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We implement a strategy for aligning two protein–protein inter-
action networks that combines interaction topology and protein
sequence similarity to identify conserved interaction pathways and
complexes. Using this approach we show that the protein–protein
interaction networks of two distantly related species, Saccharo-
myces cerevisiae and Helicobacter pylori, harbor a large comple-
ment of evolutionarily conserved pathways, and that a large
number of pathways appears to have duplicated and specialized
within yeast. Analysis of these findings reveals many well charac-
terized interaction pathways as well as many unanticipated path-
ways, the significance of which is reinforced by their presence in
the networks of both species.

Evolution is driven by biological variation at many levels.
Mutations and rearrangements in genomic DNA lead to

changes in protein structures, abundances, and modification
states. Variations at the protein level, in turn, impact how
proteins interact with one another, with DNA, and with small
molecules to form signaling, regulatory, and metabolic networks.
Changes in network organization have sweeping implications for
cellular function, tissue-level responses, and the behavior and
morphology of whole organisms.

Gene and protein sequences have long received the most
attention as metrics for evolutionary change, both because they
represent a fundamental level of biological variation and because
they are readily available through automated sequencing tech-
nology. However, recent technological advances also enable us
to characterize networks of protein interactions. Protein inter-
actions are crucial to cellular function both in assembling protein
complexes and in signal transduction cascades. Among the most
direct and systematic methods for measuring protein interactions
are coimmunoprecipitation (1) and the two-hybrid system (2),
which have defined large protein–protein interaction networks
for organisms including Saccharomyces cerevisiae (3–5), Helico-
bacter pylori (6), and Caenorhabditis elegans (7). Although the
quality of data from these experiments has been mixed, pooling
of multiple studies and integration with other data types such as
gene expression have been used to reduce the number of
false-positive interactions (8).

The rapid growth of protein network information raises a host
of new questions in evolutionary and comparative biology. Given
that protein sequences and structures are conserved in and
among species, are networks of protein interactions conserved as
well? Is there some minimal set of interaction pathways required
for all species? Can we measure evolutionary distance at the level
of network connectivity rather than at the level of DNA or
protein sequence? Mounting evidence suggests that conserved
protein interaction pathways indeed exist and may be ubiquitous:
For example, proteins in the same pathway are typically present
or absent in a genome as a group (9), and several hundred
protein–protein interactions in the yeast network have also been
identified for the corresponding protein orthologs in worms (10).

To explore interspecies pathway conservation on a global
scale, we performed a series of whole-network comparisons
using the protein–protein interaction networks of the budding

yeast S. cerevisiae and the bacterial pathogen H. pylori. Com-
parative network analysis has proven powerful in a number of
related domains including metabolic pathway analysis (11–14),
motif finding (15), and correlation of biological networks with
gene expression (16). Here we systematically search for and
prioritize conserved interaction pathways in yeast vs. bacteria,
yeast vs. yeast, and yeast vs. specific ‘‘queries’’ formulated to
uncover homologous mitogen-activated protein kinase (MAPK)
signaling and ubiquitin ligation machinery.

Methods
Network Comparison Overview. We developed an efficient com-
putational procedure for aligning two protein interaction net-
works to identify their conserved interaction pathways.§ This
procedure, which we named PATHBLAST because of its concep-
tual similarity to sequence alignment algorithms such as BLAST
(17), searches for high-scoring pathway alignments involving two
paths, one from each network, in which proteins of the first path
�A, B, C, D, . . . � are paired with putative homologs occurring
in the same order in the second path �a, b, c, d, . . . � (Fig. 1a).
Evolutionary variations and experimental errors in pathway
structure are accommodated by allowing ‘‘gaps’’ and ‘‘mismatch-
es’’ (see also ref. 14). A gap occurs when a protein interaction in
one path skips over a protein in the other, whereas a mismatch
occurs when aligned proteins do not share sequence similarity.
Because of space limitations, only abbreviated methods are given
in the following sections; full descriptions are available in
Supporting Materials and Methods and Figs. 5 and 6, which are
published as supporting information on the PNAS web site,
www.pnas.org.¶

Global Alignment and Scoring. To perform the alignment, the two
networks are combined into a global alignment graph (Fig. 1b)
in which each vertex represents a pair of proteins (one from each
network) having at least weak sequence similarity (BLAST E
value � 10�2) and each edge represents a conserved interaction,
gap, or mismatch. A path through this graph represents a
pathway alignment between the two networks. We formulate a
log probability score S(P) that decomposes over the vertices v
and edges e of a path P through the global alignment graph

Abbreviation: MAPK, mitogen-activated protein kinase.
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where p(v) is the probability of true homology within the protein
pair represented by v, given its pairwise protein sequence
similarity expressed as a BLAST E value, and q(e) is the proba-
bility that the protein–protein interactions represented by e are
real, i.e., not false-positive errors. The background probabilities
prandom and qrandom are the expected values of p(v) and q(e) over
all vertices and edges in the global alignment graph. Protein
sequence alignments and associated E values were computed by
using BLAST 2.0 (17) with parameters b � 0, e � 1 � 106, f �
‘‘C;S’’, and v � 6 � 105. Unalignable proteins were assigned a
maximum E value of 5.

Optimal Pathway Alignments and Significance. For acyclic graphs,
the highest-scoring path of length L can be found in linear time
by using a procedure based on dynamic programming as de-
scribed in Supporting Materials and Methods. Because the global
alignment graph may contain cycles, we first generate a sufficient
number, 5L!, of acyclic subgraphs by random removal of edges
from the global alignment graph and then aggregate the results
of running dynamic programming on each.

Because conserved regions of the network could be highly
interconnected (e.g., a conserved protein complex), it was
sometimes possible to identify a large number of distinct paths
involving the same small set of proteins. Rather than enumerate
each of these, we used PATHBLAST in consecutive stages. For
each stage k, we recorded the set of 50 highest-scoring pathway
alignments (with average score �Sk�) and then removed their
vertices and edges from the alignment graph before the next
stage. The p value of each stage was assessed by comparing �Sk�
to the distribution of average scores �S1� observed over 100
random global alignment graphs (constructed as per Table 1)
and assigned to every conserved network region resulting from
that stage (Figs. 2 and 3). The p values for pathway queries (Fig.
4) were computed individually, not in stages, by comparing each
pathway-alignment score to the best scores achieved over 100
random alignment graphs involving the query and target (yeast)
network.

Software Availability. PATHBLAST is available at www.pathblast.
org.

Results
Yeast vs. Bacteria: Orthologous Pathways Between the Networks of
Two Species. We first performed a global alignment between the
protein–protein interaction networks of yeast (S. cerevisiae) and
bacteria (H. pylori). To construct the yeast network, we down-
loaded the 14,489 interactions among 4,688 yeast proteins
present in the Database of Interacting Proteins (18) as of
November 2002. These interactions represented a pooled col-
lection of several data sets derived through systematic coimmu-
noprecipitation and two-hybrid studies. The H. pylori network
was also obtained from the Database of Interacting Proteins and
represented a single two-hybrid study identifying 1,465 interac-
tions among 732 proteins (6). Protein sequences for both species
were obtained from the Protein Information Resource (19).

Table 1 compares the bacterial�yeast global alignment graph
to those that resulted if the protein networks were randomized
by permuting the protein names. Both the graph size and the best
pathway-alignment scores were significantly larger for real than
for random data, suggesting that the two species shared con-
served interaction pathways. Surprisingly, conservation of direct
interaction pairs between the yeast and bacterial networks was
rare (only 7 direct edges vs. 2.5 � 1.9 in random data, probably
due to low coverage or quality of interactions). However, the use

Table 1. Combining protein networks as a global alignment graph

Vertices
(homologs)

Edges

CPU, min

Score

Total Direct Gap Mismatch Best* Best 50†

Yeast vs. H. pylori (Ecutoff � 10�2) 829 2,036 7 260 1,769 0.38 8.1 7.5
Random: mean � SD 509.0 � 128.0 2.5 � 1.9 68.8 � 23.8 437.7 � 110.3 0.4 � 0.02 6.1 � 0.8 4.8 � 0.7

Yeast vs. yeast (Ecutoff � 10�10) 5,593 1,389 1,389 N�A N�A 7.08 11.9 11.0
Random: mean � SD 62.3 � 29.4 62.3 � 29.4 N�A N�A 6.9 � 0.2 �4.1 � 9.5 �15.3 � 6.5

Protein interaction networks drawn from either yeast and H. pylori or yeast and yeast were merged as a global alignment graph: The resulting numbers of
vertices and edges are given along with the CPU time required for merging. Also shown is the best pathway alignment score and the average of the best 50 scores
achieved in the graph for paths of four vertices. Alignment graphs were compared to random graphs constructed by permuting the protein names on each
network before merging (mean � SD for 100 permutations). N�A, not applicable.
*p � 0.006 and 0.05 for yeast vs. H. pylori and yeast vs. yeast, respectively.
†p � 1.7 � 10�5 and 2.4 � 10�5 for yeast vs. H. pylori and yeast vs. yeast, respectively.

Fig. 1. Example pathway alignment and merged representation. (a) Vertical
solid lines indicate direct protein–protein interactions within a single path-
way, and horizontal dotted lines link proteins with significant sequence
similarity (BLAST E value � Ecutoff). An interaction in one pathway may skip over
a protein in the other (protein C), introducing a ‘‘gap.’’ Proteins at a particular
position that are dissimilar in sequence (E value 	 Ecutoff, proteins E and g)
introduce a ‘‘mismatch.’’ The same protein pair may not occur more than once
per pathway, and neither gaps nor mismatches may occur consecutively. (b)
Pathways are combined as a global alignment graph in which each node
represents a homologous protein pair and links represent protein interaction
relationships of three types: direct interaction, gap (one interaction is indi-
rect), and mismatch (both interactions are indirect).
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of pathway gaps and mismatches allowed us to detect larger
regions of the network that were generally conserved even when
direct interactions were not.

We analyzed the global alignment graph to select the 150
highest-scoring pathway alignments of length four (four proteins
per path), corresponding to a level of significance of p � 0.05 vs.
random networks. By combining all overlapping pathway align-
ments, we found that each of the 150 fell into one of five
connected network regions shown in Fig. 2 b–f. For instance, Fig.
2b involved the union of six paths: two were yeast Dbp2-Rpl2A-
Mak5-Gcn20 (vs. H. pylori deaD-rpl2-deaD-yheS) and Rpl2A-
Has1-Tsa1-Sse1 (vs. rpl2-deaD-bcp-dnaK). A total of 4.1% and
1.2% of proteins in the H. pylori and S. cerevisiae protein
networks were included in a high-scoring pathway alignment.

As validation that pathway alignments corresponded to spe-

cific conserved cellular functions, we found that network regions
were significantly enriched for particular protein functional
categories from the Munich Information Center for Protein
Sequences (http:��mips.gsf.de) S. cerevisiae and the Institute for
Genomic Research (www.tigr.org) H. pylori databases at a level
of p � 0.005 using the hypergeometric test. Functions associated
with each region included protein synthesis and cell rescue (Fig.
2b), protein fate and targeting (Fig. 2c), cell envelope and
nuclear transport (Fig. 2d), proteolytic degradation (Fig. 2e), and
rRNA transcription (Fig. 2f ); further details are provided in Fig.
8, which is published as supporting information on the PNAS
web site.

Yeast vs. Yeast: Paralogous Pathways Within the Network of a Single
Species. In addition to identifying homologous features between
the protein networks of yeast and bacteria, we also searched

Fig. 2. Top-scoring pathway alignments between bacteria and yeast. (a) The protein–protein interaction networks of H. pylori (orange network) and S.
cerevisiae (green network) were globally aligned to reveal conserved network regions (b–f ). Proteins with above-threshold sequence similarity are placed on
the same row of the pathway alignment (e.g., deaD and Dbp2 in row 1 of b). Direct protein interactions appear as solid links, and gaps or mismatches are dotted.
Proteins recurring within a region due to multiple sequence homologies (e.g., deaD in b) are lighter in color. P values were computed by using random graphs
as described in Methods.
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within each network individually to identify its potentially
paralogous pathways; that is, pathways with proteins and inter-
actions that have been duplicated one or more times in the
course of evolution. Such an approach is akin to performing an
‘‘all vs. all’’ BLAST of sequences encoded by a single genome to
elucidate gene families. To explore this procedure in the context
of yeast, we constructed a global alignment graph by merging the
yeast protein interaction network with an identical copy of itself.
Because the resulting graph was potentially much larger than for
bacteria�yeast (see Table 1), we could afford to be more
restrictive: Vertices were defined as protein pairs with BLAST E
values � 10�10, with only direct edges permitted (no gaps or
mismatches). To ensure that pathway alignments occurred be-
tween two distinct network regions and to avoid aligning a path
with its exact copy, proteins were not allowed to pair with
themselves or their network neighbors.

We analyzed the yeast�yeast alignment graph to obtain the 300
highest-scoring pathway alignments of length four, correspond-
ing to a level of significance of p � 0.0001. These are shown in
Fig. 3 a–o, with overlapping pathways grouped into connected
network regions as shown in Fig. 2. Several regions involve
alignments between protein complexes known to be distinct (i.e.,
noninteracting) but homologous in function, confirming that the
approach is capable of identifying paralogous network struc-
tures. For example, Fig. 3a shows four subunits of the RNA
polymerase II complex (green path) aligned against those of the

RNA polymerase I and III complexes (blue path), with poly-
merase I and III linked via the shared Rpc40 subunit. Fig. 3k
shows an alignment among three AAA heteromeric complexes
with separate subcellular localizations: subunits of the cytosolic
26S proteasome (Rpt3-6), the mitochondrial AAA protease
complex (Afg3 and Yta12), and the Pex1�6 complex, thought to
function in protein disassembly before peroxisomal import (20).
Likewise, although the aligned complexes shown in Fig. 3m both
have DNA-binding activity, they act in two distinct processes:
Msh2�3�6 is involved in mismatch repair during meiosis and
vegetative growth, whereas Msh4�5 facilitates crossing over
during homologous recombination and is specific to meiosis (21).

Interrogating the Protein Network with Pathway Queries. Finally,
although an entire network-vs.-network comparison was invalu-
able for cataloging all the homologous pathways between and
within organisms, we also queried a single protein network with
specific pathways of interest. Use of PATHBLAST in this mode is
similar to using BLAST to interrogate a sequence database with
a short nucleotide or amino acid sequence query. As a test of this
approach, we queried the S. cerevisiae protein network with a
classic MAPK pathway associated with the filamentation re-
sponse, consisting of a MAPK (Ste11), a MAPK kinase (Ste7),
and a MAPK kinase kinase (Kss1). MAPK pathways transmit
incoming signals to the nucleus through activation cascades in
which each kinase phosphorylates the next one downstream.

Fig. 3. Paralogous pathways within yeast. To find pathways conserved within yeast, the protein interaction network from S. cerevisiae (green pathways) was
compared against a copy of itself (blue pathways). High-scoring pathway alignments are displayed as described for Fig. 2, with cellular functions indicated.
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PATHBLAST identified two other well known MAPK pathways as
the highest-scoring hits (the low- and high-osmolarity response
pathways Bck1-Mkk1-Slt2 and Ssk2-Pbs2-Hog1), indicating that
the algorithm was sufficiently sensitive and specific to identify
known paralogous pathways.

We repeated this strategy to search for new components of the
cellular ubiquitin and ubiquitin-like conjugation machinery.
Ubiquitin targets proteins for degradation by the proteasome
and modifies different sets of proteins through distinct pathways,
some of which are unknown (22). Two well characterized
ubiquitin conjugation systems were used as queries: the Skp1-
Cdc53�cullin-F-box (SCF) complex (Fig. 4b) and the anaphase-
promoting complex (APC; Fig. 4c); a third query was based on
SUMO, a ubiquitin-like protein that is ligated to protein sub-
strates but does not induce protein degradation (23) (Fig. 4d).
Several of these queries aligned with components of a paralo-
gous Rub1-conjugating complex (24) (Rub1-Ubc12-Ula1-Uba3;
Fig. 4 b and d) and suggested new F-box and cullin-like proteins
(Ycr072c and Ylr106c) for the Rub1 ligation system. Also
identified were a putative ubiquitin-conjugation pathway involv-
ing Rpl40a, a fusion protein with ubiquitin at its N terminus (25),
and several additional pathways involved in lower-scoring align-
ments. Thus, short pathway-based queries using PATHBLAST are
capable of identifying both known and potentially novel paralo-
gous pathways within an organism.

Discussion
We highlight several broad insights made possible by the path-
way-alignment approach; further analyses of each network re-
gion are provided in Fig. 8. Most straightforwardly, we used
pathways from a well studied network (S. cerevisiae) to shed light
on their aligned counterparts from a less well characterized one
(H. pylori). For instance, although the function of HP1026 is
unknown, its interaction with DNA polymerase (dnaX) and its
position in the pathway alignment opposite yeast replication
factor C (Rfc2�3�4) suggest that HP1026 is involved in DNA
replication in close association with polymerase (Fig. 2e; see also
Fig. 7d). In another example (Fig. 2d), the hypothetical protein
HP0609 is adjacent to HP0610 and HP0289, which localize to the
bacterial outer membrane (26), and opposite yeast Nup1, which
localizes to the nuclear pore. This suggests that HP0609 is also
membrane-specific and that the bacterial pathway shares ho-
mology with the yeast nuclear pore complex.

H. pylori proteins can also shed light on yeast protein function.
YLL034C encodes a yeast protein of the AAA family (ATPases
associated with various cellular activities) with an undetermined
role in ribosome biogenesis (27). A pathway alignment in Fig. 2e
provides evidence that this protein functions in proteolysis
(perhaps to promote ribosome assembly) via its direct interac-
tion with a proteasome 26S subunit (Rpt6), its alignment oppo-
site HP1069 (identified as a protease by Clusters of Orthologous
Groups analysis) (28), and its position parallel to Rpt1 and Rpt2,
two other proteasome subunits.

A second major insight of our analysis was that pathway
alignments often linked two or more pathways or cellular
processes not previously known to associate. For example, the
network region in Fig. 2e contains yeast proteins associated with
either DNA polymerase (Rfc2�3�4�5) or the 19S proteasome
regulatory cap (Rpt1�2�3�4�6) and provides evidence from
both bacteria and yeast that these complexes associate in vivo.
Consistent with this view, recent evidence suggests that the 19S
complex, in addition to its established role in protein degrada-
tion, is involved in nucleotide excision repair (29) and can be
recruited to promoters during transcription elongation (30).

Other network regions representing multiple functions appear
in Fig. 2f, linking RNA polymerase (rpoB vs. six yeast genes) with
proteins involved in translation (infB, Gcd11, Yif2, Sup35, ileS,
and Ils1); Fig. 2e, linking RNA helicases involved in nucleic acid
processing (uvrB and Dbp8) with arginine biosynthetic enzymes
(pyrAb and Cpa2); and Fig. 2b, linking RNA helicases involved
in translation and ribosomal RNA assembly (Dbp2, Has1, Nog1,
Rpl2a, Mak5, and Gcn20) and antioxidative mechanisms (Ssq1,
Tsa1, Tsa2, and Sse1). The reasons for many of these associations
are unclear, but conservation of interactions across the networks
of both species suggests that the associations are functionally
significant. Because members of the RNA helicase family are
numerous, often poorly characterized, and participate in diverse
and sometimes multiple functions (31), pathway alignment may
be particularly useful for placing individual RNA helicases into
specific functional contexts and for suggesting cases in which they
facilitate crosstalk among different cellular processes.

Interestingly, a single bacterial RNA helicase (deaD) in Fig. 2b
occupies the same pathway position, and perhaps functional role,
as three different helicases in yeast (Dbp2, Mak5, and Has1).
This observation underscores a third broad insight: Single
pathways in bacteria frequently correspond to multiple pathways
in yeast, consistent with the current model that yeast have

Fig. 4. Querying the yeast network with specific pathways. Pathway queries are shown for the kinase cascade involved in filamentation (a) and three
ubiquitin-like conjugating systems: the SCF complex (b), the APC (c), and the SUMO complex (d). The display follows the conventions of Figs. 2 and 3, with the
highest-scoring alignments indicated in red. Queries of this type may be submitted online at www.pathblast.org.
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undergone one or more whole-genome duplications relative to
bacteria (32). Other examples include dnaX vs. Rfc2�3�4�5 (Fig.
2e) and rpoB vs. six ribosomal subunits in yeast (Fig. 2f ).

As a fourth insight, we found that proteins within high-scoring
pathway alignments did not necessarily pair with their best
sequence matches in the other pathway. In Fig. 2, 22% of yeast
proteins (13�59) are paired with bacterial proteins other than
their best BLAST H. pylori match; this proportion is somewhat
higher (30�40) when bacterial proteins are compared with yeast
(Table 2, which is published as supporting information on the
PNAS web site). For example, the best sequence match of H.
pylori bcp is yeast Dot5, not Tsa1, its pair in the Fig. 2b pathway
alignment (E � 8 � 10�15 vs. 9 � 10�5, respectively); similarly,
the best match of yeast Tsa1 is H. pylori tsaA (E � 5 � 10�40).
However, Dot5 and tsaA do not interact with members of the
pathway in Fig. 2b (e.g., Has1, Sse1, dnaK, or deaD), so that bcp
and Tsa1 seem to be the true functional orthologs despite their
weaker sequence similarity. We must consider that if a protein
with multiple functions in one organism undergoes several
rounds of duplication and specialization in the other, it may have
different orthologs in different pathway contexts.

Finally, protein kinase pathways appeared as a pervasive
feature of the yeast�yeast alignments (see Fig. 3 c, g, i, j, l, and
o among others). Because a major challenge in biology is to
discover how information is transmitted through compartmen-
talized modules consisting of protein kinases, phosphatases, and
their substrates (33), pathway alignments may provide natural
contexts for recognizing new kinase roles and modes of crosstalk.
For instance, although the aligned signal transduction pathways
Bck1-Mkk2-Slt2 and Rim15-Tpk1�2�3-Pkh1 (Fig. 3c) have well
established roles in regulation of osmolarity (34) and in nutrient
sensing (35), their alignment includes interactions with the
kinases Ygr086c and Ypl004c, implicating them as additional
signaling factors.

One difficulty with parsing the yeast�yeast network alignment
into distinct kinase cascades was that the 	120 yeast kinases all
shared moderate (
30%) protein sequence identity such that
kinase pathways could shift or invert relative to each other with
only a marginal impact on the pathway-alignment score. One way
to address this problem might be to augment the score with
additional and�or more stringent matching criteria such as
protein structural similarity.

Conclusions
We have only begun to explore how global protein network
comparisons, whether between species, within species, or using
pathway queries, can impact the study of evolution beyond what
is gained from analysis of either sequences or interactions alone.
By enabling systematic discovery of conserved network struc-
tures, pathway alignment is a powerful tool for predicting protein
functions, revealing signaling crosstalk, and distinguishing true
orthologs from among multiple candidates between species.
Moreover, observation of similar interaction paths in two net-
works increases the likelihood that these paths are biologically
significant, such that pathway alignments provide implicit veri-
fication for the protein interactions they contain. As the flood of
genomic and postgenomic data propels biological research at a
variety of informational levels, methods such as these may form
the foundations for understanding evolution not merely in terms
of conserved sequences but as an array of basic functional
modules.
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