
Evolution of a Computer Program for Classifying Protein Segments as
Transmembrane Domains Using Genetic Programming'

.John R. K w a

Compulcr Scicncc Dcpamcnt
Stanford University

Smford, CA 94305-2140 USA
Koza@CS.Stanford.Edu
PHONE 415-941-0336

Abstract
The recently-developed genetic programming
paradigm is used to evoIve a computer program to
classify a given protein segment as being a
transmembrane domain or non-uansmembrane area
of the protein. Genetic programming starts with a
primordial ooze of randomly generated computer
programs composed of available programmatic
ingredients and then genetically breeds the .
population of programs using the Darwinian
principle of survival of the fittest and an analog of
the nalurally occurring genetic operation of crossover
(sexual recombination). Automatic function
definition enables genetic programming to
dynamically create subrourines dynamically during
the run. Genetic programming is given a training set
of differently-sized protein segments and their
u > m t classificafion (but no biochemical knowledge.
such as hydrophobicity values). Correlation is used
as the fitness measure to drive the evolutionary
process. The best genetically-evolved program
achieves an out-of-sample correlation of 0.968 and
an out-of-sample error rate of 1.6%. This error rate
is better than that reponed for four other algorithms
reported at b e First International Conference on
Intelligent Systcms for MoIecular Biology. Our
genetically evolved program is an instance of an
algorithm discovered by an automated learning
paradigm that is superior to that written by human
investigators.

Introduction
At thc First International Confcrcnce on Intelligent
Syslcms for Molccular Biology, Wciss. Cohcn. and
Indurkhya (1993) cxplorcd thc problem of idcntifying
uansrncmbranc domains in protein scqucnces. Starting
~ 4 t h knowlcdgc about thc Kytc-Doolittlc hydrophobicity
ScafC (Kyle and Doolitdc 1982). thcy uscd the SWAP-I
inlfuclion tcchniquc to discovcr an algorithm for this

za ISMB-Y4

classification task. In their first experiment. they equaled
the error rate of the best of three human-written
algorithms for this classification wk.
Genetic programming is a domain-independent methd
for evolving computer programs that solve, or
approximately solve, problems. To accomplish this,
genetic programming starls with a primordial ooze of
randomly generated computer programs composed of rhe
available programmatic ingredients, and breeds the
population or programs using the Darwinian principle of
survival of the fittest and an analog of the naturally
occurring genetic operation of crossover (sexual
recombination). Automatic function definition enables
genetic programming to dynamicany create subroutines
dynamically during the run.
The question arises as to whether generic pro-mrning
can evolve a classifying program consisting of initially
unspecified detectors. an initially unspecified iterative
calculation incorporating the as-yet-undiscovered
detectors, and an initially unspecified final calculation
incorporating the results of the as-yet-undiscovered
iteration. The genetically evolved program in this paper
accomplishes this. It achieves a better error rate than P
four algorithms described in Weiss, Cohen, and Indurkhya
(1993). When analyzed, the genetically evolved program
has a simple biological interpretation.

Transmembrane Domains in Proteins

Proteins are polypcptidc molecules composed of
sequences of amino acids. Therc are 20 amino acids (also
called residues) in the alphabet of proteins. They are
denoted by b c letters A, C, D, E. F, G. H. I, K. L, M, N
P, Q. R. S, T. V, W. and Y . Broadly speaking. the
scquencc of amino acids in a protein determines the
locations of its atoms in thrcc-dimcnsional space; this. in
turn. dctcrmincs thc biological structure and funcuon of a
protein (Anfinscn 1973).
A uansmembnnc protcin is a protein lhat finds i d f
embedded in a rncmbrane (c.g.. 3 ccll wall) in such a way

mailto:Koza@CS.Stanford.Edu

i,,;li part o f thc protcin is localcd on onc sidc of thc
,,,,mhranc, part is within thc mcmbranc. and part is on thc
r , p p t r s i t ~ sidc of thc rncmbnnc. Transmcmbranc protcins
,,,,cn cross back and fonh through thc mcmbranc scvcral
,,mc'S and havc short loops immcrscd in thc diffcrcnt
rr,rl,cu on caclr sidc of Lhc mcmbranc. Thc Icnglh of cach
L,;lnsrncrnhranc domain and cach loop or othcr non-
ir3nsmcmbranc arca arc usually diffcrcnt.
Transmcmbranc protcins pcrform functions such as
,,.nsjng 1hc prescncc of ccruin chcmicals or ccrtain
, , im[l l i on onc sidc of thc mcmbranc and wansporting
b.l,:-nicals or transmitting signals to thc othcr sidc of thc
,r,:~branc. Understanding rhc bchavior of
Ir3nsmcmbranc protcins rcquircs idcntification of thcir
uJnsmcmbranc domains.
Biological mcmbranes are of hydrophobic (watcr-hadng)

The amino acids in the rransmcmbranc
domain of a prolein that are exposcd to thc membrane
ihcrcfore have a pronounced tendency to k hydrophobic.
This tendency toward hydrophobicity is an overall
disu-ibutional characteristic of the entire protein segment
(nor of any particular one or two amino acids of the
sqmcnt). Many transmembrane domains arc a-helices,
so all the residues of the helix are exposed to the
membrane (and are therefore predominantly
hydrophobic). Although some transmembrane domains
y e p -strands (so that only some residues that arc actually
cxposed to the membrane). very few such transmembrane
domains are annotated in the computerized databases.
Thus. as a practical matter. our discussion here is limited
10 a-helical nansmernbrane domains.
Consider, for example, the 161-residue mouse peripheral
t r p d i n protein 22 (identified by the locus name
"PM22-MOUSE" in release 27 of the SWISS-PROT ' computerized database of proteins (Bairoch and
3oeckmann 1991). The four uansmembrane domains of
this protein are 1 d y t e d at residues 2-31,65-91.96-119,

A successful classifying program should identify a
scgment such as the following 24-residue segment from
positions 9 6 1 19:

WITGFFQILAGLCVMSAAAIYN. (1)
as a transmembrane domain.
A successful classifying program should also identify the
r'ollowing 27-residue segment between positions 35-61:

ITDLWQNCTISALGAVQHCYSSSVSEW (2)

a d 134-156.

as being in a non-uansmembrane area of the protein.
This classification problem will be solved by genetic
programming without reference to any knowledge about
the hydrophobicity of the 20 amino acids: however, we
w i l l use such knowledge to explain the problem (and,
later. to interpref the genetically cvolved program). Two
thirds of the 24 residucs of segment (1) are in chc catcgory
consisting of I. V, L, f, c , M, or A having the highest
numericaI values of hydrophobicity on Kyrc-Doolittle
scaIc. IC a human wcrc cluslcring thc 20 hydrophobicity
\ . ~ U C S into thrm categories with thc bcncfit of knowledgc

knowlcdgcablc human would clustcr into a hydrophilic
catcgory). Even Lhrough zhcrc are somc rcsiducs from all
thrcc catcgories in segmcnls(1). scgment (1) is
prcdominantly hydrophobic and is, i n fact, a ,
uansmcmbranc domain of PM22-MOUSE.
In contrast. 13 of the 27 (about half) or the residues of
scgmcnt (2) arc ncutral. eight (about a quarter) are
hydrophobic, and six (about a quarter) arc hydrophilic.
This distribution is very different from thar of segment
(1). Segment (2) is. in fact, a non-transmembrane area of
PM22-MOUSE.

Background on Genetic Programming

John Holland's pioneering 1975 Adapfalion in Nazural
and Arlificial Sysfems described how the evoIutionary
process in nature can be applied UI artificial systems using
the genetic algorithm operating on fixed length character
strings (Holland 1975. 1992). Additional information on
current work in genetic algorithms can be found in
Goldberg (1989), Forresr (1993), Davis (1987,1993), and
Michalewicz (1992).
Genetic programming is an extension of the genetic
algorithm in which the genetic population consists of
computer programs (that is, compositions of primitive
functions and teI"IiMk). As described in Genetic
Programming: On the Programming of Computers by
Means of Natural Selecrion (Koza 1992), genetic
programming is a domain independent method that
genetically breeds populations of computer programs to
solve problems by executing the following three steps:
(1) Generate an initial population of random

computer programs composed of the primitive functions
and terminals of the problem.

(2) Iteratively pedorm the following sub-steps until
the termination CriK&On has been satisfied:
(a) Execute each program in the populdon

@I Create a new population of programs by

and assign it a fitness value according to how well it
solves the problem.

applying the following two primary operations. The
operations are applied to program(s) in the
population selected with a probability based on
fitness (i.e.. the fitrer the program, the more likely it
is to bc selecxed).

(9 Reproduelion: Copy an existing
program IO the new population.
(ii) C r o s s o v e r : Create two new
offspring programs for the new popularion by

gcnctically rccombining randomly choscn parts of
two existing programs. Thc gcnctic crossovcr
(sexual rccombinatian) operation (dcscribed
below) opcratcs on two parental computcr
programs and produccs IWO offspring programs
using parls of cdch parcnt.

(3) Tfic singlc bcsl compulcr program in thc
population produccd during tllc run is dcsignatcd as thc
result of the run of gcnctic programming. This result
may bc a solution (or approximatc solution) to thc
problem.

Recent advances in pcnctic programming arc dcscribed in
Kinncar (1994). A videotape visualization of numerous
applications of gcncLic progranlming can be found i n
Koza and Rim (1992) and Koza (1994).
The genetic crossover opcralion operates on two parental
computer programs selccted with a probability based on
fitness and produces two new offspring programs
consisting of parts of cach parenL
For examplc, consider the following computer program
(shown here as a LISP symbolic expression):
(+ (* 0.734 2) (- X 0.789)).

We would ordinarily write this LISP Sexpression as
0.234~ + x -0.789- This two-input, one-output
computer program takes x and z as inputs and produces a
single floating point outpuL
Also. consider a second program:
(* (* 2 Y) -(+ Y (* 0.314 Z l U .

?his program is equivalent to zy(y + 0.3142).
The crossover operation creates new offspring by
exchanging sub-trees (Le., subroutines, sublists,
subprocedures. subfunctions) between the two parents.
The two parents are typically of different sizes and
shapes. The sub-trees to be exchanged (called crossover
fragments) are selected at random by selecting crossover
points at random. Suppose that crossover points are the
multiplication (*) in the first parent and the addition (+)
in the second parent. The two crossover fragmenrs are the
underlined sub-programs (sub-lists) in the two parental
LISP S-expressions.
The two offspring resulting from crossover are
(+ J+ Y (f 0.314 2) \ (- X 0.789))

and

(* (* z r) (* 0.734 ZL).

Assuming closure among the functions and terminals of
which the parental programs are composed, crossper
produces synlactically and semantically valid programs as
offspring. Because programs are s e l e c t e d to participate in
thc crossover operation with a probability based On their
fimcS.5, crossover al1oeax.s future trials of the search for a
solution 10 h e problem to regions of the space of possible
comput~ programs containing programs with promising
P m .

Automatic function dclinilion is uscd LO cnablc genetic
programming to cvolvc subroutines during a run.
Automatic function dcfiniiion can be implemented within
the context of gcnctic programming by establishing a
constrained syntactic structure for the individual programs
in the population ar dcscribcd i n Cenelic Programming Ii:
Scalable Aulornalic Programming by Means of
Auomalically Defined Fnnclions (Koza 1994). Each
program i n the population contains one (or more)
function-dcfining branches, one main rcsult-producing
branch. and possibly other types of branches (such as
iteration-pcrforming branches). The function-defining
branch(es) dcfinc thc automatically d4ined functions
A D F O , m F 1 , ctc. Thc result-producing branch may
invoke thc automatically dcfincd functions. The value
returned by thc overall program consists of the value
returned by the result-producing branch.
The initial random generation of [he population
(generation 0) is created so that every individual program
in the population has a constrained syntactic svucture
consisting of the problem's particular arrangement of
branches. Each branch is composed of functions and
terminals appropriate to that branch. This consmined
syntactic structure must be preserved as the run proceeds
from generation to generation. Structure-preserving
crossover is implemented by limiting crossover to points
lying within the bodies of the various branches (branch
typing). The crossover point for the first parent is
randomly selected, without resuiction, from the body of
any one of the branches. However, once this selection is
made for the first parent. the crossovq point of the second
parent is randomly selected from the W y from the same
type of branch. This method of performing crossover
preserves the syntactic validity of all offspring throughout
the run. As the run progresses, genetic programming will
evolve different function-defining branches, different
result-producing branches, and different ways of &ling
these automatically defined functions from the result-
producing branch.

Preparatory Steps

In applying genetic programming with automatic function
definition to a problem, there are six major preparatory
steps. These steps involve determining
(1) the set of terminds for each branch,
(2) the set of functions for each branch,
(3) the fitness measure,
(4) the parameters and variables for controlling the
m,

terminating a run. and
(5) . the criterion for designating a result and

(6) the architecture of the overall program.
We begin by deciding that the overall architecture of the
yet-to-be-evolved classifying program will have to be
capable of categorizing the residues into useful categories.
then iteratively pcrforming some arithmetic calculations

and conditional opcmtions on thc catcgorics. and finally
pcdorming somc arihmctic calculations and conditional
operauons to rcach a conclusion. This suggests an overall
architecture for thc cIassifying program of sevcral
automatically defined functions (say A D F O , ADF1,
A D F ~) to serve as detcctors for categorization, an
iteration-performing branch, I PBO, for performing
arithmetic operations and conditional operations for
examining the residues of the protein segment using the
as-yet-undiscovered detectors, and a result-producing
branch, RPBO, for performing arithmetic operations and
conditional operations for reaching a conclusion using the
as-yet-undiscovered iteration.
Automatically defined functions seem well suited lo the
role of dynamically defining categories of the amino
acids. If he automatically defined functions are to play
the roIe of set formation, each defined function should be
able to interrogate the current residue as to which of the
20 amino acids it is. Since we anticipate that some
numerical calcuIations will subsequently be performed on
the result of the categorization of the residues, we employ
n&-valued logic. rather than Boolean-valued logic
rerurning the non-numerical values of True and False.
One way to implement this approach is to define 20
numerical-valued zero-argument logical functions for
determining whether the residue currently being examined
is a particular amino acid. For example, (A?) is the
zero-argument residue-detecting function returning a
numerical .+1 if the current residue is alanine (A) but
otherwise returning a numerical -1. A similar residue-
detecting function is defined for each of the 19 other
amino acids. Since we envisage that the automatically
defined functions will be used for set formation. it Seems
reasonable to incIude the logical disjunctive function in
the function set of he automatically defined functions.
Specifically, DRN is the two-argument numerical-valued
disjunctive function returning +I if either or both of its
arguments are positive, but returning -1 otherwise.
The terminal set Ifd for each of the three function-
defining branches (ADFO, ADF~, and ADF2) contains the
20 zero-argumenL numerical-valued residue-detecting
functions. That is,

The function set Fffd for the three function-defining
branches (ADFO. ADF1, and ADFZ) contains only the
two-argument numerically-valued logical disjunctive
funcrion. That is,

Ifd = ((A ?) , IC?) I . . - I (Y?) 1 -

Typical computer programs contain iterative operators
that perform some specified work until some condition
expresscd by a terminalion predicate is satisfied. When
we attempt to includc iterative operators in genetically-
evolved programs. wc face the practical problem that both
the work and the termination predicate are initially created
at random and are subsequendy subject to modification by
the crassover opemion. Consequently. iterativc operators
will, x &I, be nesred and consume enormous amounts of

computcr timc or will, at worst, havc unsatisfiablc
termination prcdicatcs and go into infinitc loops. This
problem can somctimcs bc parfially alleviated by
imposing arbitrary time-out limits (e.g., OR each iterative
loop individually and all itcrativc loops cumulativcly).
In problems whcre wc can envisage one iteralive
calculation being usefully pcrformed ovcr a particular
known, finite sct, there is an attractive alternative to
permitting imposing arbitrary time-out limis. For such
problems, the iteration can be restricted to exactly one
iteration over the finite set. The termination predicate of
the iteration is thereby fixed and is not subject to
evolutionary modification. Thus, there is no nesting'and
there are no infinite loops.
In the case of problems involving the examination of the
residues of a protein, iteration can very naturally be
limited to the ordered set of amino acid residues of the
protein segment involved. Thus, for this problem, we
employ one iteration-performing branch, with the iteration
restricted to the ordered set of amino acid residues in the
protein segment. That is, each time iterative work is
performed by the body of be iteration-performing branch,
the current residue of the protein is advanced to the next
residue of the protein segment until the end of the entire
protein segment is encountered. The result-producing
(wrapup) branch produces the final output of the overall
Program.
Useful iterative calculations typically require both an
iteration variable and memory (state). That is, the nature
of the work performed by the body of the iteration-
performing branch typicalIy varies 'gepending on the
current value of the iteration variable. Memory is
typically required to transmit information from one
iteration to the next. In this probIem, the same work is
executed as many times as there are residues in a protein
segment, so the iteration variable is the residue at the
current position in the segment. Depending on the
problem, the iteration variable may be explicitly available
or be implicitly available through functions that permit it
to be interrogated. For this problem, the automatically
defined functions provide a way to interrogate the
residues of the prolein sequence.
Memory can be introduced into any program by means of
settable variables, MO, M 1, M Z , and M 3 . Settabie
variables are initialized IO some appropriate value (e.g..
zero) at he beginning of the execution of the iteration-
performing branch. These settable variables typically
change as a result of each iteration.
The terminal set TjPm for the iteration-performing branch
is
qpw = (LEN, MO, M I , M2, M3,m).
Here 9l reprcscnts floating-point random constants
bctwecn -10.000 and +IO.OOO with a granularity of 0.001
and LEN is the Icngth of Lhc currenL protein segment.
Sincc wc cnvisage that thc itcntion-pcrfonning branch
will pcrform numerical calculations and makc decisions
bascd on thcsc calculations, it w m s reasonabIe to include
thc four arithmctic opcrations and a condilional operator

Koza 247

in 1 1 1 ~ function sct. Wc have uscd 111c four arirhlncric
funcljons (+, -, *, and %) and thc conditional comparativc
opcralor I FLTE (If LCSS Than or Equal) on many
previous problems. so wc includc thcm in the function sct
for thc itcration-pcrforrning branch. Thc protcctcd
division function % takcs LWQ argumcnls and rctums onc
whcn division by 0 is attcmptcd (including 0 dividcd by
0). and. ohcrwisc. rclurns thc normal quoticnt. Thc four-
argument conditional branching function IFLTE
cvaluatcs and returns its h i r d argumcnt i f i t s first
argument is less than or equal to i t s sccond argumcnt and
olhcrwisc evaluatcs and returns its founh argument
Since a numerical calculation is to bc performed on thc
rcsu1t.s of the categorization pcrformcd by thc function-
dcfining branchcs, thc functions ADFO. ADF1, and ADF2
are included i n t h e function sct for the iteration-
pcrforming branch.
We need a way to change the settable variables MO. ~ 1 ,
~ 2 , and M3. The one-argument setting function SETMO
can be used to s e t MO to a panicular value. Simihly. h e
setting functions SETM1, SETM2. and SETM3 can be
used to se~ the respective values of the settable variables
M1, M2, and M 3 , mp3Xively. Thus, memory can be
-wizfs (i.e., the state can be set) with the setting
functions, SETMO, SETM1, SETMZ, and SETM3. and
memory can be read (i.e., the state can be interrogated)
merely by referring to Ihe terminals, MO, M1, M2, and M3.
Thus, h e function set spm for the iteration-performing
branch, IPBO, is
zpbO = (ADFO, ADF1, ADF2, SETMO, SETM1,

SETM2, SETMS, IFLTE, +, -, *, %).
taking 0. 0. 0, 1, 1, 1. 1. 4. 2. 2. 2, and 2 arguments,
respectively.
The result-producing (wrap-up) branch then performs a
non-iterative floahg-point calculation and produces the
final result of the overall program. The settable variables
MO. M1. M2, and M3 provide a way to pass the results of
the iteration-performing branch to the result-producing
branch.
The terminal set l rpbo for the result-producing branch,
WBO, is
?& = {LEN, MO, M 1 , M2, M3,S).
The function set 3 ; p ~ for the result-producing branch
RPBD, is
F& = (IFLTE, +. -, *, %] .

Iaking 4,2,2,2, and 2 argumenrs, respectively.
A wrapper is used to converr the floating-point value
produced by the result-producing branch into a binary
outcome. if the geneticallyevolved program returns a
positive value, the segment will be classified as a
transmembrane domain, but olherwise it will be classified
as a non-transmembrane area.
Release 25 of the SWISS-PROT protein data base
contains 248 mouse transmembrane proteins averaging
499.8 residues in length. Each protein contains between
onc and 12 tnnsmembrane domains, the average being

2.4. Thc mnsmcmbranc domains rangc i n lcrlgth from 15
and 101 rcsiducs and avengc 23.0 in Icngh.
123 of thc 248 proteins wcrc arbitrarily sclcctcd to creak
thc in-sample set of fitness cascs to mcasurc fitncss during
thc evolutionary process. One of b c transmembrane
domains of cach of thcsc 123 prolcins was sclccred a[
random as a positivc fitncss casc for this in-sample set
Onc scgmcnt of thc samc lcngrh as a random one of the
uansmcmbrane scgmcnts that is not conuincd i n any of
thc protein's transmcmbranc domains was sclccted from
cach protein as a ncgativc fitncss casc. Thus, there are
123 positivc and 123 ncgativc iitncss cascs i n the in-
sample set of fitncss cam.
The evolutionary process is driven by fitness as measured
by the s e t of in-samplc fitness cascs. Howcvcr, the Lrue
measure of pcrformancc for a classifying program is how
well it generalizes to diffcrent cases from the same
problem environment. Thus, 250 out-of-samplc fimess
cases (125 positive and 125 ncgativc) wcrc creaked from
the remaining 125 proteins in a manner similar to the
above. These out-of-sample fitness cases were then used
to validate the performance of the genetically-evolved
classifying programs.
Fitness will measure how well a panicuIar genetically-
evolved classifying program predicts whether the segment
is. or is not, transmembrane domain. Fitness is measured
over a number of trials, which we call fitness cases. The
fitness cases for this problem consist of protein segments.
When a genetically-evolved classifying program in the
population is tested against a particular fitness case, the
outcome can be a true-positive, true-n\egative. false-
positive, or false-negative. Fitness can b~ measured by
the correlation coefficient C. When the predictions and
observations each take on only two possible values,
correlation is a general, and easily computed, measure for
evaluating the performance of a classifying program.
Consider a vector in a space of dimensionality NfC of the
correct answers (with the integer 1 representing a
transmembrane domain and the integer.0 representing a
non-transmembrane area) and the vector of length Nfc of
the predictions (1 or 0) produced by a particular
genetically evolved program. Suppose each vector is
transformed into a zero-mean vector by subtracting the
mean value of all of its componenrs from each of i ts
components. The correlation, C. is thz cosine of he angle
in this space of dimensionality NfC between thc zero-
mean vector of correa answers and b e zero-mean vector
of predictions. The correlation coefficient indicares how
much better a particular predictor is than a random
predictor. A correlation C of -1.0 indicates vectors
pointing in opposite directions in Nfc -space (Le., g r e a [e s t
negative correlation): a correIation of +1.0 indicates
coincident vectors (i.e.. greatest positive correlation); a
correlation C of 0.0 indicates orthogonal vectors (Le., no
correlation).
The correlation. C. lends itsclf immediately to k ing !he
measure of m v fitncss mcasure for a genctically evolved

computer program. Since mw fimess ranges between -1.0
and +1.0 (higher values being beucr). standardized fitness

("zero is best") can then be defined as -.
Standardized fimcss ranges between 0.0 and +1.0, lower
values being better and a value of 0 k ing the best. Thus,
a standardizcd fitness of 0 indicates perfect agreement
bctwcen the predicting program and the observed reality:
a standardized fitness of +1.0 indicates perfect
disagreement; a standardized fitness of 0.50 indicates that
the predictor is no better than random.
The error rule is the number of fitness cases for which the
classifying program is incorrect divided by the total
number of fitness cases. The error rate is a less general
measure of performance for a classifying program;
however, Weiss, Cohen, and Indurkhya (1993) use the
error rate as their yardstick for comparing three methods
in the biological literature wilh their new algorithm
created using the SWAP-1 induction technique.
Therefore, we present our final results in terms of both
correlation and error rate and we use error rate for the
purpose of comparing results.
Population size, M, was 4,000. The maximum number of
generations to be run, G. was set to 21. The other
parameters for controlling the runs of genetic
programming were the default values specified in Koza
(1934) and which have been used for a number of
different problems.

I -C
2

R 6 U l i S

We now describe the two besr runs out of out 11 runs of
this problem, starting with the second best
The vast majority of he randomly generated programs in
the initial random population (generation 0) of run 1 have
a zero or near-zero correlation. C, indicating that they are
no better than random in cIassifying whether a protein
segment is a uansmembrane domain. However, even in
the initial random population, some individuals are better
rhan others.
The best-of-generation classifying program from
generarion 0 of run 1 has an in-sample correlation of 0.48
as a result of getting 99 true positives. 83 true negatives,
40 false positives. and 24 false negatives over the 246 in-
sample fiuless cases. This program has a standardized
fitness of 0.26. This program myopically looks at only
the last residue of the protein segment and categorizes the
enlire segment based only on one, highly flawed
automatically defined function. However, this program is
bctter than any of the other 3.999 programs in the
population at generation 0. In the valley of the blind, the
one-eycd man is king.
The worst-of-generation classifying program from
gencnlion 0 of run 1 has an in-sample correlation of -0.4
and standardized fitness is 0.70. This program achieves
his negativc value of cornclarion by using incomplcte
information in prwisely thc wrong way.

In generation 2 of run 1. the best-of-generation program
achieves an incrementally better value for correIation
(0.496 in-sample and 0.472 out-of-sample) by virtue of an
incremental change consisting of just one residue in the
defmition of ADFO.
There is a major qualitative change in generation 5. The
best of generation 5 is the fmt best-of-generation program
that makes its prediction based on the entire protein
segment. This program contains 62 points (i.e.. 62
functions and terminals in the bodies of the branches), has
a distinctly beuer in-sample correlation of 0.764, an out-
of-sample correlation of 0.784. and a s tandard id fitness
of 0.12.
(progn (defun ADFO (I

(values (ORN (ORN (I?) (A?)) (ORN
(O m (L?) (G?)) (N?) 11 1) .

(&fun ADFl (I
(values (ORN (ORN (ORN (ORN (G?)
(D?)) (ORN (E?) (V?))) (ORB (ORN
(R?) (E?)) (ORN (T?) (P?)) 1) (OF3
(N?) (S?) 1)))

(defun ADFZ ()
(values (ORN (ORN (ORN (L?) (R?))
(ORN (V?) (P?)) 1 CORN (G?) (L?))) I)

(progn (looping-over-residues (SETMl (- (+ M1
(ADm)) (ADW)))

(values (* (% (+ (% -9-997 M3) M1) 6.602) (+ 6.738
(% (- M3 L) (+ M3 M2)))))))

The iteration-performing branch of this program uses the
settable variable M1 to create a ynning sum of the
difference between two quantities. S ~ i f i c a I l y , as the
iteration-performing branch is iteratively executed over
the protein segment, ~1 is set to h e current value of M 1
plus the difference. between ADFO and A D F 1 . ADFO
consists of nested ORNS involving the three hydrophobic
residues (I, A, and L). one neutd residue (G), and one
hydrophilic residue (N). A D F l consists of nested Oms
involving one hydrophobic residue (V), four neutral
residues (G, T. P, and S) , and he four most hydrophilic
residues (D, E, R. and N).
Because the neutral G residue and the hydrophilic N
residue appear in both ADFO and AVF1, there is no net
effect on the running sum of the differences, M 1 ,
calculated by the iteration-performing branch when the
current residue is either G or N. There is a positive
contribution (from ADFO) to the running sum M 1 Only
when h e current residue is I, A, or L (all of which are
hydrophobic), and there is a negative conlribution (from
A D F ~) to the running sum.Ml only when the current
residue is D, E, or R (all of which are hydrophilic). The
running sum MI is a count (based on a sample of only
hree of the seven hydrophobic residues and only three Of
the seven hydrophilic residues) of the excess Of
hydrophobic residues over hydrophilic residues.
When simplified. the result-producing branch is
equivalent to 1-17 x (MI + 1) , so the protein segment is
classified as a transmembrane domain whenever MI is
grater than 0. In other words, whenever the number Of

.Kola 249

wcufrcnccs or thc I h r c c panicular hydrophobic rcsiducs
0 . A. and L) cquals or cxcecds LIIC number of occurrences
of h c hrm particular hydrophilic residues (D, E. and n),
[he scgmcnt is classified as a vansmembrane domain.
This rclativcly simple calculation is a highly irnpcrfect
predictor of transmembrane domains, but it is often
COITCC~. Becausc it examines thc entire given protein
xgmcnt. it is considerably b a r e r than any of i t s a n ~ ~ ~ t o r s .
[n generation 6 of r u n 1, the bcst-of-generation program
has marginally bcller values for correlation (0.766 in-
.sample and 0.834 out-of-sample). This improvement is a
consequence of a small, buL beneficial, evolutionary
change in the ddinition of ADFl. This small incremcnd
improvement (produced by the crossover operation) is
typical of the intergenerational improvements produced
by gcnetic programming.
The 62-point best of generation 8 of run 1 exhibits a
substantial jump in performance over all its predecessors
from previous generations. In-sample correlation rises to
0.92; out-of-sample correlation rises to 0.89.
(progn (defun ADFO ()

(values (ORN (ORN (ORN (I?) (M?))
(ORN (V?) (C ?) 1) (ORN (ORN (L?)

+,ftc,- gcncration I I of run 1. the in-samplc pcrformancc
[,f the bcst-of-gencration program continues to improve.
For cxamplc, h e in-sample correlation improves from
0.94 to 0.98 between generations 11 and 18 and the
n u m b r of in-sample errors (i.e., false positives plus falsc
ncgativcs) drops from 7 10 3. However, this apparent
improvemat after generation 11 is illusory and is due to
ovcfiuing. Genetic programming is driven to achieve
kucr and bctter values of fitness by the relentless cffecs
of Darwinian natural selection. Fitness for this problcm is
basd on the value Of the correlation for the predictions
made by the genetically-evolved program on thc i n -
 ample S C ~ of fitness case~. However, the m e measure of
Prfomlance for a classifying algorithm is how well i t
generalizes to other, previously unseen sets of data (Le.,
Ihe ouf-of-sump/e data). In this run. the out-of-sample
correlation drops from 0.96 to 0.94 between generations
11 and 18 and the number of out-of-sample errors
increases from 5 to 7. The maximum value of out-of-
sampIe correlation is attained at generation 11. After
eeneration 11, the evolved classifying programs are being
fit more and more to the idiosyncrasies of the particular
in-sample fitness cases employed in the computation of
fitness. ?he classifying programs after generation 11 are
not getting better at classifying whether proteins segments
are transmembrane domains. Instead, they are merely
getting better at memorizing the in-sample data. In fact, a
continuation of this run out to generation 50 produces no
result better than that attained at generation 11.
We now consider run 2. This best-of-all run produced the
b e s t value of out-of-sample correlation of any run, namely
0.968.
(pzcgn (defun ADFO (1

(values (ORN (ORN (ORN. (I?) (H?))

(Y?) (N?)) (ORN (T?) (43))) (ORN
(Ai) (x?) 1 1 1) 1

6 ..-. (ORN (P?) (G ?) 1) (ORN (ORN (ORN

(&fun PiDFl ()
(valu& (ORN (ORN (O W (A?) (I?))

(ORN {L?) (W?))) (ORN (ORN (T?)
(L?) 1 (Om (T?) (w?))))))

(defun ADF2 0
(values (OM (OW (OW (ORN (ORN (D?)
(E?)) (ORN (ORN (ORN (D?) (E?))
(ORN (ORN (T?) (W?)) (ORN (4 2)
(D?)) 1) CORN (K?) (P?)) 1) (OW (K?)
(P?))) CORN (T?) (W?))) (ORN (ORN
(E?) (A?)) (OW (N?) (R ?))))) 1

@rogn (loopsver-residues (SETMO (+ (- (ADF1)
(ADW) (Smm MONN

MO)) (+ (% (% M3 MO) (9'0 (+ MO M3) (% M1
M2))) m)) (% M3 MO))))))

This high correlation was achieved on generation 20 by
the 10s-point program above with an in-sample
correlation of 0.976 resulting from getting 121 true
positives. 122 Vue negatives, 1 false positive, and 2 false
negatives over the 246 in-sample fimess cases. Its out-of-
sample correlation of 0.968 is the result of gelling 123
m e positives, 123 me negatives, 2 false positives, and 2

(values (9a (% M3 MO) (% (% (% (- L -053) (* MO

false negatives over the 250 out-of-sarnpIe fitness cascs.
ILS out-of-sample error rate is only 1.6%.
Ignoring the three residues common to the definition of
both A D F l and ADFZ. ADFl returns 1 if the current
residue is I or L and ADFZ returns I if Ihe current residue
is 0. E. K. R. Q. N, or P. I and L are two of thc seven
hydrophobic residues on the Kyte-Doolittle scale. D, E.
K, R. Q. and N are six of the seven hydrophilic residues,
and P is one of the neuml residues.
In the itcration-performing branch of this program from
generation 20 Of run 2. M O is the running sum of the
differenccs of the values returned by ADFl and ADF2.
M O will bc posillve only if the hydrophobic residues in the
protein scgment are so numerous that the occurrences of I
and L outnumber the occurrences of the six hydrophilic
residues and one neutral residue of ADFZ. M3 is the same
as the accumulated value of MO except that M3 lags MO by
one residue. Because the 3 8 5 6 3 0 T m (o f) 9 . 3 5 8 7 . 8 7 . 1 0 2 0 0 9 9 9 T c 3 . 9 a t a t t h e run .1 Tf 0 Tc 10.1 03.9901 40.1 TBecaus 577.7 Tm(by)Tj026 587.8 8(20)Tj/F43487.867/Fc 3.9901 0 /F20 1 Tf -0.0(the)Tj-0001 Tc 10.5 1 532.6 637K5rgram B e c 3 . 9 9 6 2 . 6 6 3 7 9 T 8 2 6 9 T 9 2 1 0 0 0 1 5 3 5 . 7 5 7 7 . 7 T m 5 3 2 . 6 6 3 7 K 5 r g r 4 9 0 9 9 9 T 2 1 0 0 0 1 5 1 6 . 7 5 8 7 0 . 5 1 a u s e 1 4 5 1 c l a g 1 0 6 1 4 T c - 0 . 0 2 l w a y 5 p o s i t i v e 2 c 0 (M 3 7 8 T m l i c) 6 1 a u s t h e o0.0300113 1 Tf -0.40T440T710 0 10.1 516.7(as)Tj/F20 1 Tf 0 45Tw T710 0 10[(positive2c-3651Er62c-342.7(nonpositive.53]TJ109 -1 Td(one-11371291aus)7Ollv999 Tc 3.9901 (M3 78 Tm(is3.6139Tc -0.0cumulat09 -1 Td(one)168.6 587.80.1 485 5(one)51486 587.8clos-20.9109 -1 Td(onause1 451clag2.4257 0.01001 l16.2 ship2 Tetween 1lnumber)TnnepO.)Tj/Feonly)Tj0.03 T1 01137 T6100 0 9 535.7 577.7 Tm(MO 38 Tm(is)Tj026 587.8 7 T6100 0 291 1lnumber)Tnn77.79)Tj/F3 1 j0.03 T1 045 T6100 0 93.535.7 577.7 Tm(MO 99 T0 10.1 451clag532.6 637K5rgram)j45101 0 0 analys1 5 show 516.7(as)eonly 9TTf -0.124.39 T745101 0 0 7 487.2 5(MO 99 T0 10.1 451clag532.6 637K5rgr414T745101 0 0 7 e)neult-.69duc20.2 T0 0577.1d Tdifies 485 598.8 Tm(teonly -(th0991aus)8 99 0.027.2 5(MO 99 T0 10.51clag1 712910.0100.69tein. segm Td1lnumber)Tnn77.78j/Feonly) -0.0300 1T09.40T410 0 10.a1 40.1 TBecaus 5epO.8 Tm(th)Tj-0.04001 T2001 T410 0 10.a7.2 5(MO 99 T0 10.51clag1 7624Tc -0.0t0 0smemT0 0e domain. whenev867/Fc 3.9eonly -8s)Tj04001198587.80.1 485 0 199 T0.1 47526 587.8run020.21lnumber)Tnnep14atat M3 .8 Tm(of)Tj-0.04001 TOll431e of th6(run .1 T760 1431e)Tj-MO,21lnumb8.7 Tm(MO 99 T0s)/3Tj0.00999 93T2l431e of MO 99 T00.03001 T3Tj0.009 1387rgr4113 1Tj-cccur 516.7532.6 637K5rgr415104113 1Tj-cnIy 485 5983 Bec(MO 38 Tm(ieonly)T4Tf 0.061 5070 1T113 1Tj- Tdues21lnumb8.7 Tm(MO 98 Tm(of)T 1 Tf -0. 135)j4113 1Tj-cf 40.1 TBecaus 5epO78 Tm(th6 1 Tf 8- 1546104113 1Tj-9 535.7epO.8 Tm(th)Tj-0.04001 am)1040)/3T0 0 291 1lnu0.25atat Bec 0 1.8 Tm(of8(run .9c 3680 1T0)/3T0 0 2 e 1lnumber)Tnn77.24th

Bairoch. A. and Bocckmann. B. 1991. Thc SWISS PRnr
prokin squcncc data bank. Nucleic Acids Research 19:
2247-2249.

~ -.-

Conclusions

Table 1 shows Lhc out-of-samplc crror ratc for thc four
algorithms for classifying transmembrane domains
rcvicwcd in Weiss, Cohcn. and lndurkhya (1993) as wcll
as thc out-of-samplc m o r rate of our best-of-all
gcnehzalty-cvolvcd program from gcneration 20 of run 2
above. We wrotc a computer program f~ tcst the solution
discovered by the SWAP-I induction technique used in
the first experiment of Weiss. Cohcn. and Indurkhya
(1 993). Our irnplcmcntation of their solution produced an
crror rate on our ICSL data idcntical to the error ratc
reported by thcm on their own test data (i.e., the 2.5% of
row 4 of h e table).
Tabfe 1 Cornparison of five methods.
Method Error

rate
von Heijne 1992

2.7% Engelman, Steitz, and Goldman
2.8%

1986 I
Kvte-Doolittle 1982 I 2.5% ~~

Geiss, &hen, and Indurkhya 1993 i 2%
Best genetically-evolved pro,o;ram I 1.6%
As can be seen, the error rate of the best-of-all
geneticallyevolved program from generation 20 of run 2
is better rhan the error rates of the other four methods
reported in the table. This genetidly evolved program is
an instance of an algorithm discovered by an automated
learning paradigm that is superior to that written by
human investigators. In fact, our second best genetically
evoIved program (from generation 11 of run 1) also
outscores the other four methods (with an out-of-sample
error rate of 2.0%).
In summary, without using foreknowledge of
hydrophobicity, genetic programming with automatic
function definition was able to evolve a successful
classifying program consisting of initially-unspecified
detectors, an initially-unspecified iterative calculation
incorporating the as-yet-undiscovered detectors, and an
initially-unspecified find calculation incorporating the
results of the as-yet-undiscovered itexauon.

AcknowIedgments

James P. Rice of the Knowledge Systems Laboratory at
Stanford University did he computer programming of the
2bove on a Texas Instruments Explorer XI+ computer.

Davis, L. (cditor). 1987. Genetic Algorithms and
Simulated Annealing. Pitman.

Davis, L. 1991. Handbook of Genetic Algorihns. van
Nostrand Rcinhold.

Engelman, D., Steirz. T., and Goldman, A. 1986.
Idcntifying nonpolar uansbilaycr hcIices i n amino a&
scquenccs of membrane proteins. Annual Review of
Biophysics and Biophysiological Chemistry. Volume
IS.

Forrest, S. (editor). 1993. Proceedings of the Fifih
international Conference on Genetic Algorithm.
Morgan Kaufrnann.

Goldberg, D. E. 1989. Genetic Algorithms in Search,
Optimization. and Machine Learning. Addison-Wesley.

Holland, 3. H. Adupfarion in Natural and Artificial
Syslems: An Introductory Analysis with Applicarions to
Biology, Control. and Arrificial Intelligence. Ann
Arbor, MI: University of Michigan Press 1975. Also
available from Cambridge, MA: The h4IT Press 1992.

Kinnear, K. E. Jr. (editor). 1994. Advances in Genetic
Programming. Cambridge, MA: The MIT Press.

Koa , J. R. 1992. Genetic Programming: On the
Programming of Computers by Means of Nutural
Selection. Cambridge, MA: The h4IT Press.

Koza, J. R. 1994. Genetic Programming / I : Automafic
Discovery of Reusable Programs. Cambridge, MA: The
MIT Press.

Koa. J. R.. and Rice. J. P. 1992.Generic Programming:
The Movie. Cambridge, MA: The MIT',ws.

Koza, J. R. 1994. Genetic Programming II Videorape:
The N u Generation. Cambridge. MA: The hfIT Press.

Kyte, J. and h l i t t l e , R. 1982. A simple method for
displaying the hydropathic character of proteins.
Journal of Molecular Biology. 157:105-132.

Manhews, B. W. 1975. Comparison of the predicted and
observed secondary structure of T4 phage lysozyme.
Biochemica et Biophysica Acta. 405A42-451.
Michalewicz, 2. 1992. Generic Algorithms + Dala
Structures = Evolution Program. Springer-Verlag.

von Heijne, G. Membrane protein 400.3 Tm(hfIT 7 501.4 32f 1 10 0 0 10.5 355.m3j/F20 1 Tf -0.54(Act(hfIT 7 5=.1 372 307.4 Tm(Membrane protein 400.3f 04ct(hfIT 7 5Evolu99 Tla)Tj/F 305.8 35925810999 Tc.5 400.0.3 516 359.5 Tm(and)Tj/F3 1 Tf -0.07001416.4 (hfIT 7 50pr0.1er-Verlag)]TJ-0.06001 T-14.0694 10.29799 Tcv(T4)Tj/Fnd)Tj/F3 .73270999 TcHeijnteins.)Tjying)Tjf -0.0702.1(5e)Tj70.05 TcG)Tj/F3 1 Tf -0.18 0 0 10.4 1992. Co0.5 355.4 Tm(of)Tj/F15le

