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Detecting Subtle Sequence 
Signals: A Gibbs Sampling 

Strategy for Multiple Alignment 
Charles E. Lawrence, Stephen F. Akchul, Mark S. Boguski, 

Jun S. Liu, Andrew F. Neuwald, John C. Wootton 
A wealth of protein and DNA sequence data is being generated by genome projects and 
other sequencing efforts. A crucial  barrier to deciphering these  sequences  and  under- 
standing the relations  among them is the difficulty of detecting subtle local residue patterns 
common to multiple  sequences.  Such  patterns frequently reflet? similar molecular struc- 
tures  and biological properties. A mathematical definition ofthis ’‘ ocal multiple  alignment” 
problem suitable for f u l l  computer  automation has been used 1 o develop a  new  and 
sensitive algorithm, based  on  the statistical  method of i t m e  sampling. This  algorithm 
finds  an optimized l o c a l  alignment  model for N sequences in Klinear time, requiring  only 
seconds  on current workstations, and allows the simultaneous detection and optimization 
of multiple patterns and  pattern repeats. The method is illustrated as applied to helix- 
turn-helix proteins, l ipodins, and prenyltransferases. 

Patterns shared by multiple  protein  or 
nucleic  acid sequences shed  light on molec- 
ular structure,  function, and evolution. 
The recognition of such  patterns generally 
relies upon aligning many sequences, a 
complex, multifaceted research process 
whose  difficulty has long been appreciated. 
This problem may be divided into “global 
multiple alignment” ( I ,  2), whose goal is to 
align complete sequences, and “local mul- 
tiple  alignment” (2-1 I ) .  whose aim  is to 
locate relatively short  patterns  shared by 
otherwise dissimilar sequences. We report  a 
new algorithm for local  multiple  alignment 
that assumes no prior information on the 
patterns or their  locations  within  the se- 
quences; it determines  these  locations from 
only  the  information  intrinsic  to  the se- 
quences themselves. We focus on subtle 
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amino acid Iquence pattems  that may vary 
greatly among Merenr proteins. 

Much  rexarch  on  the alignment of such 
patterns use5 additional  information to sup- 
plement  algerithmic analyses of the  actual 
sequences, including data  on  three-dimen- 
s i o d   s m c m ,  chemical interactions of 
residues,  effects of mutations,  and  interpre- 
tation of sequence database search results. 
However. such research, which has  led to 
many discowries of sequence relations and 
SUUCNR and function predictions [see (12) 
for a recent example], is laborious and 
requires frrsuent  input of expert  knowl- 
edge. These approaches are becoming in- 
creasingly ovenvhelmed by the  quantiry of 
sequence dam. 

A numkr of automated local mdtiple 
aligunent algorithms have been developed 
(2-1 I ) .  and some have proved valuable as 
part  of intaTatd software workbenches. 
UniLvtumtth.. rigorous algorithms for find- 
ing ry.rhul wlutions have h e n  so compu- 
txi\mally espmsive as to limit thcir  appli- 
cdilit?. to  a very small number of se- 
‘qucncus. d heuristic approaches have 
gain4 s p - 4  by sacrificing sensitivicy to 



gz rating some rccent &whyrncnrs in sta- 

ly small numbs of xquence ele- 
patterns, each consisting of one 
segment from ach of the input 
Second, a Sjole pattern is de- 

encs  is describca by a set of  pmbabdis- 
tically &erred  position varia?~llt~. These 
features are derived from well  established 
$rinc$es of protein m c m e  and knowl- 
edge of the sources of .quence patrem 

recent common anany 
easy to iocate by various 
including ours. In a n -  
concern is to l o c a t e  the 

t arise  from the energetic  interactions 
?:-ng residues or between residue and 
‘ T r k d ,  irrespective  of  evolutionary  history. 
$?)e relation  between  a  state’s  energy  and 
f ... h u e n c y  fornu the basis of statistical  me- 
a Fhanics,  and an analogou rehion governs 
.. 6 frequencies of residua subject  to  ran- 
:;* point  mutations (14). Residue  fre-  CY mcdels are therefore  natural  in the 
3-t context. 

Third, gcnornic  rcnrrangcmcnts. as \vel1 
as inscrtions.  dclctions. and duplications of 
scqucncc scgmcnts,  result  in the occurrence 
of 3 common pattcm a t  diffcrcnt  positions 
within scqucnccs.  Howcvcr, thcsc mum- 
tional cvcnts are “unobscrvcd” l x c a u s  no 
data dircctly  spccify thcir cffccts on the 
positions of the pattcrns (6) .  As rccognid 
by statisticians since the 1970s (IS), many 
problems with unobserved data are most 
easily  addressed by pretending that c r i t i c a l  
missing data are available. The key  “miss- 
ing information principle”  (15) is that the 
probabilities  for the unobserved  positions 
may be inferred through the application of 
Bayes theorem to the observed  sequence 
data. 

The optimization  procedure  we use is 
the predictive update version  (16)  of the 
Gibbs  sampier  (1 7). Strategies based on 
iterative sampling have  been of great inter- 
est in statistics (18). The algorithm can be 
undastood as a stochastic anaIog of expec- 
tation maximization (EM) methods  previ- 
ously  used  for local multiple ali,wnent  (6, 
7)- It yields  a  more  robust  optimization 
procedure and permits the inte,waon of 
information from multiple patterns. In ad- 
dition, a procedure for the automatic de- 
termination of pattern  width  has been 
developed. For clarity, we  first  describe 
the identification of  a  single pattern of 
fixed width within each  input sequence 
and then generalize to variable widths and 
multiple pattern. 

The basic algorithm. We assume that 
we are given a set of N sequences SI, . . ., 
SN and  that we seek  within  each sequence 
mutually similar segments of specified 
width W. The algorithm  maintains two 
evolving data  smctures.  The first is the 
pattern description, in  the form of a  prob- 
abilistic model of residue frequencies for 
each position i from 1 to W, and consist- 
ing of the variables 4i.l, . . ., qi.20. This 
pattern description is  accompanied by an 
analogous probabilistic description of the 
“background frequencies” p,, . . .. pzo 
with which residues occur in sites not 
described by the pattern. The second data 
structure, constituting the alignment, is a 
set of posirions a‘. for k from 1 to N, for 
the common pattcm within the se- 
quences. Our objective will be to identify 
the “best.”  defined as the most  probable, 
common pattern. This pattern is obtained 
by locating the  aliznment  that maximizes 
the  ratio of the corresponding pattern 
probability to background  probability. 

Thc nlgorirhnl  is  inirialited by choosing 
random starting pxitions within the vari- 
ous sequences. It  then  procrtds through 
many  ircrations csecute the following 
two steps  of the Gibhs  sampler: 

1) Predicriw update stcp. One of the N 
sequences, 7, is chosen either at random or 
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in spxificd ordcr. Thc  pattcm dcscription 
q,,i and luckground frcqucncies pj arc then 
cnlcuhtcJ, as dcscribcd in Eq. 1 b c l o w ,  
tiom the currcnt positions ak in all se- 
qucnccs  cxcluding 2. 

2 )  Sampling  stcp. Evcry possible scg- 
mcnt o f  width W within scqucncc is 
considered as a  possible instance of the 
pattern. The probabilities Qx of generating 
each segment x according to the current 
partem  probabilities qimj are calculated, as 
are the probabilities P, of generating these 
segments  by the background  probabilities 
pi- The weight 4 = Q f l X  is assigned to 
segment x, and with each segment so 
weighted,  a  random one is selected ( 19). Its 
position then becomes the new a,. 

This simple  iterative proedure consti- 
tutes the basic  algorithm. The central idea 
is that the more  accurate the pattern de- 
scription  constructed in step l, the more 
accurate the determination of irs locarion 
in step 2, and vice  versa. Given random 
p4sirions uk, in step 2 the  pattern descrip 
non qii will tend to favor no particular 
segnent.  Once some correct ak have  been 
selected  by chance, however, the qiJ begin 
to reflect,  albeit  imperfectly,  a pattern ex- 
tant within other sequences. This process 
tends to recruit further correct q . 9  which in 
turn improve the d$crimina&g  power of 
the evolving  pattern;,> 

An aspect of the algorithm  alluded to in 
step I above concerns the calculation of h e  
Q from the current set of dk- For the ith 
position of the pattern we have N - 1 
observed amino acids, because sequence z 
has been  excIuded; let cimj be the count of 
amino acid j in this position.  3ayesian 
statistical  analysis suggests that, for the 
purpose of pattern estimation, these cimj 
shodd be supplemented with residue-de- 
pendent  “pseudccounts” bi to yield pattern 
probabibties 

where B is the sum of the 4. The pj are 
calculated  analogously, nith the corre- 
sponding counts taken  over all nonpatcem 
positions (20). 

After  normalization, A, gives the prob- 
ability that the pattern in sequence z be- 
longs at position x. The algorithm  finds thc 
most  probable  alignment by sr.lesting a set 
of ULS that maximizes the prdusr of these 
rarios.  Equivalently. one mny  nY.wimisc F, 
the sum of the logarithms drhesc mius. In 
the notation dcvclopd ah\vt. F is given by 
the formula 

where the ci.j and qi., are calculnreJ iron1 the 
complete  atignmcnt  (Fig. 1). 
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Phase  shifts.  Onc defect of the a l p  
rithm 3s just dcscribeJ is the  “phase” prob- 
lem. The strongest pattern may begin, for 
esnmplr., at positions 7.  19, 8. 23,  and 50 

ftmh within  the variutrs sequences. Howev- 
er, i t  the  algorithm happens to choose CI] = 
9 :and d2 = 2 1  in an e d y  iteration,  it will 
then most likely procced to choose a3 = 10 
and a+ = 25. In othcr words, the algorithm 
con get locked into a nonoptimal “local 
maximum” that is a shifted form of the 
optimal  pattern. This situation can be 
avoided by inserting  another  step into the 
algorithm (16). After every Mth iteration, 
for emmple, one may compare the  current 
set ofn, with sets shifted left and right by up 
to a certain number of letters. Probability 
ratios may be calculated, as above, for all 
possibilities, and  a random selection is 
made among  them  with  appropriate m e -  
@ing weights. 

Pattern width. The algorithm as 50 far 
described requires the pattern  width to be 
input. It is possible, of course, to  execute 
the  algorithm with a range of plausible 
widths and  then select  the best result ac- 
cording to some criterion. One  diaculrg is 
that  the  function F is not immediately 
useful for this purpose, as its optimal value 
always increases with  increasing wid& W. 

The problem here corresponds to the 
well-known issue of model selection en- 
countered in statistics. The difficuIty stems 
from the change in the dimensionality ai& 
the additional freely adjustable parameters. 
Several  criteria that incorporate the effects 
of variable  dimension have been useful in 
other  applications (21). Unfortunately, 
these criteria did not perform well at select- 
ing those  pattern widths that idended 
correct  alignments  in  data sets with known 
solutions. 

A superior  criterion proved to be one 
based on the incomplete-data log-probabil- 
iry ratio G (22), which  subtracts from &e 
function F the information required to de- 
termine the location of the  pattern in each 
of the  input sequences. We found that 
dividing G by the number of free  parame- 
ters  needed to specify the  pattern (19W in 
the case of proteins) produced a statisdc 
useful for choosing  pattern width. We call 
this  quantity the  infomation per parame- 
ter. The use of this  empirical  criterion is 
discussed in the examples  section below and 
is illustrated in Figs. 2 and 3. 

Multiple  patterns. As described above, 
a pattern  within  a  set of sequences  can be 
descrihd as consisting of seven1 distinct 
elements  separated by gaps. The G i b  
sampler may easily maintain several distinct 
patterns  rather than a single one. Seeking 
several patterns simultaneously rather  th3n 
sequenrially allows information ga in4  
about one to aid the  alignment of others. 
The relativc positions of elements within 
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the sequences can k uscd to improve their 
simultaneous  nlignnwlt. kcilusc only  one 
element in  sequence : is altered a t  a timc, 
the  combinatorial Froblcm of joint posi- 
tioning is circumvented.  Ncverthclcss, be- 
cause no element’s pwition is pernlancntly 
fixed. the best joint I tut ion of all elements 
may  be identified. 

Incorporating m&ls of elcmcnt loca- 
tion that favor consistent  ordering  (colin- 
earity) and of element spacing that favor 
close packing accommdhlntes insertions and 
deletions. Our inrplenlentation of a multi- 
element version oi the Gibbs  sampler (23) 
includes ordering probabilities (24 ) .  As il- 
lustrated below, this joint information im- 
proves the prediction of the correct align- 
ment of colinear  elements.  Constraints on 
loop  length  variation  result  in  similarities  in 
the  spacing of the elements of homologous 
proteins. Thus, inclusion of an element 
spacing  component in the model should 

improve alignment. However, we have  not 
yet found i r  necessary to incorporate spac- 
ing  effects into  the algorithm (25). 

Examples. To examine the  algorithm, 
we have  chosen three examples that  present 
different classes of difficulties for automated 
multiple alignment. First  is the helis-turn- 
helix (HTH) motif, which represents  a 
large  class of sequence-specific DNA bind- 
ing stntctma involved  in  numerous  cases  of 
gene  regulation. Such HTH motifs gener- 
ally mrn singly as local, isolated structures 
in different sequence contexts.  Detection 
and al ipnent  of HTH motifs  is a well- 
recognized problem  because  of the great 
sequence variation compatible with  the 
same  basic structure. Second are the lipo- 
calins, a  kmily of proteins that  bind  small, 
hydrophobic ligands  for a wide range of 
biological purposes. These proteins show 
widely spaced sequence motifs within  high- 
ly variable sequences but share the same 

Arg 94 222 265 131 9  9 137 137 9  9 9 52 222 94 94 9 265 606 
Lya 9 133 441 300 9 11 300 194 9 133 9 3 12 9 9 9 71 256 
O l u  53 9 96 4 0 1  9  9 1 4 0  140 9  9 9 53 140 140 9 9  9 53 
ASD 61 9 9 413 9  9 299 125 9 67 9 67 67 9 9 9 9 67 
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1 6 8 9 9 9 9 9  
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Flg. 1. Alignment and  probability  ratio  model for  the helix-tuMlc pattern  common to 30 proteins 
(45). (A) The  alignment.  Columns  from left to right are: s w  name; locations a, 01 the left end 
of the  common  pattern in each  sequence: aligned seqmxes. including  residues  flanking  the 
18-residue common paltern; right-end  positions ( 4  + 17) d the m m o n  pattern; NBRF/PIR 
accession number; and NBRF/PIR code name. if available. A s t t i s k s  (,**) below ths alignment 
indicate the =-residue segment previously  described on tte basis of structural  superpositions (26. 
27). Almost equal values of information  per  pararnetec were &en by pattern  widths of 16 to 21 
residuos (Fig. 2): the  longor  widths  extended to t h e  r i g N  the 18-residue  pattern shown. (B) 
Probability  ratios (100 x q,,,/p) for each amino  acid at each posifion in the pattern model. 
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structural toptogy throughout pol\pp- 
tidc  chain. We chosc the five nhwt diycr- 
gent lipocalins with Lnom 30 S ~ C N T C  for 
analysis bccausc thc c o m t  alignment of 
thcir  scqucncc motifs has prC.\iously de- 
pcndcd on structural  superp.irion.  Third 
arc  isoprcnyl-protcin  transiemw. essential 
componcnts of the cytoplasnltc signal trans- 
duction  network. The B subunits of these 
enzymes contain  multiple copies of multiple 
motifs that have  not previously been satis- 
factorily  characterized by automated align- 
ment methods. 

Single site: HTH proteins. Ttre aide- 
spread DNA binding HTH m c m r e  com- 
prises -20 contiguous amino acids (26). In 
our test  set of 30 proteins (Ki- 1). the 
correct  location of the motif is known (26, 
27) from x-ray and nuclear magnetic reso- 
nance structures, or from subrimtion mu- 
tation experiments, or both. The rest of the 
3D structure of these proteins, apart from 
the HTH structure itself, is completely 
dserent in different subfamilies Furcher- 
more, the  element is found at positions 
throughout the polypeptide chain. Our ta t  
set represents  a typically diveax cross sec- 
tion of HTH sequences. Close homologs 
have been excluded. The diiiiadrj of detec- 
tion and alignment of the HTH m o d  from 
such sequences is well remgwd.  There 
have been  several astempts ro develop po- 
sicion-specific weight manice and other 
empirical pattern  discridnamrs diagnostic 
for  this  structure (28). Thesehe achieved 
some success in making.sevd predictions 
that were later  confrrmed'Fd thar have also 
aroused controversy (29). 

We used this example to develop two 
importanc features of the && First, 
the empirical Criterion of information per 
parameter allowed for the automated deter- 
mination of element width (F@ 2). Sec- 
ond, heuristic  convergence criteria substan- 
tially  shortened  the time required to find 
the best model (Fig. 3, legend). These two 
features  enabled the algorithm to identify 
and align all 30 HTH motifs quickly and 
consistently.  Correct  alignmenu were ob 
tained with six pattern widths in the range 
from 17 to 22 residues (Fig. Z), of which 21 
residues had the highest converged value of 
infomlation  per parameter. ?hese results 
compare favorably with the 20-residue  view 
based previously on structural superposi- 
tions (26, 27). The criteria developed em- 
pirically with  the HTH erample have 
worked consistently well in all of our sub- 
sequenr  applicarions. 

Multiple sites: L i p o c a h .  The majority 
of protein sequence families con~ain multi- 
ple colinear elemcnts separated hy variable- 
lengrh gaps (13). We have successfully 
akned distanrfy related sequenm for sever- 
al prohlems in this class,  including  protein 
kinases, asparty1  proteinases, amin~acyl- 

tRNA ligases and mammalian Idix-loop- hm smlctural comparisons (31, 32). The 
helix proteins. Wc rcport hcrc on  onc of tlw mt of thc topologically conscrvcd lipocalin 
most  difficult of thcsc tcst cascs: in lipocalins folds haw vcry  diffcrcnt sequcnccs. 
(30, 31). two wcak scqucncc motifs, ccn- Can-cntional  autornatcd scqucnu: align- 
tcrcd on thc gcncrally conscrvcd rcsidues ment mcthods,  although succcssful for se- 
-Gly-X-Trp- and -Thr-Asp-. arc recognized lected subscts of the  data [such as (33)], fail 

Flg. 2. Information  per  parameter  as  the  criterion ~ 1 . 8  
of  pattern width for helix-turn-helix (HTH) pro- 5 
teins.  The  points  indicate  the  maximum  values  of - . . I  / '  . * 

information  per  parameter  found by the  algc- z1'6. . * 
rithm.  The upper  points (A and +) used  the 
complete  sequences  of  the 30 HTH  proteins $1.4. 
listed in Fig. 1A. (A) All of  the  sequences  in  the 
data set  were  aligned in the  correct  register (as 1 2  
in Fig.  1A). (+) One or  more  of :he sequences in 
the  data  set  were  incorrectiy  aligned. All com- E,,o, 
pletely  correct  alignments  in  the  width  range ,O 
from 17 to 22 residues  gave  greater  values  of . 
information  per  parameter  than  any  incorrect 
alignments  outside  this  width  range. (0) The 
"nonsites"  sequence data of the 30 HTH proteins,  constructed by deleting  the 18 residues  of  the 
HTH pattern  itself  (Fig. 1A) from  each  of  the  sequences. (x)  A shuffled data set (46) of the 30 KM 
sequences. The alignments  from  the  nonsites  background  of  the HTH proteins  give  values  slightly 
greater  than  random  expectation. 

. . . . .  . .  - .  

~ . . . .  . * -: * .  . . . - . -  * : = , x  ; x = = = . . = . =  

15 20 25 30 
Pattern width 

Fig. 3. Convergence  behav- 
ior  of  the Gibbs  sampling 
algorithm.  Because  the 
Gibbs  sampler,  when  run  for 
finite  time, is a  heuristic  rath- 
er  than a  rigorous  optimiza- 
tion  procedure.  one  cannot 
guarantee  the optimalii of 
the  results it produces. 
Therefore,  the  best  solution 
found  in  a  series  of runs will 
be called  "maximal."  A  sin- 
gle  pattern  of  width  18  resi- 
dues was sought in the data 
set  of 30 HTH proteins 
shown  in  Fig. 1 A  Solid  lines 
show  the  course  of  three 
independent  runs  with dif- 
ferent  random seeds. Evolv- 
ing models in such runs rap- 

0.4 I 
0 1mxxx)3ooo4oO05ooo6ooo 

Number of Iterations 

id& reach  intermediate  "background"  information  values (1 .O to 1.2 bits  per  paramekr) and then 
sample  different  models in this  plateau  region  for  a wideiy variable  number of iterations  before 
converging  rapidly.  Curve 1 is  typical in showing  a  very  short lag lime  on the plateau;  Longer lags 
as in  curves 2 and 3 are less common.  Curves  1  and 3 illustrate  the  stochastic  behavior of t h e  Gibbs 
sampler:  once  "converged."  the  model  stays  predominantly  at  the maximal value  of 1.64 bits per 
parameter  but is never psrmanently in this solution. In  the  infinite  limit,  the  sampler will spend the 
plurality  of its time  on  the  pattern  that  maximizes Fand therefore  the  information per parameter (22). 
Curve 2 demonstrates  persistence  (after  escape  from  the  background  plateau) in a  submaximal 
state  (1.80 bits  per  parameter), which is a  "phase-shifted"  version  of  the  best model.  When 
sufficiently  large  stochastic  phase  shifts  are  allowed ( s e e  text).  such  states do not nomalty  trap  the 
evolving  model  for  many  iterations.  Curve 3 reaches  exactly  the  same  maximal  value  as cum I ,  
suggesting  one  possible  strategy  for  detecting mergence. namely. recurrence of  exactty the 
same  pattern  with  different  seeds.  The  following  heuristic  approach  was  found  to  greatly reduce  the 
time  required  to  find  the  apparently  optimal  alignment:  (i) For a  given  random  seed,  repeat the  basic 
algorithm  a  fixed numkr of times  (typically 10 times  for each  input  sequence) beyond  the  last 
iteration  in  which  the  best  pallern  observed  (with  this s e d )  improved;  and (ii) try  at most some fixed 
number of seeds  (usualty 10 for a  single  element), but stop  when the best pattern is reproduced by 
a  specified  number of difierenl seeds  (usually 2). The  rationale  underlying  this approach is that il is 
unlikely  for  the identical  suboptimal  solution to be found  on  several  independent  trials before  the 
optimal  solution is found ance. The dotted  line represents a run  on  the  nonsite data set  (Fig. 2). Such 
runs  never exceed 1.2 bits per  parameter  and  thus are stuck  permanently  in  states  resembling the 
background  plateaus  from  which  the  models of the HTH  motif  alignments  eventually escape. 
Repeated  runs  in  which  shuffled  sequences  as  input  data  are  used  can provide  criteria lo1 how 
strong  a  paltern is required  to be considered  significant (38). 
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t e  align these motifs for the ful l  spectrum of 
lipx:lIin sequences. Challenged with five 
such diverse sequences of known crystal 
structure. our algc~rithm correctly  aligned 
thex r w o  rcgiuns and extended the width of 
hwh t o  16 residues (Fig. 41, in agreement 
with the structural evidence (31,  32). 

Multiple copies of multiple sites: Pre- 
nyltransfenses. Internal repeats in protein 
sequences underlie many important struc- 
tures and functions  and  are more  common 
than is generally recognized (34) .  These 
repents are often obscured by sequence di- 
vergence following duplication, rendering 
their  detection  and characterization a chal- 
lenging problem. The analysis of repeats is 
often  labor-intensive, relying in part on 
visual inspection of "dot plots" (10, 34)-a 
procedure that limits searches and surveys 
of large databases. 

-4n example of recent  interest involves 
sequence repeats in the subunits of the 
heterodimeric protein-isoprenyltransferases 
(IO, 35) - These enzymes are responsible  for 
targeting and  anchorins members of the ras 
superfamily of small guanosine  mphos- 
pharases to their sites of action on various 
cellular  membranes (36). The subunits of 
prenyIuansferases contain a subtle internal 
repeat of possible function signhcance 
(31) .  Although no direct structural infor- 
mation is yet available for these proteins, 
previous sequence analysis suggested that 
the subunit  repeat consists of three mot& 
separated by variable-Iength gaps and that 
this entire tripartite  structure is repeated 
three to five times in  each of four proteins 
(10, 35). 

The challenge  here is therefore to iden- 
tdy a relatively large number of  weak pat- 
terns covering up to 80 percent of the 
length of the sequences. Tne resulting 
crowding of elements increases interele- 
ment dependencies  and the complexiry of 
the joint probabilicy  surface over which the 
algorithm must  find the most  probable 
alignmem: 

The previous analysis was subjective and 
time-consuming,  relying on the combined use 
of severaf diferent multiple ali-ment meth- 
ods. In contrast, the Gibbs sampIing alp 
rithm quickly and objectively  reproduced and 
extended  the previous  results (Fig. 5). 

Evaluation and comparison. The main 
difficulties of automated  local multiple 
aIignment  stem  from the high dimensional- 
ity of the search  space and  the existence of 
many local optima.  Here, the large search 
space is explored one dimension at a tinw 
by comparing  each sequence to an tbvlving 
residue frcquency model. S t w h s r i c   u n -  
pling permits  the  algorithm to rscnp lcxal 
optima  in  which deterministic npproidches 
may get trapped. Including a phxc shift 
step expcditcs  convergence by permitting 
thc sampler to  explore relared IrxaI optima. 

212 

- 

Tests  showed the  stsnrithm to be  rela- the algorithm IO seek a pattern in only a 
tively insensitive to \-xinus  numbers of specified number of input sequences. 
negative  examples included among the in- The use of an appropriate model for 
put  sequences. Tu CL'FZ with large  numbers interelement spacing would  improve the 
of negative examples. we have extended algorithm's msitivity. but this feature has 

Motif A notif B 

li 32  104 119 

2s 60 109 124 

16 31 100 115 

14 29 105 120 

17 42 109 124 

ICYAJANSG .. CYCPC4TnX DFDLSAFAGAhN6IA.K L P L P I E K Z X  . . . TXKrSl? 'NUTDY~NYII~TTX D Y H P D W S  .. 
LPitegWIN . . M L I V K ' N K  CU)IQ?XAClWYSLAM A S D I S L L D A  . . . IILuI;1I;TI LVLD7DYKKYLLFCME NSAIPKQSLA .. 
BBP-PIEBR . . CACPmTTVD N-CKMWWAK YPNNEXYCK . .. YCG-0 ) n h S T D W W i I I c I Y C  KiDQKXGHQ .. 
ROIB-BWIN .. c ~ v s s m n  NZDIURFAGWYAMX mppGLmn . . . mwnaazt -+TIDTDYLYTAVOYSC nmumw. .. 
hlJP2JIwso .. HAEsu<- ~ X f f i ~ I I L  ASDrnzKIED ... s- rx-I - m L  .. . 1. ... . 
Fig. 4. Two  motifs located  automatically  in  five  lipocalins of knm crystal  structure. The  sequences, 
defined  by  SwissProt  database  codes,  are,  from  top to boncn: Manduca sexfa insecticyanin, 
bovine  P-lactoglobulin. Pieris brassicae bilin-binding  protein, M e  plasma  retinol-binding  protein, 
and  mouse  major  urinary  protein 2. Asterisks (..*) below  the aligment denote  generalfy  conserved 
residues  recognized fmn structural  comparisons (30, 31). The criterion of information per 
parameter (0.66 and 0.65 bits for  motifs  A  and B. respectively) wested an  extended  width  of 16 
residues for both  motifs, in agreement  with  the  superposable  structures of the  proteins in these 
regions (37, 32). 

A e B 
Rami 

cdC43 1 2 r l  ... 103 aa.... 
127 DKRSLARWSRC Q ... 52 aa.. . 
191 mp(cLcyWQ -------------------- 
240 ' ~ I ~  QVSSWGCMCFESUSASYWSDD 
309 Q m W R  TpK~T--- - - - - - - - - - - - - - -  

Flg. 5. Repeating  motifs in prenyltransferase  subunits. Ram1 (Swiss-Prot.  accession number 
P22007) and n - p  (Swiss-Pro!, 002293)  are  the B subunits of famesyltransferase  from  the  yeast, 
Saccharomyces cerevisiae. and rat  brain,  respectively.  Bet2 (FIR International,  522843) is the fj 
subunit  of  type I geranylgeranyltransferase from S. cerevisk. GGT-$I {GenBank, L10416) and 
Cdc43  (Swiss-Prot.  P18898)  are  the f! subunits  of type II geranylgeranyltransferase from S. 
cerevisiae and  rat  brain,  respectively.  The  primaly  structures of Ifme proteins  have  been  shown  to 
contain  a  variable  number  of  tripartite  internal  repeats,  each of nkich is composed of "A" and "E' 
subdomains  separated by a  "linker  region"  containing  multiple G)i and Pro  residues (70,35). When 
anatyzed by  the  Gibbs  sampler,  these  previously  defined m.xk were  identified  and additional 
copies  were  also  observed  [compare  with  figure 1 in (3511. The kbmation per  parameter  for  motifs 
A, L. and B was 2.3, 2.3, and 2.4 bits,  respectivety.  Dashes 'h5~2te the  locations  and  extents of 
gaps  between  motifs;  ellipses (. . .) accompanied  by a n u m k  wci the abbrevialion "aa" indicate 
the  locations  and  extents of larger gaps expressed as  the n m i x r  of amino  acid  residues. The 
spacing  between  molifs Land B is only two or three  residues.  nhmeas  that  between  motifs A  and 
L is  greater  and  more variable. 
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not bccn nccded to idcnrify ewn the subtlc 
pattcrns dcscrilrd a h w .  Ex pmb1cm  of 
highly corrclatcd input qumccs  can k 
addrcsscd  by  various \~-cightiq achcmcs 
(37), but wc haw yct to imphwnt such a 
fcaturc. Choosing  an opriml numlw of 
clcrncnts rcquircs further s m . 3 .  Wc haw 
found that an additional eizwnt is not 
warranted when nlultiple ranim 4 s  lead 
to many different alignments and when  the 
resulting information per parameter  consis- 
tently fails to exceed that obined  from 
shuffled sequences (38). Prim knowledge 
concerning  amino acid relati- (39) has 
been used  profitably in pairuis protein 
sequence alignment as well as in pattern 
construction methods (8. e). We have 
modified the  Gibbs sampler ro use such 
prior information,  but in pracdie, for even 
moderate numbers of sequencs (rj), we 
have  not found it to yield any improve- 
ment. However, an i n t e r e m  new  ap- 
proach to incorporating prior information 
has been described (41), and &re is much 
room  for further experimenrah. 

Some  basic similarides k m e e n  our 
method and several earlier on5 should  be 
noted. Stonno and Hamell a d  Herc et al. 
(5) seek the  pattern  that nmhizes a mea- 
sure  similar to F. Their differs 
mainly in  the heurisdc opdmia;ion proce- 
dure  used, which is an *on of an 
algorirhm first  proposed by B m  and An- 
derson (4) .  W e  have i m p h t e d  the 
method of (5) and tested it cm a variety of 
examples. This approacfi uses only a small 
subset of the  data for $e e& sequences 
examined, and thus is easily misIed. As a 
result, the  solution found w-as ..e$ as good 
as that produced by the samplr. Further- 
more, the  need to tonsstrtlct an dignment for 
each possible segment in the inirial sequence 
requires on average more  pass^ duough the 
input dam than does the sampler (see be- 
low), resulting in greater  ex& times. 

Both EM methods (42) and the Gibbs 
sampler are buiIt on a common statistical 
foundation. Two EM appro&  for multi- 
ple alignment  have been de&,  block- 
based methods (6, 7) and gapEased meth- 
o d s  in  the form of hidden Makov models 
( 4 3 ) .  For muhielement probkms, the 
Gibbs sampler outperforms bld-based EM 
methds. Because EM mesh&  are  forced 
to sum over all possibilities, &e rime  com- 
plesiv grows exponentially wirh additional 
elements. In contrast,  the Gijbs sampler 
never needs to consider more than  one 
elemenr nr 3 time. The speed oi&e sampler 
srems pnrdy from the fact r h z z  it always 
deals  with n specific  model alignment rather 
rhan a weighted average. Also, h o s e  EM 
methods are deterministic, t h e  tend to get 
trapped hy local optima which z e  avoided 
by the sampler. Hidden M a r h v  models. 
because t i ley permit  arhitraq gaps, have 

grcat flcxibility in  modcling  pnttcms,  but 
suffcr thc pcnaltics of this n d J d  con1plcsity 
discusscd abovc. 

Scvcral othcr approachcs to thc local 
multiple  alignmcnt problcnl Lxar a hricf 
revicw. Mcthcds  that scck a ''consensus" 
word with  the highcst aggrcgate  score 
against segmcnts within the input scqucnces 
have  been described (3). Their space re- 
quirements effectively limit  them  to  protein 
patterns of six residues, and  their time re- 
quirements effectively allow only closely  re- 
lated words to contribute to a consensus. 
These  constraints greatly decrease the sensi- 
tivity of these  methods to weak patterns. 

Algorithms that compare all input se- 
quences with one  another  and  then coalesce 
consistent painvise local  alignments  have 
been described (8-10). The  MACAW algo- 
rithm (8) has comparable speed to  the Gibbs 
sampler for a relatively small number of 
input sequences and can locate many  dis- 
tinct  patterns in a single run. Its time com- 
plexity, however, is at least  quadratic in  the 
aggregate length of the  input sequences, and 
it tends to be  less sensitive to weak sequence 
patterns. The performance of methods that 
must compare all  input sequences with  one 
another may degrade as the number of se- 
quences increases. In contrast,  the power of 
the  Gibbs sampler and EM methods in- 
creases with additional sequences because 
the  pattern model  is improved by more data. 
As illustrated above, the Gibbs sampler is 
successful even  with  a relatively small num- 
ber of input sequences. A version of the 
Gibbs sampling a l g o r i h  has  been added to 
the MACAW program (8), and  the updated 
program is available upon request. 

The memory requirements for the  Gibbs 
sampler are negligible; storing  the  input 
sequences is usually the dominant space 
demand. When flexible halting  criteria, 
such as those described in Fig. 3, are used, it 
is difi‘icult to analyze the worst-case time 
complexity of the  method. However,  for 
typical protein  sequence  data sets, we have 
found  that, for a single pattern width, each 
input sequence ne& to be sampled on 
average  fewer than T = 100 times  before 
convergence. In the more time-consuming 
step 2 of the basic algorithm, approximately 
LW multiplications  are performed, where L 
is the  length of the  sequence  that has been 
removed from the model. Therefore. the 
total numher of multiplications needed to 
execute the Gibhs sanlplcr is approximately 
TNLW. where L is the average length of the 
N input sequences (44). The factor T is 
expecred to grow with increasing E. Howev- 
er,  experimentation suggests that T tends to 
decrease  slowly with incrcnsing N when the 
comnmn pattern  rsisrs ; ~ t  roughly equal 
strength  within rhe inpur sequences. Thus, 
linear time complesiry has  heen observed  in 
applicarions. 
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In conclusion, as illuxtr:md by our ex- 
anvlcs,  thc GibLs s:mplcr objcctivcly 
s o l w s  difficult taultiplc scqucncc alignment 
pnAdaus in n Iwttcr of  scconds in  thc 
ahwncc of any cxpcrt  knonlcdgc or ancil- 
lary infortnation  dcrivcd from thrcc-dimen- 
sirnu1 structures or other sourccs. By adopt- 
ing a randonlizcd optimization procedure in 
the place of deterministic approaches, it is 
able to retain  both speed and sensitivity to 
u-eak but biologically significant pattern. 
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