
1 A too1 for multiple sequence alignment 

1 DAVID J. LIPMAN*?, STEPHEN F. ALTSCHUL*~, AND JOHN D. K E C E C I O G L ~  
*Matbematid Research Branch. National Institute of Diabetes and Digestive and Kidney Diseases. National Institutes of Health, Bethcsda. MD 2138%: a 
tkpanment of Computer S c i c a ~ .  University of Arizona, Tucson, AZ 85721 . -- , 

[ Communicared by David R. Davits, March 16, 1989 (received for review November 28. 1988) 



Biochemistry:  Lipman et a!. 
! 
z p j&on  can possibly pass. This in turn limits the  points  in i original lattice through  which the optimal  alignment can 
, psss. Each projection thus defines a subset of the original 
j that contains the paths of all optimal  alignments.  The 
’ interntion of these subsets still contains alJ such  paths.  It is 
’ & &is intersection, therefore, that must be considered  by 

I dynamic programming  algorithm  seeking  optimal  align- 
mnts. In practice, this approach so limits  the  number  of 
bti~e points that it becomes possible to find  optimal  multiple 
-mcnts for as many as six sequences. 

i -...,-?be MSA (multiple. sequence alignment) p r o g r a m .  de- - 
&bed  here implements the algorithm of Carrillo and  Lipman 
(23). It incorporates  several important features not  described 
m their paper; these features are discussed below. 

Upper Bounds 

nK MSA p r o m  allows the user to choose an upper  bound 
the cost of aligning each pair of sequences.  For  each such 

pir, MSA then calculates  which  cells of the corresponding 
path graph can be contained  within a path with  cost  no greater 
than the given  bound. In the dynamic programming step, MSA 
thm examines  only those  cells  of the n-dimensional  lattice  that 
p j e c t  onto the allowed cells in  each of the  two-dimensional 
path griiphs. The program returns an  alignment  with minimum 
cost  whose path is contained  within this region. 

As described  above, carriuo and  Lipman  have  shown how 
: io choose upper bounds on the COSt Of pairwise  alignments 

that guarantee  finding an optimal SP alignment  (23).  In 
practice, these rigorous  bounds are almost  always  greater 
than is necessary. MSA therefore uses a heuristic  procedure 

’ lo choose upper bounds for the pairs. First, using a progres- 
sive alignment strategy  similar to  those described by Water- 
man and Perlwitz (13, Feng and Doolittle (20), and Taylor - 
(21), it constructs a heuristic multiple  alignment. For each 
pair, it sets the upper bound equal to  the cost of  the imposed 
alignment. This heuristic procedure has proved  quite effec- 
tive, but better methods for choosing  bounds  certainly may 
bt found. MSA allows the  user  to specify any set of bounds 
and override their automatic assignment. 

Using heuristic bounds, MSA generally can align six to 
tight sequences of length  200-300  residues. It is possible  that 
m e  of the pairwise projections of the  alignment  found, 
whiIe lying within the allowed  region, may nevertheless have 
cost greater than the corresponding upper bound. When this 
happens, the specified upper bounds were not great enough 
to encompass a l l  optimal alignments.  Increasing the upper 
bounds that have been exceeded and  rerunning. MSA fre- 
quenlly produces an  improved  alignment.  Once the alignment 
found satisfies the specified constraints, increasing the.--. 
bounds further rarcly  leads to any improvement;  note  th,at. - .. 
such an alignment is optimal  given these constraints. In the 
extreme case, rigorous upper bounds can be used,  effectively 
performing an unconstrained  minimization  and  therefore 
mntec ing  an optimal alignment.  Using  rigorous bounds, 
the practical limit of MSA is four or five  sequences. 

c41 Costs for Multiple Alignments 

Generally, to find  biologically  reasonable  pairwise dign- 
ments, costs  must be charged for gaps (runs of  nulls) as well 
as for aligning  individual dements with  nulls (25). Algorithms 
lhat charge a fixed cost for each gap are widely  used and have 
been studied extensively (25,28-30). It is not txivial to extend 
there gap costs to multiple  alignments and a variety of 
=hods have  been proposed (14-16,  31). The most natural 
mehod is to define gap costs by using the sime rationale used 
@define substitution costs. For SP alignments, thesemtural 
gap costs are equal to the sum of the gap costs in all the 
W o s e d  pairwise alignments. Altschul(14) has shown  that 

- -.- 
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strictly adopting  this  definition leads to unacceptable dgm 
rithmic  complications. The MSA program  uses instead the 
quasi-natural gap costs  he proposes, which are identical to 
natural gap costs except in certain rare cases. Specif i~dl~,  
when a null run in one  sequence of a multiple  alignment 
begins after and ends before a null run in a second sequence, 
these costs count  one  more gap than do natural  gap costs. 

Other multiple  alignment gap costs have  been  defined in 
vacuo, with  no connection to the accompanying  definition  of 
substitution  cost (15, 16, 31). However, since both types of 
cost work in tandem to specify  optimal  alignments,  they 
should  have a common rationale. Such consistency elimi- 
nates the need to readjust the gap cost when  aligning different 
numbers of sequences. The user may specify whether ter- 
minal gaps are to be  counted. 

Pair Weights 

Whiie  permitting  reasonably efficient algorithms, the Sp 
measure of  multiple  alignment cost has certain undesirable 
properties.  These  are best illustrated by considering  an 
alignment  of three sequences-A, B, and C. Imagine  includ- 
ing several  sequences  very  similar to A in the multiple 
alignment. Ifall painvise  alignments are given  equal  weight, 
then the many pairs similar to A-B and A-C will outvote the 
single B-C pair.  Sequence A will essentially dictate the 
multiple  alignment  simply  because there are several copies of 
it  in the data.  Since  most  any set of related DNA or protein 
sequences will contain some sequences more  closely  related 
to one another than to the  rest, this probIem  remains  even if 
extra copies of virtually identical sequences are removed. 

The basic problem  with the SP measure is that while  all 
painuise  alignments are treated equally, some of these align- 
ments are highly correlated; a way is needed to discount 
redundant  information.  By  weighting the painvise alignments 
this  problem can be circumvented (32,  33).  The MSA pro- 
gram implements  either of the two  methods for assigning  pair 
weights  proposed by Altschul et al. (32). Both methods 
require knowledge  of an evolutionary tree relating the se- 
quences to be  aligned; MSA estimates this tree by the 
neighborjoining method of Saitou and Nei (34). The user may 
choose to use either a weighted or unweighted SP measure of 
multiple  alignment  cost. 

Forcing Special Alignment Positions 

Sometimes,  prior to the construction of a multiple  alignment, 
information  will  be available  about the correspondence of 
specific  residues in seyeral or all of the sequences-e.&, 
.active site residues.Thi MSA program pennits the user to 
take advantage of this  information. Specifically, any  residues 
from two or more  of the sequences may be forced into 
alignment, so long as the forced  alignment  positions are 

~ mutually  consistent.  The  program operates as before, except I 
that all pairwise and multiple  alignments considered are 
subject to the  imposed constraints. 

We  have  found that occasionally with even four or five 
sequences, the  optimal  pairwise  alignments are so inconsis- I 

tent that MSA requires  unacceptable  amounts of time  on 
personal work  stations. If certain positions can be  fixed then 
these problems are usually  rendered tractable. Alternatively, I 
by splicing  out  regions of relative certainty, effectively dl- 
viding the alignment  problem into several smaller ones, the 
range of the tool  can be considerably extended. I 

.-. 

EramPle 
We have  described above the measure used to evaluate the 
quality  of an alignment and the algorithm  used to compute .a” 
optimal  alignment  using this measure. When structural In- 
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1c formation is available, a different  approach  is  possible in 
,. which one essentially  superimposes  the Q carbon  backbones 

of the  proteins of interest.  Greer (35) aligned  three  serine 
proteases in this manner-chymotrypsin, trypsin,  and 

I elastase-and found  a  number of positions  in  which a l l  three 
1 aligned a carbons were  within 1 A of each  other.  Because 

stmctural homology is often evident when  sequence  homol- 
ogy is undetectable (36). we shall  use  this  structural  align- 

I ment to evaluate our sequence-based  approach. In Fig, 1 is. t 
A 

. -  
- 
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an alignment of the  chymobypsin,  trypsin, and elas- 
sequences; 149 of 161 positions are in complete agreement 
with the  structural  alignment of Greer; adding two additional 
serine  proteases  improves  the  agreement  with the structural 
alignment  to 155 consistent  positions. In the latter w e ,  
but. one of the  discrepancies  involve  residues whose si& 
chain  positions  differ  markedly and thus the evohtionary and 
functional  significance of these details of the structural slim 
ment is unclear. .. . . 

******* ********* ******************* . *** ****** 
I V N G E E A v p g s W P W Q V S L Q D g ~ - - - H F C C G S L I N E N C g v t t ~ ~ A - G E F d q g e q K L K I A  
IVGGMCg~~YQ~LN--~g~---HFCCGSLINSQWWSAAHCykeGIQ~--GEDninwegneQFISAS 
W G C T E A q m S W P S Q I S L Q ~ r s g s a ~ ~ T C C C ~ I ~ ~ ~ C v d r e l T F R ~ G ~ l ~ ~ g t e Q ~ G ~ Q  

********** ************** ******** --- ************ ******** 
K V F K % S K Y N S l t i n n - - D I T L L K L ~ A ~ F ~ ~ S A V C ~ a a a d ~ a a g ~ ~ G W G L ~ ~ ~ t P D R L q Q A S  
KSIVHPSYNSnt~~~DIMLIKLKSAASLN~~ASIS~P~aca--~agTQCLISGWGN~ss~ayPD~KC~ 
KIWHPYWNTddvaagyDIALLRLAQSV~NsWQLGV~ragtilannSPCYITGWGL~-tngqlA~TLQQAY 

****** ' *+*** ¶I************ ******** **** 

.- 

. .  

/ .. 

LPLLSNtnc~--ywgtkiM~ICAG-asg~-SSCMGDSGGPLVC_lllaGss-tca-tstPGW 
APILSDascka--aypsqitsnMFCACyle~~SCQGDSGGPWC--~--LQGIVSWGa--gcaq~GVY 
LPRIDYaiceaaayvgstv~~CAG-~~GCQGDSGGPLHC~~g~~CVTSFVarlgcnvtrkPnF ->, 

***************** . .  
ARVTALVNWVQQTLAAN - - _  . 

TRVSAYISWINNVIASN 

.B 
******* ********* ******************* ****** *** 
iiggvesiphe~~ldivtekglrvicg%lisrqfvlta~ckgr-eit----vilgahdvrkreatqqki 
i v ~ ~ s w g e t r p w g v s l q v W t a q r - h l c g g s l i g h q ~ l t a ~ c f d g l p l q d ~ i y a g ~ ~ l s d i t k d t p f a  
IVNCEEAvpgSWPWQVSLQ~k--t~-AFCGGSLINENYWTAMCgvt-t~---~AGEFdqgssseki~KL 
IVGG~Cg~~YQVSLN----~~-HFCGGSLINSQWVVSAAHCyks-~----VRtGEDninwegneQFI 
WCG?EAqmSYPSQISLQ~rrsgsaw~HTCCCTLIRq~~Cv&-el~--~~GEHnlnqnngteQYV 

T K V C N W s W I K Q T I A s N  ' .  . .  

I .. . .' ' ., . ,: , . .. i , . ' 
. .  . 

. I  .:. . :. . .. .: ._ . i ._ . . 
, ******e****** ************** ******** ************ **** 

kvekqiiheeyne--vpnlhdimllklekkveltpavnvvplpspsdfihpgamcwaagwgktg-vrdpt-eytl 
qikeiiihqnykv--eegnhdialiklqaplnytefqkpiclpskgdtstiytncwvtgw~sk-ekgei-qnil 
KIAKVFKNSJSKYWS--ltinaDInLKLSTAASFSSAVCLPeasddfaagn%VfiGWGLTRytnant-PDRL 
SASKSIViIPSYNS--ntlI~IK~SAASLNsRVASISLPtaca--aagTQCLISGUGN~-ss~ayPDVL 
C V Q K I ~ m N T d d v a a ~ D I A L L R L A Q S ~ L N a ~ Q L G V ~ r a ~ i l ~ P ~ I T G W G L ~ - t n g ~ l - A Q T L  

********I* ***** ************** ********* 
revelrimdekacvdyryyeykfq---vcvgapttltaafmgdsggpllc--ag--vahgivsy----ghpdakp 
qkvniplvtneecqk-~qdy~tq~vcagykeggkdac~daggplvc~wrlvgitswge--gcarreq 
QPASLPLLSfltnck--~~ywgtkikdaMICAG--asgVSS~GDSGGPLV~ga-~VGIV~Gs--s~cstat 
KCLKAPILSDsacks-aypg-qitsnMFCAGyle~~SCQGDSGGPWC--~--KLQGIVSWGa--gcaqknk 
Q Q A Y L P ' N D Y a i c s a s s y v g w g s t v k n s M V C A G g - n g v R S C t r k  

. .  . .  . 
.. . 1 I. c :  ..' .'...I.. *********~*******,**., ;.: . ~ ? ~ ~ ~ ~ . ~ ~ ~ . . - ~ . . ~ ~ . ~ ~ ; ~ -  ~ . ~ ~ : ~ ~ ~ ' ; ~ : ~ ~ . . . ~ ~ ~ , ~ ~ ~ ~ . : ' ~ ~ ~ ~ .  '..' .- .' - .  

~ & ~ . ~ ~ ~ ~ ~ ~ ? . ~ - ~ ~ ~ ~ . ~ ~ ~ ~ ~ ? ~ . . ~ . ~  .. .4" 

paiftrvstyvptinaviw- 
ppytkvaeymdwilektqae 
PGWARVTALVNWVqQTLAAN 
PGVYTKVCNYVSWIKqTIASN 
PTVFTRVSAYISWINNVIASH 

FIG. 1. ( A )  Alignment of bovine chymotrypsin (top line), bovine trypsin, and pig elastase. *, Residues in agreement with the s t r u c d  
alignment; underlining, residues not aligned in complete agreement with the structural alignment; lowercase letters. residues not aIi@ 
structurally. (8) Alignment of rat mast cell proteinase I1 (top line). human plasma kallikrein. bovine chymotrypsin.  bovine trypsin. and PU 
elastase. *, Residues in agreement with the structural alignment; underlining. residues not aligned in complete agreemen! with the s t r u e d  
alignment; lowercase letters. residues not aligned structurally. The single-letter code for amino acids is used, 
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MSA is written in the C programming  language  and  has  been 
=led on several  machines  using the UNIX system V oper- 
d n g  system. It should mn with iittle or no  modification on 
my computer  with a standard C compiler.  Memory and. 
computational  requirements are a function of the number  of 
mucnces, their  length,  and  the  size of the upper  bounds for 
$wise costs.  Aligning  five  sequences,  each  from  different 
familits in the globin Superfmly,. on a commonly  available 
..'z-bit pekond computer, took C2 min  of  computation  time 
md required c1.3 megabytes  of  memory. The program  is 
wailabie from the authors on request. 

~ U s i o o  

The primary difference  between MSA  and previous  multiple 
alignment programs is its capability to align  more  than three 
squences using an explicitly  defined  measure of overall 
alignment quality. The default  measure  used  by  MSA  con- 
siders some  replacements more costly  than others and pe- 
nalizes for gaps in a manner  reflecting the fact  that a single 
mutational event can insert or delete  several  residues (14,Z). 
With pairwise alignment  costs so defined,  MSA  computes  a 
multiple alignment that minimizes the sum  of the painvise 
costs, weighting the pairs using information  derived  from an 
cvdulionary tree. 

7h is  approach is most.effective  in.ali&ng  sequences that 
s h m  a global, but perhaps quite distant, relationship. Other 
methods may be more appropriate for the analysis of the 
slalistical significance  of  sequence  similarities (8), detection 
of sequence motifs or consensus  sequences (3, 9, 22). or 
aligning large  numbers  of  sequences (17-21). Although  MSA 
will nor always produce alignments  in  such  good  agreement 
with structural superpositions as seen here, we believe  it can 
k a powerful sequence analysis  tool for molecular  biologists. 

The authors acknowledge  contributions to this project from G. 
MYK and L. Elzpatrick and suggestions on the manuscript from M. 
Boguski. . .  
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