensitivity when comparing distandy related sequences, especially for protein sequences. There is a strong consensus that, for proteins, scoring syscems based on the chemical or mutational similarity of the amino acid residucs are much better than idenuity scoring systems (Schwartz and Dayhoff, 1978; Feng and Doolitle, 1987). One carly method of scoring the similarity of amino acid residues is known as the minimum base change or genetic code matrix. This scoring system calculates the similarily between residues as the minimum number of base changes required lochange a codon for one residuc to a codon for another. This system scemed especially plausible for cvolutionary studies because it allowed the difference in amino acid residues to be stated in terms of the minimum number of mutational events necded to convert one residue t another.

The most commonly used scoring systems for protein sequences are based on the MDM 1 table (mutation data matrix, 1978) of Dayhoff and coworkers (Schwarz and Dayhoff, 1979; George ed al., 1990; see Appendix IV). Often called simply the "Dayhoff" table, this scoring table is derived using the "accepted point mutation" model of evolution (Dayhoff ct al., 1978). A dataset was compiled from a group of closely related protcins (less than 15% amino acid differences), that could be unambiguously aligned. From these aligned sequences, Dayhoff and coworkers calculated a matrix describing the probability, for cach residue, thata mutation would change the
athough it has been argued dat it may be belter to use an cquivalent log-odds matrix calculated for a lower PAM for alignments of unknown sequences (Alschul, personal communication). The log of the probability of two sequences being evolutionarily related can, in principle, be calculated as the sum of the scores for cach aligned pair of residues, i.e., the alignment score if a log-odds marrix is used as the scoring system for the alignment. However,

- the scoring system as a whote obcys the triangle incquality; if you consider any dree distunces, the distance from A ம C must be less than or cqual to the distance from A to B plus the distance from B to C

Metricdistanceshavereccived agreatdeal ofattentionby mathematicians

