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Abstract 
The recently-developed  genetic programming 
paradigm  is  used to evoIve a computer program to 
classify a given protein segment as being a 
transmembrane  domain or non-uansmembrane area 
of the protein. Genetic  programming starts with a 
primordial ooze of randomly generated computer 
programs composed of available programmatic 
ingredients and then genetically breeds the . 
population of programs using the Darwinian 
principle of survival of the fittest and an analog of 
the  nalurally  occurring  genetic  operation of crossover 
(sexual  recombination).  Automatic function 
definition  enables genetic programming  to 
dynamically create subrourines  dynamically  during 
the  run. Genetic programming is given a training set 
of differently-sized protein segments and their 
u > m t  classificafion  (but no biochemical  knowledge. 
such as hydrophobicity values). Correlation is used 
as the fitness measure to drive the evolutionary 
process. The best genetically-evolved program 
achieves  an  out-of-sample  correlation of  0.968 and 
an out-of-sample error  rate of 1.6%. This error rate 
is better  than  that  reponed  for  four other algorithms 
reported at b e  First International Conference on 
Intelligent Systcms for  MoIecular  Biology. Our 
genetically evolved program is an instance of an 
algorithm discovered by  an automated learning 
paradigm  that is superior to  that  written by  human 
investigators. 

Introduction 
At thc First International Confcrcnce on Intelligent 
Syslcms for Molccular Biology,  Wciss.  Cohcn.  and 
Indurkhya (1993) cxplorcd  thc  problem of idcntifying 
uansrncmbranc  domains in protein  scqucnces. Starting 
~ 4 t h  knowlcdgc  about thc Kytc-Doolittlc  hydrophobicity 
ScafC (Kyle and Doolitdc 1982).  thcy  uscd  the SWAP-I 
inlfuclion tcchniquc to discovcr an algorithm for this 
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classification task.  In their  first  experiment.  they equaled 
the error rate of the best of three human-written 
algorithms for this classification wk. 
Genetic  programming  is a domain-independent methd 
for evolving  computer  programs  that  solve, or 
approximately solve, problems. To accomplish this, 
genetic programming starls with a primordial ooze of 
randomly generated  computer  programs  composed of rhe 
available programmatic ingredients, and breeds the 
population or programs  using the Darwinian  principle of 
survival of the fittest and an analog of the naturally 
occurring  genetic  operation of crossover (sexual 
recombination).  Automatic  function  definition  enables 
genetic programming  to  dynamicany create subroutines 
dynamically  during the run. 
The  question arises as to whether  generic pro-mrning 
can evolve a classifying program consisting of initially 
unspecified detectors. an initially unspecified iterative 
calculation  incorporating the as-yet-undiscovered 
detectors, and an initially unspecified final calculation 
incorporating the results of the as-yet-undiscovered 
iteration. The genetically  evolved  program in this paper 
accomplishes  this.  It  achieves a better error rate than P 
four  algorithms  described in Weiss,  Cohen,  and Indurkhya 
(1993).  When  analyzed, the genetically  evolved program 
has a simple biological  interpretation. 

Transmembrane Domains in Proteins 

Proteins are polypcptidc molecules  composed of 
sequences of amino  acids.  Therc are 20 amino  acids (also 
called residues) in the alphabet of proteins. They  are 
denoted by b c  letters A, C, D, E. F, G. H. I, K. L, M, N 
P, Q. R. S, T. V, W. and Y .  Broadly speaking. the 
scquencc of amino acids in  a protein determines the 
locations of its  atoms in  thrcc-dimcnsional  space; this. in 
turn. dctcrmincs thc  biological  structure  and  funcuon of a 
protein (Anfinscn 1973). 
A uansmembnnc protcin is a protein lhat finds i d f  
embedded in a rncmbrane (c.g.. 3 ccll wall) in such a way 
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i,,;li part o f  thc protcin is  localcd  on onc sidc of thc 
,,,,mhranc, part is within  thc mcmbranc.  and part is on  thc 
r , p p t r s i t ~  sidc of thc rncmbnnc. Transmcmbranc  protcins 
,,,,cn cross back and fonh through  thc  mcmbranc  scvcral 
,,mc'S and havc short loops immcrscd in  thc diffcrcnt 
rr,rl,cu on caclr sidc of Lhc mcmbranc. Thc Icnglh of cach 
L,;lnsrncrnhranc domain and  cach loop or othcr non- 
ir3nsmcmbranc arca arc  usually  diffcrcnt. 
Transmcmbranc protcins pcrform functions such as 
,,.nsjng 1hc prescncc of ccruin chcmicals or ccrtain 
, , im[l l i  on onc  sidc of thc mcmbranc and  wansporting 
b.l,:-nicals or transmitting  signals to thc  othcr  sidc of thc 
,r,:~branc. Understanding rhc bchavior of 
Ir3nsmcmbranc protcins rcquircs  idcntification of thcir 
uJnsmcmbranc  domains. 
Biological mcmbranes are of hydrophobic  (watcr-hadng) 

The amino acids in the  rransmcmbranc 
domain of a prolein that are exposcd to thc  membrane 
ihcrcfore have a pronounced  tendency to k hydrophobic. 
This tendency toward hydrophobicity is an overall 
disu-ibutional characteristic of the entire protein segment 
(nor of any particular one or two amino acids of the 
sqmcnt). Many transmembrane domains arc a-helices, 
so all the residues of the helix are exposed to the 
membrane  (and are therefore  predominantly 
hydrophobic). Although some  transmembrane domains 
y e  p -strands (so that only some residues that arc actually 
cxposed to the  membrane). very few such  transmembrane 
domains are annotated in the computerized databases. 
Thus. as a practical  matter. our discussion here is limited 
10 a-helical nansmernbrane domains. 
Consider, for example, the 161-residue mouse peripheral 
t r p d i n  protein 22 (identified by the locus name 
"PM22-MOUSE" in release 27 of the SWISS-PROT ' computerized database of proteins (Bairoch and 
3oeckmann 1991). The four  uansmembrane  domains of 
this  protein are 1 d y t e d  at residues 2-31,65-91.96-119, 

A successful classifying program should identify a 
scgment such as the following 24-residue  segment from 
positions 9 6 1  19: 

WITGFFQILAGLCVMSAAAIYN. (1) 
as a transmembrane domain. 
A successful classifying program should  also  identify the 
r'ollowing 27-residue segment  between  positions 35-61: 

ITDLWQNCTISALGAVQHCYSSSVSEW (2) 

a d  134-156. 

as being in a non-uansmembrane area of the  protein. 
This classification problem will be solved by genetic 
programming  without reference to any knowledge  about 
the hydrophobicity of the 20 amino  acids:  however,  we 
w i l l  use such knowledge to explain the problem (and, 
later. to interpref the genetically  cvolved  program). Two 
thirds of the 24 residucs of  segment (1) are in chc catcgory 
consisting of I. V, L, f, c , M, or A having the highest 
numericaI values of hydrophobicity on Kyrc-Doolittle 
scaIc. IC a human wcrc cluslcring thc 20 hydrophobicity 
\ . ~ U C S  into thrm categories with thc bcncfit of knowledgc 

knowlcdgcablc  human would clustcr into a hydrophilic 
catcgory). Even Lhrough zhcrc are somc  rcsiducs from all 
thrcc  catcgories in segmcnls(1).  scgment (1) is 
prcdominantly  hydrophobic and is, i n  fact, a ,  
uansmcmbranc  domain of  PM22-MOUSE. 
In contrast. 13 of the 27  (about half) or the residues of 
scgmcnt (2) arc ncutral. eight (about a quarter) are 
hydrophobic,  and six (about a quarter) arc hydrophilic. 
This  distribution is very  different from thar of segment 
(1).  Segment (2) is.  in fact, a non-transmembrane area of 
PM22-MOUSE. 

Background on Genetic Programming 

John  Holland's pioneering 1975 Adapfalion  in Nazural 
and  Arlificial Sysfems described how the evoIutionary 
process  in  nature can be applied UI artificial systems  using 
the genetic  algorithm  operating  on fixed length character 
strings (Holland 1975. 1992). Additional  information on 
current work in genetic algorithms can be found in 
Goldberg  (1989), Forresr (1993), Davis (1987,1993), and 
Michalewicz  (1992). 
Genetic programming is an extension of the genetic 
algorithm  in  which the genetic population consists of 
computer  programs (that is, compositions of primitive 
functions and teI"IiMk). As described in Genetic 
Programming: On the Programming of Computers by 
Means of Natural Selecrion (Koza 1992), genetic 
programming is a domain independent method that 
genetically breeds populations of computer programs to 
solve  problems  by  executing  the  following three steps: 
(1) Generate an  initial population of random 

computer programs composed of the primitive functions 
and  terminals of the problem. 

(2) Iteratively pedorm the  following sub-steps until 
the  termination CriK&On has been satisfied: 
(a) Execute each program  in the populdon 

@I Create a new population of programs by 

and assign it a fitness value  according to how  well it 
solves  the  problem. 

applying the following  two  primary operations. The 
operations are applied to program(s) in the 
population selected with a probability based on 
fitness (i.e.. the fitrer  the program, the more  likely it 
is to bc selecxed). 

(9 Reproduelion: Copy an existing 
program IO the new  population. 
(ii) C r o s s o v e r :  Create two new 
offspring programs for the new popularion by 



gcnctically  rccombining  randomly  choscn parts of 
two existing programs. Thc gcnctic crossovcr 
(sexual  rccombinatian) operation (dcscribed 
below) opcratcs on  two parental computcr 
programs and produccs IWO offspring programs 
using parls of cdch  parcnt. 

(3) Tfic singlc bcsl compulcr program in thc 
population  produccd during tllc run is dcsignatcd as thc 
result of the run of gcnctic  programming. This result 
may bc a solution (or approximatc solution) to thc 
problem. 

Recent advances in pcnctic programming arc dcscribed in 
Kinncar (1994). A videotape  visualization  of  numerous 
applications of gcncLic progranlming  can  be  found i n  
Koza and Rim (1992) and Koza (1994). 
The genetic crossover  opcralion  operates  on  two  parental 
computer  programs  selccted with a probability  based on 
fitness and produces two new offspring programs 
consisting of parts of cach parenL 
For examplc, consider the following computer program 
(shown here as a LISP symbolic  expression): 
(+ ( *  0.734 2 )  (- X 0.789)). 

We would ordinarily write this LISP Sexpression as 
0.234~ + x -0.789- This two-input, one-output 
computer  program takes x and z as inputs and produces a 
single  floating  point outpuL 
Also. consider a second program: 
(*  (* 2 Y) -(+ Y ( *  0.314 Z l U .  

?his program is equivalent to zy(y  + 0.3142). 
The crossover  operation creates new offspring by 
exchanging  sub-trees (Le., subroutines,  sublists, 
subprocedures. subfunctions) between the two parents. 
The two parents are typically of different sizes and 
shapes. The sub-trees to be exchanged (called crossover 
fragments) are selected at random  by selecting crossover 
points at random. Suppose that  crossover points are the 
multiplication (*) in the first parent  and the addition (+) 
in the second  parent. The two  crossover  fragmenrs are the 
underlined sub-programs (sub-lists)  in the two  parental 
LISP S-expressions. 
The two offspring resulting from  crossover are 
(+ J+ Y ( f  0.314 2) \ (- X 0.789)) 

and 

( *  ( *  z r) (* 0.734 ZL). 

Assuming closure among  the  functions and terminals of 
which the parental programs are composed, crossper 
produces  synlactically  and  semantically  valid  programs as 
offspring. Because  programs  are s e l e c t e d  to participate in 
thc crossover operation with a probability  based On their 
fimcS.5, crossover al1oeax.s  future  trials of the search for a 
solution 10 h e  problem to regions of the space of possible 
comput~  programs containing  programs  with  promising 
P m .  

Automatic  function  dclinilion is uscd LO cnablc genetic 
programming to cvolvc subroutines during a run. 
Automatic  function  dcfiniiion  can be implemented within 
the context of gcnctic  programming  by establishing a 
constrained  syntactic  structure  for the individual  programs 
in the  population ar dcscribcd i n  Cenelic Programming Ii: 
Scalable Aulornalic Programming by Means of 
Auomalically Defined Fnnclions (Koza 1994). Each 
program i n  the  population contains  one (or more) 
function-dcfining branches,  one  main  rcsult-producing 
branch.  and  possibly  other  types of branches  (such as 
iteration-pcrforming branches). The function-defining 
branch(es) dcfinc thc automatically d4ined functions 
A D F O ,  m F 1 ,  ctc. Thc result-producing branch  may 
invoke thc automatically  dcfincd functions. The  value 
returned by thc  overall  program consists of the  value 
returned by  the  result-producing  branch. 
The  initial random generation of [he population 
(generation 0) is created so that every individual program 
in the population has a constrained syntactic svucture 
consisting of the problem's particular arrangement of 
branches. Each  branch is composed of functions and 
terminals  appropriate to that branch. This consmined 
syntactic  structure must be preserved as the run proceeds 
from generation to generation. Structure-preserving 
crossover is implemented by limiting crossover to points 
lying  within  the  bodies of the various branches  (branch 
typing). The crossover point for the first parent is 
randomly selected, without resuiction, from  the body of 
any one of the  branches.  However, once this selection is 
made for the first parent. the crossovq point of the  second 
parent is randomly  selected  from the W y  from the same 
type  of  branch.  This  method of performing crossover 
preserves the syntactic  validity of all offspring  throughout 
the  run. As the run  progresses, genetic programming  will 
evolve different function-defining branches, different 
result-producing  branches, and different ways of &ling 
these automatically defined functions from the result- 
producing  branch. 

Preparatory  Steps 

In applying  genetic programming with automatic  function 
definition to a problem,  there are six major preparatory 
steps. These steps  involve  determining 
(1) the set of terminds for  each  branch, 
(2) the set of functions for each  branch, 
(3) the fitness measure, 
(4) the  parameters  and  variables for controlling  the 
m, 

terminating a run. and 
(5) . the criterion for designating a result and 

(6) the  architecture of the  overall program. 
We begin by deciding  that the overall architecture of the 
yet-to-be-evolved classifying  program  will  have  to  be 
capable of  categorizing  the  residues  into  useful  categories. 
then iteratively  pcrforming  some arithmetic calculations 



and conditional  opcmtions on thc catcgorics. and finally 
pcdorming somc arihmctic calculations and  conditional 
operauons to rcach a conclusion. This suggests an overall 
architecture for thc cIassifying program of sevcral 
automatically defined functions (say A D F O ,  ADF1, 
A D F ~ )  to serve as detcctors for categorization, an 
iteration-performing branch, I PBO, for performing 
arithmetic operations and conditional operations for 
examining  the  residues of  the  protein  segment  using the 
as-yet-undiscovered detectors, and a result-producing 
branch, RPBO, for performing  arithmetic  operations  and 
conditional  operations  for  reaching a conclusion  using  the 
as-yet-undiscovered  iteration. 
Automatically  defined  functions  seem well suited lo the 
role of dynamically defining categories of  the  amino 
acids. If he automatically  defined  functions are to play 
the  roIe  of set formation,  each  defined  function  should be 
able to  interrogate  the  current  residue as to which of the 
20 amino acids it is. Since we anticipate that some 
numerical  calcuIations will subsequently be performed on 
the result of the categorization of the residues, we  employ 
n&-valued  logic. rather than Boolean-valued  logic 
rerurning the non-numerical  values of True and  False. 
One way to implement this approach is to  define 20 
numerical-valued zero-argument logical functions  for 
determining  whether the residue  currently  being  examined 
is a particular amino acid. For example, (A? ) is the 
zero-argument residue-detecting function returning a 
numerical .+1 if the current residue is alanine (A) but 
otherwise returning a numerical -1. A similar residue- 
detecting function is defined for each  of  the 19 other 
amino acids. Since we envisage that the automatically 
defined functions will be used for set formation. it Seems 
reasonable  to  incIude the logical  disjunctive  function in 
the function set of he automatically  defined  functions. 
Specifically, DRN is the two-argument  numerical-valued 
disjunctive function  returning +I if either or both  of its 
arguments are positive,  but  returning -1 otherwise. 
The terminal set Ifd for each of the three function- 
defining  branches (ADFO, ADF~, and ADF2) contains the 
20 zero-argumenL  numerical-valued residue-detecting 
functions. That is, 

The function set Fffd for the three  function-defining 
branches (ADFO. ADF1, and ADFZ) contains only the 
two-argument numerically-valued logical disjunctive 
funcrion. That is, 

Ifd = ( ( A ? ) ,  IC?) I . . - I (Y?) 1 - 

Typical computer programs  contain iterative operators 
that perform some specified  work until some  condition 
expresscd by a terminalion  predicate is satisfied. When 
we attempt to includc  iterative  operators in genetically- 
evolved  programs.  wc face the  practical  problem  that both 
the  work  and the termination  predicate are initially  created 
at  random  and are subsequendy subject to modification by 
the crassover opemion. Consequently. iterativc  operators 
will, x &I, be nesred and  consume  enormous  amounts of 

computcr  timc or  will,  at worst, havc unsatisfiablc 
termination  prcdicatcs  and go into infinitc loops. This 
problem can somctimcs bc parfially alleviated by 
imposing  arbitrary  time-out limits (e.g., OR each iterative 
loop individually and all  itcrativc  loops  cumulativcly). 
In problems whcre wc can envisage  one  iteralive 
calculation  being  usefully pcrformed ovcr a particular 
known, finite sct, there is an attractive alternative to 
permitting  imposing  arbitrary time-out limis. For such 
problems,  the  iteration  can be restricted to exactly one 
iteration  over the finite  set. The termination predicate of 
the iteration is thereby fixed and is not subject to 
evolutionary  modification. Thus, there is no nesting'and 
there are no  infinite  loops. 
In the case of problems  involving the examination of the 
residues  of a protein, iteration can very naturally be 
limited to the  ordered set of amino acid residues of the 
protein  segment  involved. Thus, for this problem, we 
employ  one  iteration-performing  branch,  with the iteration 
restricted to the  ordered set of amino acid residues in the 
protein  segment. That is, each time iterative work is 
performed by the  body  of be iteration-performing  branch, 
the current residue of the  protein is advanced to the  next 
residue of the protein  segment  until the end of the entire 
protein segment is encountered. The result-producing 
(wrapup) branch  produces the final output of the overall 
Program. 
Useful iterative calculations typically require both an 
iteration variable  and  memory (state). That is, the  nature 
of the work  performed by the body of the iteration- 
performing branch  typicalIy varies 'gepending on the 
current value of the iteration variable. Memory is 
typically required to transmit information from one 
iteration  to  the  next.  In this probIem, the same work is 
executed as many  times as there are residues in a protein 
segment, so the iteration variable is the residue at the 
current position in the segment. Depending on the 
problem, the iteration  variable  may be explicitly  available 
or be implicitly  available through functions that permit  it 
to be interrogated. For this problem, the automatically 
defined functions provide a way to  interrogate the 
residues of the prolein  sequence. 
Memory  can be introduced into any program by means of 
settable variables, MO, M 1, M Z  , and M 3 .  Settabie 
variables are initialized IO some appropriate value (e.g.. 
zero) at he beginning of the execution of the iteration- 
performing branch. These settable variables typically 
change as a result of each  iteration. 
The terminal set TjPm for the iteration-performing  branch 
is 
qpw = ( LEN, MO, M I ,  M2, M3,m). 
Here 9l reprcscnts floating-point random constants 
bctwecn -10.000 and +IO.OOO with a granularity  of 0.001 
and LEN is the Icngth  of Lhc currenL  protein segment. 
Sincc wc cnvisage that thc itcntion-pcrfonning branch 
will pcrform  numerical calculations and makc decisions 
bascd on thcsc calculations, it w m s  reasonabIe to include 
thc four  arithmctic  opcrations and a condilional operator 
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in  1 1 1 ~  function sct. Wc have uscd 111c four arirhlncric 
funcljons (+, -, *, and %) and thc conditional  comparativc 
opcralor I FLTE (If LCSS  Than or Equal) on many 
previous problems. so wc includc thcm in the function sct  
for thc itcration-pcrforrning branch. Thc protcctcd 
division  function % takcs LWQ argumcnls  and  rctums  onc 
whcn  division by 0 is attcmptcd  (including 0 dividcd by 
0). and. ohcrwisc. rclurns  thc normal quoticnt.  Thc four- 
argument  conditional branching function IFLTE 
cvaluatcs and returns its  h i r d  argumcnt i f  i t s  first 
argument is less than or equal  to i t s  sccond  argumcnt  and 
olhcrwisc  evaluatcs and  returns its founh argument 
Since a numerical  calculation  is  to bc performed  on  thc 
rcsu1t.s of the  categorization pcrformcd  by thc  function- 
dcfining  branchcs,  thc  functions ADFO. ADF1, and ADF2 
are included i n  t h e  function sct for the iteration- 
pcrforming  branch. 
We  need a way to change the settable variables MO. ~ 1 ,  
~ 2 ,  and M3. The one-argument  setting  function SETMO 
can be used to s e t  MO to a panicular value. Simihly. h e  
setting functions SETM1,  SETM2. and SETM3 can be 
used to se~ the  respective values  of  the settable  variables 
M1, M2, and M 3 ,  mp3Xively. Thus,  memory  can be 
-wizfs (i.e., the state can be set) with  the setting 
functions, SETMO,  SETM1,  SETMZ, and SETM3. and 
memory can be read (i.e., the state can be interrogated) 
merely by  referring to Ihe terminals, MO, M1, M2, and M3. 
Thus, h e  function set spm for  the  iteration-performing 
branch, IPBO, is 
zpbO = (ADFO, ADF1, ADF2, SETMO, SETM1, 

SETM2, SETMS, IFLTE, +, -, *, %). 
taking 0. 0. 0, 1,  1, 1. 1. 4. 2. 2. 2,  and 2 arguments, 
respectively. 
The result-producing  (wrap-up)  branch then performs a 
non-iterative floahg-point calculation and produces the 
final result of the overall program. The settable  variables 
MO. M1. M2, and M3 provide a way  to pass the results of 
the iteration-performing branch to the  result-producing 
branch. 
The terminal set l rpbo for the  result-producing  branch, 
WBO, is 
?& = {LEN, MO, M 1 ,  M2, M3,S). 
The function set 3 ; p ~  for the result-producing branch 
RPBD, is 
F& = ( IFLTE, +. -, *, %]  . 

Iaking 4,2,2,2, and 2 argumenrs,  respectively. 
A wrapper is used to converr the floating-point value 
produced by the result-producing  branch into a binary 
outcome. if the geneticallyevolved program returns a 
positive value, the segment will be classified as a 
transmembrane  domain, but olherwise it  will be classified 
as a non-transmembrane area. 
Release 25 of the SWISS-PROT protein data base 
contains 248 mouse  transmembrane  proteins  averaging 
499.8 residues in length. Each  protein  contains  between 
onc and 12 tnnsmembrane domains,  the  average  being 

2.4. Thc mnsmcmbranc domains rangc i n  lcrlgth from 15 
and 101 rcsiducs and avengc 23.0 in Icngh. 
123 of thc  248  proteins  wcrc  arbitrarily  sclcctcd to creak 
thc  in-sample set  of fitness cascs  to mcasurc  fitncss during 
thc evolutionary process. One of b c  transmembrane 
domains  of  cach of thcsc 123 prolcins was sclccred a[ 
random as a positivc fitncss casc for this  in-sample set 
Onc scgmcnt of thc  samc  lcngrh as a random one of  the 
uansmcmbrane  scgmcnts that  is  not conuincd i n  any of 
thc  protein's  transmcmbranc  domains  was  sclccted  from 
cach  protein as a ncgativc  fitncss casc. Thus, there are 
123  positivc  and 123 ncgativc iitncss cascs i n  the in- 
sample set of fitncss cam. 
The evolutionary  process  is driven  by fitness as measured 
by the s e t  of  in-samplc  fitness cascs. Howcvcr,  the Lrue 
measure  of pcrformancc for a classifying program is how 
well it generalizes to diffcrent cases from the same 
problem environment. Thus, 250 out-of-samplc fimess 
cases (125 positive  and 125 ncgativc) wcrc creaked from 
the  remaining  125  proteins in a manner similar to  the 
above. These out-of-sample  fitness cases were  then used 
to validate  the  performance of the genetically-evolved 
classifying  programs. 
Fitness  will  measure how well a panicuIar genetically- 
evolved classifying  program  predicts whether the  segment 
is. or is not,  transmembrane  domain.  Fitness is measured 
over a number of trials, which  we call fitness cases. The 
fitness cases for this problem consist of protein  segments. 
When a genetically-evolved classifying program in the 
population is tested  against a particular fitness case, the 
outcome  can be a true-positive, true-n\egative. false- 
positive, or false-negative.  Fitness can b~ measured by 
the  correlation  coefficient C. When the predictions and 
observations each take on  only two possible values, 
correlation is a general, and easily computed, measure for 
evaluating the performance of a classifying program. 
Consider a vector in a space of dimensionality NfC of  the 
correct answers (with the integer 1 representing a 
transmembrane  domain and  the integer.0 representing a 
non-transmembrane area) and  the vector of length Nfc of 
the predictions (1 or 0) produced by a particular 
genetically evolved program. Suppose each  vector is 
transformed into a zero-mean  vector  by subtracting the 
mean value of all of  its  componenrs from each of i ts  
components. The correlation, C. is thz cosine of he angle 
in this space of dimensionality NfC between  thc zero- 
mean vector of  correa answers and b e  zero-mean vector 
of predictions. The correlation coefficient indicares how 
much better a particular predictor is than a random 
predictor. A correlation C of -1.0 indicates vectors 
pointing  in opposite  directions in Nfc -space (Le., g r e a [ e s t  
negative correlation): a correIation of +1.0 indicates 
coincident  vectors (i.e.. greatest positive correlation); a 
correlation C of 0.0 indicates  orthogonal  vectors (Le., no 
correlation). 
The  correlation. C. lends  itsclf  immediately to k ing  !he 
measure  of m v  fitncss mcasure for a genctically evolved 



computer program. Since mw fimess ranges between -1.0 
and +1.0 (higher values being beucr). standardized  fitness 

("zero is best") can then be defined as -. 
Standardized fimcss ranges  between 0.0 and +1.0, lower 
values being better and a value  of 0 k ing  the best. Thus, 
a standardizcd fitness of 0 indicates perfect agreement 
bctwcen the predicting  program  and the observed  reality: 
a standardized  fitness of +1.0 indicates perfect 
disagreement; a standardized fitness of 0.50 indicates  that 
the predictor  is no better than random. 
The error rule is the  number of fitness cases for which  the 
classifying  program is incorrect divided by the total 
number  of fitness cases. The error rate is a less general 
measure  of performance for a classifying program; 
however, Weiss,  Cohen, and Indurkhya (1993)  use  the 
error rate as their  yardstick for comparing three methods 
in  the biological literature wilh their new algorithm 
created using the SWAP-1  induction technique. 
Therefore, we present our final results in  terms of both 
correlation  and error rate and we  use error rate for the 
purpose of comparing  results. 
Population size, M, was 4,000. The maximum  number of 
generations  to be run, G. was set  to 21. The  other 
parameters for  controlling  the  runs  of  genetic 
programming  were the default values specified in Koza 
(1934) and  which have been used for a number of 
different  problems. 

I -C 
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R 6 U l i S  

We  now describe the two besr runs out of out 11 runs of 
this problem, starting  with the second best 
The vast majority of he randomly  generated  programs  in 
the initial random population  (generation 0) of run 1 have 
a zero or  near-zero  correlation. C, indicating that they are 
no better than random  in cIassifying whether a protein 
segment is a uansmembrane domain.  However,  even in 
the  initial  random  population, some individuals are better 
rhan others. 
The best-of-generation classifying program from 
generarion 0 of run 1 has an in-sample  correlation of 0.48 
as a result of getting 99 true  positives. 83 true  negatives, 
40 false  positives.  and 24 false negatives over the 246 in- 
sample fiuless cases. This program has a standardized 
fitness of  0.26. This program  myopically looks at  only 
the last  residue of the protein segment and categorizes  the 
enlire segment based only on one, highly flawed 
automatically  defined  function.  However, this program is 
bctter  than any of the other 3.999 programs in the 
population at generation 0. In the valley of the blind,  the 
one-eycd man is king. 
The worst-of-generation classifying program from 
gencnlion 0 of run 1 has an in-sample  correlation of -0.4 
and standardized fitness is 0.70. This program  achieves 
his negativc value of cornclarion  by  using  incomplcte 
information in prwisely thc wrong  way. 

In generation 2 of run 1. the best-of-generation program 
achieves an incrementally  better value for correIation 
(0.496  in-sample  and  0.472  out-of-sample) by virtue of an 
incremental  change  consisting of just one residue in the 
defmition  of ADFO. 
There is a major qualitative  change in generation 5. The 
best  of  generation 5 is the fmt best-of-generation  program 
that  makes  its  prediction  based on the entire protein 
segment. This program contains 62 points (i.e.. 62 
functions  and  terminals in the bodies of the branches), has 
a distinctly beuer in-sample  correlation of 0.764, an out- 
of-sample  correlation of 0.784. and a s tandard id  fitness 
of  0.12. 
(progn (defun ADFO ( I  

(values (ORN (ORN (I?) (A?)) (ORN 
( O m  (L?) (G?)) (N?) 11  1 )  . 

(&fun ADFl ( I  
(values (ORN (ORN (ORN (ORN (G?) 
(D?)) (ORN (E?) (V?)) ) (ORB (ORN 
(R?) (E?) ) (ORN (T?) (P?)) 1 )  (OF3 
(N?) (S?) 1 ) )  ) 

(defun ADFZ ( )  
(values (ORN (ORN  (ORN (L?) (R?)) 
(ORN (V?) (P?)) 1 CORN (G?) (L?)) ) I )  

(progn (looping-over-residues (SETMl (- (+ M1 
(ADm)) (ADW))) 

(values (* (% (+ (% -9-997 M3) M1) 6.602) (+ 6.738 
(% (- M3 L) (+ M3 M2))))))) 

The iteration-performing  branch  of  this  program uses the 
settable variable M1 to create a ynning sum of the 
difference  between two quantities. S ~ i f i c a I l y ,  as the 
iteration-performing  branch is iteratively executed over 
the  protein  segment, ~1 is set to h e  current value of M 1  
plus the difference. between ADFO and A D F 1 .  ADFO 
consists of  nested ORNS involving  the three hydrophobic 
residues (I, A, and L). one neutd residue (G), and  one 
hydrophilic  residue (N). A D F l  consists of nested Oms 
involving one hydrophobic residue (V), four neutral 
residues (G, T. P, and S ) ,  and he four most  hydrophilic 
residues (D, E, R. and N). 
Because the neutral G residue and the hydrophilic N 
residue  appear in both ADFO and AVF1, there is no  net 
effect on the running sum of the differences, M 1 ,  
calculated by the iteration-performing  branch when  the 
current  residue is either G or N. There is a positive 
contribution (from ADFO) to the running sum M 1  Only 
when h e  current  residue is I, A, or L (all of  which are 
hydrophobic),  and  there is a negative  conlribution  (from 
A D F ~ )  to  the  running sum.Ml only  when  the  current 
residue is D, E, or R (all of  which are hydrophilic). The 
running  sum MI is a count (based on a sample of only 
hree of  the  seven  hydrophobic  residues  and  only three Of 
the seven hydrophilic residues) of the excess Of 
hydrophobic  residues  over  hydrophilic  residues. 
When simplified. the result-producing branch is 
equivalent to 1-17 x (MI + 1) , so the protein segment is 
classified as a transmembrane  domain  whenever MI is 
grater than 0. In other words,  whenever the number Of 
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wcufrcnccs or thc I h r c c  panicular  hydrophobic  rcsiducs 
0 .  A. and L) cquals or cxcecds LIIC number of occurrences 
of h c  hrm particular  hydrophilic  residues (D, E. and n), 
[he  scgmcnt is classified as a  vansmembrane domain. 
This rclativcly simple calculation is a highly irnpcrfect 
predictor of transmembrane  domains, but it is  often 
COITCC~. Becausc it examines thc entire given  protein 
xgmcnt. it is considerably b a r e r  than any of i t s  a n ~ ~ ~ t o r s .  
[n generation 6 of r u n  1, the  bcst-of-generation  program 
has marginally  bcller values for correlation (0.766 in- 
.sample and 0.834 out-of-sample).  This  improvement  is a 
consequence of a small, buL beneficial, evolutionary 
change in the ddinition of ADFl. This small incremcnd 
improvement  (produced by the crossover  operation)  is 
typical of the intergenerational  improvements  produced 
by gcnetic  programming. 
The 62-point best of generation 8 of  run 1 exhibits a 
substantial jump in performance  over  all its predecessors 
from  previous  generations.  In-sample  correlation rises to 
0.92; out-of-sample correlation rises to 0.89. 
(progn (defun ADFO () 

(values (ORN (ORN (ORN (I?) (M?)) 
(ORN (V?) ( C ? )  1 )  (ORN (ORN (L?) 



+,ftc,- gcncration I I of run 1. the in-samplc  pcrformancc 
[,f the bcst-of-gencration program  continues to improve. 
For cxamplc, h e  in-sample correlation  improves  from 
0.94 to 0.98  between generations 11 and 18  and the 
n u m b r  of in-sample errors (i.e.,  false  positives  plus  falsc 
ncgativcs) drops from 7 10 3. However,  this  apparent 
improvemat  after generation 11  is  illusory  and is due  to 
ovcfiuing. Genetic programming is driven  to  achieve 
kucr and bctter  values of  fitness by the  relentless cffecs 
of Darwinian natural selection. Fitness  for  this  problcm  is 
basd on  the value Of the correlation  for  the  predictions 
made by the genetically-evolved program  on thc i n -  
 ample S C ~  of fitness case~. However, the m e  measure of 
Prfomlance for a classifying  algorithm is how well i t  
generalizes to other, previously unseen sets of data  (Le., 
Ihe ouf-of-sump/e data). In  this run. the  out-of-sample 
correlation drops from  0.96 to 0.94 between  generations 
11 and 18 and the number of out-of-sample errors 
increases  from 5 to  7. The maximum  value  of out-of- 
sampIe correlation is attained at generation  11.  After 
eeneration  11,  the  evolved  classifying  programs  are  being 
fit more  and more to the idiosyncrasies of  the  particular 
in-sample fitness cases employed in the  computation  of 
fitness. ?he classifying  programs  after  generation 11 are 
not  getting  better at classifying  whether  proteins  segments 
are transmembrane  domains.  Instead,  they are merely 
getting better at memorizing  the  in-sample data. In fact, a 
continuation of this run out to generation 50 produces  no 
result  better than that attained at generation  11. 
We now consider run 2. This best-of-all run produced the 
b e s t  value of out-of-sample  correlation of  any  run,  namely 
0.968. 
(pzcgn (defun ADFO (1 

(values (ORN (ORN (ORN. (I?) (H?)) 

(Y?) (N?) ) (ORN (T?) (43))) (ORN 
(Ai) (x?) 1 1 1 )  1 

6 ..-. (ORN (P?) ( G ? )  1 )  (ORN (ORN (ORN 

(&fun PiDFl () 
(valu& (ORN (ORN ( O W  (A?) (I?)) 

(ORN {L?) (W?))) (ORN (ORN (T?) 
(L?) 1 (Om (T?) (w?) ) ) ) ) )  

(defun ADF2 0 
(values (OM (OW (OW (ORN (ORN (D?) 
(E?)) (ORN (ORN (ORN (D?) (E?) ) 
(ORN (ORN (T?) (W?)) (ORN ( 4 2 )  
(D?)) 1 )  CORN (K?) (P?)) 1 )  (OW (K?) 
(P?) ) ) CORN (T?) (W?) ) )  (ORN  (ORN 
(E?) (A?) ) (OW (N?) ( R ? ) ) ) ) )  1 

@rogn (loopsver-residues (SETMO (+ (- (ADF1) 
(ADW) (Smm MONN 

MO)) (+ (% (% M3 MO) (9'0 (+ MO M3) (% M1 
M2))) m)) (% M3 MO)))))) 

This high correlation was achieved on generation 20 by 
the 10s-point program  above with an  in-sample 
correlation of  0.976  resulting  from  getting  121 true 
positives. 122 Vue negatives, 1 false  positive,  and 2 false 
negatives over the 246 in-sample  fimess cases. Its out-of- 
sample correlation of 0.968 is  the  result of gelling  123 
m e  positives, 123 me negatives, 2 false  positives,  and 2 

(values (9a (% M3 MO) (% (% (% (- L -053) (* MO 

false negatives  over the 250 out-of-sarnpIe fitness cascs. 
ILS out-of-sample error rate is only 1.6%. 
Ignoring  the three residues common to the definition of 
both A D F l  and ADFZ. ADFl returns 1 if the current 
residue  is I or L and ADFZ returns I if Ihe current  residue 
is 0.  E. K. R. Q. N, or P. I and L are two of thc seven 
hydrophobic  residues on the  Kyte-Doolittle  scale. D, E. 
K, R. Q. and N are six of the  seven  hydrophilic  residues, 
and P is  one of the neuml residues. 
In the itcration-performing  branch of this  program from 
generation 20 Of run 2. M O  is the running sum of the 
differenccs of the  values  returned by ADFl and ADF2. 
M O  will bc posillve  only if the  hydrophobic  residues in the 
protein  scgment  are so numerous  that  the  occurrences of I 
and L outnumber the occurrences of the six hydrophilic 
residues  and  one  neutral  residue of ADFZ. M3 is the same 
as the accumulated  value  of MO except that M3 lags MO by 
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Conclusions 

Table 1 shows Lhc out-of-samplc crror ratc for thc four 
algorithms for classifying transmembrane domains 
rcvicwcd in Weiss,  Cohcn.  and  lndurkhya (1993) as wcll 
as thc out-of-samplc m o r  rate of our best-of-all 
gcnehzalty-cvolvcd program  from  gcneration 20 of run 2 
above. We wrotc a computer  program f~ tcst the  solution 
discovered by the SWAP-I induction  technique used in 
the first experiment of  Weiss.  Cohcn.  and  Indurkhya 
( 1  993). Our  irnplcmcntation  of  their  solution  produced an 
crror rate on our ICSL data  idcntical to the  error ratc 
reported by thcm  on their own test data (i.e.,  the 2.5% of 
row 4 of h e  table). 
Tabfe 1 Cornparison of five methods. 
Method Error 

rate 
von Heijne 1992 

2.7% Engelman,  Steitz, and Goldman 
2.8% 

1986 I 
Kvte-Doolittle 1982 I 2.5% ~~ 

Geiss, &hen, and Indurkhya 1993 i 2% 
Best genetically-evolved pro,o;ram I 1.6% 
As can be seen, the error rate of the best-of-all 
geneticallyevolved program from generation 20 of run 2 
is better rhan the error rates of  the other four methods 
reported in the  table. This genetidly evolved program is 
an instance of an algorithm discovered by an automated 
learning paradigm  that is superior to that  written by 
human  investigators. In fact, our second best genetically 
evoIved program (from generation 11 of run 1 )  also 
outscores the other four methods (with an out-of-sample 
error rate of 2.0%). 
In summary,  without using foreknowledge of 
hydrophobicity, genetic programming with automatic 
function definition was able to evolve a successful 
classifying program  consisting of initially-unspecified 
detectors, an initially-unspecified iterative calculation 
incorporating the  as-yet-undiscovered  detectors, and  an 
initially-unspecified find calculation  incorporating the 
results of the as-yet-undiscovered itexauon. 
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