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The protein threading problem with sequence amino acid

interaction preferences is NP-complete

\

Richard H.Lathrop

Anificial Inteiligence Laboratory. Massachusens Institute of Technology.
Cambridge. MA 02139, USA

In recent protein structure prediction research there has
been a great deal of interest in using amino acid interaction
preferences (e.g. contact potentials or potentials of mean
force} to align (‘thread’) a protein sequence to a known
structural motif. An important open question is whether a
polynomial time algorithm for finding the globally optimal
threading is possible. We identify the two critical conditions
governing this question: (i) variable-length gaps are admit-
ted into the alignment, and (if) interactions between amino
acids from the sequence are admitted into the score func-
tion. We prove that if both these conditions are allowed
then the protein threading decision problem (does there
exist a threading with a score <K?) is NP-complete (in the
strong sense, i.e. is not merely a number problem) and the
related problem of finding the globally optimal protein
threading is NP-bard. Therefore, no polynomial time algo-
rithm is possible (unless P = NP). This result augments
existing proofs that the direct protein folding problem is
NP-complete by providing the corresponding proof for the
‘inverse’ protein folding problem. It provides a theoretical
basis for understanding algorithms currently in use and
indicates that compﬁtahonal strategies from other NP-
complete problems may be useful for predlctwe algorithms,
Kex words: contact potentials/inverse protein folding/NP-com-
plete/protein structure predlcuon/protem threading/sequence-
structure alignroent

Introduction

The protein folding problem is to start from a string giving
the protein’s amino acid sequence and compute its correctly
folded 3-D protein structure. It is an important problem because
proteins underlie almost all biological processes and their
function follows directly from their 3-D folded shape. Its
imponance is escalating rapidly due to the rapid increase in
the number of sequences becoming available compared with
the slow growth in the number of experimentally determined
3-D protein structures. The direct approach to protein folding
seeks to find the folded conformation having minimum energy.
This is difficult because (i) a folded protein results from the
delicate energy balance of powerful atomic forces and (ii) the
vast number of possible conformations poses a formidable
computational barrier. The forces involved are often poorly
understood or difficult to model accurately, and include stabiliz-
ing and destabilizing terms making large contributions of
opposite sign summed over 2 very large number of atoms
(Creighton, 1983). The computational burden of the direct
approach has been shown o be NP hard (wxdely assumed to

tion (e.g. secondary structure) constraints {Ngo and Marks,
1992; Fraenkel, 1993; Unger and Moult, 1993).

One important alternative approach is to use the known
protein structures as (i) spatial folding templates, (ii) additional
knowledge about protein structure and (iii) constraints on
possible folds. This is a powerful strategy because folded
proteins exhibit recurring panerns of organization. Chothia
(1992) estimates that there are only ~1000 different protein
structural families. In this approach, each known pretein
structure (or family) ‘recognizes’ the protein sequences likely
to fold into a similar structure. Because it starts with structures
and predicts sequences instead of starting with sequences and -
predicting structures, it is often referred to as the ‘inverse’
folding problem. In its fully general serse it includes ab initio
design of protein sequences to achieve a target structure (Pabo,
1983), but we shall restrict attention to folding given native
sequences. The known structure establishes a set of possible
amino acid positions in 3-D space (perhaps the spatial locations
of its main-chain o carbons). ‘Recognition’ is mediated by a
suitable score function. An alignment between spatial positions
and sequence amino acids is usually a by-product of the
recognition step. The sequence is given a similar 3-D fold by
placing its amino acids into their aligned spatial positions.
[Further techniques are necessary to correctly place the variable
loop regions (Greer, 1990; Zheng et al.,-1993) and position
the side chains (Desmet er al., 1992), but the focus of this
paper is on predicting and placing the conserved fold.} The .
process of aligning a sequence to a structuré and thereby
guiding the spatial placement of sequence amino acids is
referred to as ‘threading’ the sequence onto the structure
(Bryant and Lawrence, 1993). ‘A threading” means a specific
alignment between sequence and structure (chosen from the
large number of possible alignments). In this way ‘threading’
specializes the more general term ‘alignment’ toTefer specific-
ally to a structure (considered as a template) and a sequence
(considered as being arranged on the template).

Injtally, such methods employed primary sequence string
similarity between the candidate sequence and the native
sequence of the structure to perform the threading (‘homology
modeling” or ‘homological - extension’), Computing the
sequence similarity yields a direct alignment of amino acids
in the sequences of the candidate and structure (Sankof and
Kruskal, 1983), and hence their spatial positions. In cases
where the sequence similarity is high this is still the most
successful protein structure prediction method known, but it
is of limited general use because few sequences have high
primary sequence similarity to another whose structure is
known. Recently, however, researchers have been able to
extend the match process beyond primary sequence similarity
and align a sequence directly to a structure.

These new approaches exploit the fact that amino acid types
have dxfferent prcfcrenccs for occupymg d1fferent structura.l
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include many problems deeply central to computer science,
and so a great deal of effort by a great many talented people
has been expended searching for a polynomial time solution
to any one of them. Because so many people have failed, it is
widely accepted that no polynomial time algorithm is likely
to be found.

In some cases it is possible to prove directly from first
principles that a problem at hand is NP-complete, but this is
usually quite difficult. Most proofs proceed by constructing a
polynomial time transformation of another problem, already
known to be NP-complete, into an instance of the problem at
hand. It follows that if the problem at hand could be solved
in polynomial time, so could the other problem, and therefore
by extension all of the problems in NP. Consequently, the
problem at hand is NP-complete.

NP-complete problems are phrased as decision problems to
which the answer is either ‘yes’ or ‘no.’ For example, the
decision problem addressed by this paper is, ‘Does there exist
a threading of this sequence onto this structure under this
score function, such that the threading score is <K?' This
might be the case in which a candidate threading has already
been found and cae wishes simply to ask whether or not
another threading with a better score exists. For many NP-
complete decision problems there is an associated optimization
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We will state the protein (or motif) threading problem in

_ sufficient generality to cover a wide range of cases. The

problem and formalisms are equally applicable 10 threading
protein core motifs or super-secondary structure motifs. Qur
general definition is similar to that of Bryant and Lawrence
(1993). Details are contained in Lathrop and Smith (1994),
from which many of the definitions here are drawn. A
probability analysis appears in White et al. (1994). Although
for generality the problem is stated in terms of core segments
of contiguous amino acids, the proof actually uses segments
of length exactly 1. Consequently, it applies equally well to
formulations that admit gaps between any pair of amino acids
(e.g. Godzik er al., 1992; Jones et al., 1952), provided that
they model explicit sequence amino acid interactions.
Informal problem motivation

All current threading proposals replace the 3-D coordinates of
the known structure by an abstract description in terms of
core elements and segments, neighbor relationships, distances.
environments and the like. This avoids the computational cost
of full-atom molecular mechanics or dynamics (Weiner er al..
1984; Brooks et al., 1990) in favor of a much less detailed.
and hence much faster, discrete alignment between sequence
and structure. However, important aspects of protein structure
(such as intercalated side-chain packing, excluded volume.
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(direcied) edge, and the edge is labeled with the pairwise

environment. The edge in the graph corresponds to the cell in
the matrix, and the edge label corresponds to the label contained
in the cell. Related representations include adjacency matrix,
contact graph, and so on. l

In this framework, a protein core folding motif, C, consists
of m core segments, C;, each representing a set of contiguous
amino acid posidons. Core segments are usually the pieces of

secondary structure comprising the tightly packed internal
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The protein threading probiem is NP-complete

reader interested in formal details should tum to Appendix.
The canonical (and first) NP-complete problem is SATISFI-
ABILITY. A problem instance consists of a set of Boolean
variables plus a set of Boolean clauses (a clause is a disjunction,
i.e. Jogical OR, of a set of literals; a literal is either one of the
variables or the negation of one of the variables). The question
is whether any setting (truth-value assignment) of the variables
makes all of the clauses true simuitaneously. 3SAT is a well-
known variant which restricts the clauses to contain exactly
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approximate sofution will correspond to a misfolded protein.
Whether finding the globally optimal threading is necessary
or not can only be answered relative to the goals that led one
to attempt the threading.
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Appendix

A formal problem statement and proof

Here we give a formal statement of the PRO-THREAD
problem and state a formal proof that it is NP-complete.

A formal problem statement (PRO-THREAD)

Table I summarizes the notational usage of this paper. _

Let G be a labeled directed graph having a set of vertices
V= (v, vy..., V), asetof edges E = (e}, €, ..., &) 2
set of vertex labels L, and a set of edge labels L. Let s map
vertices to vertex labels and edges 10 edge labels. Let € =
(Ci, Gy, - . ., Cp) be a partition of V. Let C;; denote the jth
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String Edits and

. Notation Usage
p on
a a sequence of characters drawn from AA; the concatenation of
ag and ay

i a subsequence of a

AA an alphabet of 20 characters (amino acids)

ag g instances of the sequence (Q, R, §), concatertated together
ay h instances of the sequence (T, F), concatenated tocemer

B a set of Boolean clauses (disjunctions); b is the kth clause
(o a set of core segments; 2 pastition of V

C; a core segment; the ith element of C; a subset of V

C

L 2 core element; the jth element of C;; another indexing of 2

vertex of V

¢ « IC}, the length of the ith core segment -

E the set of edges of the graph G; ¢; is the ith edge

& a subset of E; those edges whose tail is v,

F the amino acid phenylalanine

f a function mapping an m-twple of integers to a number

e 2 function mapping an edge and an m-tuple of integers 10 a
number .

fi a function mapping an integer and an m-tuple of integers 10 2
number

f a function mapping a vertex and an m-tuple of integers to 2
number

G 2 labeled, directed graph

8 181, the number of Boolean clauses

k 1UA, the number of Boolean variables

K a fixed number

L, the set of edge (environment) labels of the graph G

L, the set of vertex (environment) labels of the graph G

m {Q1, the number of core segments

n ial, the length of the sequence a

Q. R/ S, T  the amino acids glutamine, arginine, serine, threonine

s a function mapping vertices 1o vertex labels and edges 10 edge
labels

t a threading; an m-tuple of inwegers; 1; is the ith coordinate

U a set of Boolean variables; «; is the jth variable

1% the set of vertices of the graph G, v; is the ith ventex

2 a jiteral from a clause of B

-3 g =Qum=Roy3=S§

n a function mapping a vertex and an m-tuple of integers 10 a
character

G, a function mapping two characters and an edge label 1o 2
number

] a function mapping a subsequence of a to a number

G, a function mapping 2 character and 2 vertex label to a number
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The protein threading problem is NP-complete

U = {u, = False,u; = True,u3 = True,us = True}

B = {(False, False, True),(False, True, False),(False, False, True)}

T e ——

(44 €al €y
(7} €g [}
€ €2 €3
V2 Eé Vs s m
Q R § QR S Q R S T F T F T F T F
h ap ag ;

e | tail (e) | head (¢) | s(e)
e { V1 V4 (1: P )
KA g 1(2,N)
es | ™1 Ve @, P)
e | va g (1,N)
es | va Vs (2: P)
€e | V2 v7 @,N )
27| Vs Vs 1,r ) b
g | Vs Vs 1 (2, N) N
e | vs vy (3,P)

The equivalence between ONE-IN-THREE 35AT clauses and variables and their corre-

sponding PRO-TEREAD vertices is

{(bh U;), (bh 1)1), (63) '”8); (ul) 1’(): (‘u:, ”5)!(u31 'Ug), (u4) 'U1), } .

Fig. 4. PRO-THREAD problem.equivalent 10 the example ONE-IN-THREE 3SAT problem.

t = (3,5,9,11,12,14,16)

The threading ¢ corresponds to the placement of v; in Figure 4. The truth-values in
Figure 3, which solve the ONE-IN-THREE 3SAT problem in Figure 2, can be read
directly from this threading. Note that other threadings (e.g., (3,8,9,11,12,14, 16))

would yield the same truth-values.
Fig. 5. Threading solving the equivalent PRO-THREAD probiem.

(j, P) if positive, ] <=j <3 and | < k < g Let 2ll vertex
labels be null.
Let the score functions o, and o, (and hence f,. and f}) be
identically 0. Let 6,{(a, b, d) be defined by:
Cla, b, d) =
0,ifd=(,Planda=Tandb=0o;and 1 <j =<3,
0,ifd=(,Plande =Fand b e {0, 0 @3} and
b#oandl <j=<3,
0,ifd=(,NManda=Tand be (q 0, 03} and
Foand I =<3,
0,ifd=(,Manda=Fandb=q;and ] Sj =<3,
1, otherwise. (5)
G, corresponds to the constraint that each clause in B be
satisfied by exactly one literal. 1t is non-0 whenever a € {T,
FJ, b e {Q, R, S} or 4 is not a valid edge (environment)

label. If d = (j, P), corresponding to the jth literal being
positive, then a score of O corresponds to either: (i) b= oy
(selecting the jth literal to satisfy the clause) and a = T (the
variable it mentions is true); or (ii} b ¥ o; and a = F (the
literal is not selected and the mentioned variable is false).
Symmetric remarks apply if 4 = (j, N), corresponding to the
Jjth literal being negated. The ‘otherwise’ term ensures a non-
zero score if any of these conditions are not met.

Hence the score function f is:
) =Z.c e, V) 6)

= 3, . ;o n(head (e}, t), ®(1ail (e}, t). s(e). )

The decision question is: Does there exist a t such that
At) < 07 We show that this is equivalent to the origina) ONE-
IN-THREE 3SAT problem.

(=) By construction, if the original ONE-IN-THREE 35AT
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