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We  have analyzed a total of 12 different  global  and  local  multiple  protein-sequence  alignment  methods.  The 
purpose of this study is to evaluate  each  method's  ability t o  correctly identify  the  ordered  series of motifs  found 
among all members of a given  protein  family. Four phylogenetically  distributed sets of sequences  from  the  he- 
moglobin, kinase, aspartic  acid  protease,  and  ribonuclease H protein  families  were  used to test  the  methods.  The 
performance of all 12 methods was affected  by ( 1) the  number of sequences  in  the  test sets, (2) the degree  of 
similarity among the sequences,  and ( 3 )  the  number of indels  required  to  produce a multiple  alignment.  Global 
metbcds  genaally performed better than local methods  in  the  detection of motif  patterns. 

Introduction 
Comparison of primary sequence information is 

rapidly becoming the major source  of data in the elu- 
cidation of the rnolecuIar  mechanisms of replication and 
evolution of all organisms. There are  basically three lev- 
els in the analysis of primary sequence information: ( 1 ) 
the search for homologues, (2) the multiple alignment 
of homologues, and (3) the phylogenetic reconstruction 
of the evolutionary history of  homologues. 

Many multiple sequence alignment programs and 
various scoring sche,mes have been  developed to analyze 
potential relationshi'p among sequences.  Although  a  re- 
view ( Myers  199 1 ) and a comparison (Chan et al. 1992 ) 
of some methods from a computational perspective are 
available, there are no studies to date that evaluate these 
methods from a biologically informed perspective. The 
purpose of this study is to evaluate the ability  of  existing 
software to correctly identify the ordered series of motifs 
that are conserved throughout a  given protein family. 

There are two biological  approaches to the multiple 
alignment of protein sequences: one attempts to align 
homologous (ancestrally related) features,  while the 
other attempts to align functionally or spatially  equiv- 
alent features  of  a protein family.  While there is consid- 
erable overlap in the alignments produced by methods 
with these two goals, the intents are distinctly  different. 
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Multiple alignment methods are often  used  without 
knowledge of the assumptions implicit in their operation. 
We  will assess the major academically produced methods 
available, regardless of their  intent,  and indicate the as- 
sumptions implicit in each of the methods (table 1 ). 
Our basic premise is that, regardless of the final goal, a 
method that  cannot find the functional motifs that are 
highly  conserved throughout a  given protein family  has 
diminished value for detecting new biologically  infor- 
mative patterns. 

The multiple protein-seqcence alignment protkm 
may be divided into  the following two conceptual steps: 
( 1 ) the initial inference of an ordered series of motifs 
defining the limits of a protein family and (2)  detection 
of the ordered series  of motifs in other proteins, thereby 
expanding the family. Many software  packages, both-ac- 
ademic  and commercial, rely on the existence of pre- 
viously  defined protein families to provide the motifs  of 
the family.  How are such protein-family patterns initially 
determined? Among  highly  conserved  sequences (>50% 
identity) it is very  difficult to deduce which residues of 
a  pr0tei.n are necessary for function or structure, on the 
basis of multiple alignment of protein sequences  alone. 
Laboratory experiments can provide clues as to which 
residues are critical for function and structure, but few 
generalizations can be made from such studies. Among 
distantly related proteins (~30% identical residues), 
however, conserved residues  often indicate the essentially 
invariable regions  of the protein that are necessary for 
function or structure. When multiple  alignments  of  such 
data  are derived, however, it soon becomes apparent 
that  the currently available methods are not very satis- 
factory.  Even  with the utilization of the most sophisti- 
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Table 1 
Multiple Alignment Methods 

I 

Data 
Method (Developer)  Algorithm  Matrix' lndels Limitsb AssumptionsC Featuresd Type* 

Global: 
AMULT (G. Barton) . . . . . . . . . . .  
ASSEMBLE (M.  Vingron) . . . . . . .  
CLUSTAL V (D. Higgens) . . . . . .  
DFALIGN  (D.-F.  Feng) . . . . . . . . .  
GENALIGNr(H. Martinez) . . . . .  
MSA ( S .  Allschul) . . . . . . . . . . . . .  
MULTAL (W. Taylor) . . . . . . . . . .  
MWT (J. Kececioglu) . . . . . . . . . . .  

TULLA (S. Subbiah) . . . . . . . . . . .  

MACAW (G. Schuler) . . . . . . . . . .  
Local: 

PIMA fP.  Smith) . . . . . . . . . . . . . .  

NW 
Dol matrix NW 
WL 
NW 
CW, N W  
CL 
NW 
maximum 
weight trace 
NW 

sw 
sw 

Any 
Log odds 
Any 
Log odds 
UM 
PAM250 
UM.  PAM250 
Any 

Any 

PAM250 
AACH 

C 
I t E  
I+E 
C 
I t E  
I+E 
C 
C 

RGW 

I+E 
PRALIGN IM. Waterman) . . . . . .  c w  PAM250 I+E' 

! 

UP 

ROS 

ROS 

N 
S 
N 

10 sequences S 

DOS Y 
Y 
Y 

R, SE 

I 

SE 
B. FA 
AP, FA 

R. SE 

SE, FA, MD 
M D  
MD. MC 

P 
P 
P, N 

P. N 
P 
P 
P 

P 

P 
P 
P. N h  

P 
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a t e d  software  developed to date, refinement of  such 
relationships still  relies on the visual pattern-recognition 
skills  of the human operator. Thd initial inference of the 
motifs defining a protein family by primary sequence 
analysis,  therefore,  requires the combination  of multiple 
alignment methods and human pattern-recognition  skills 
with corroborating experimental evidence  (e.g., sitedi- 
rected  mutagenesis and crystallography). 

We  have  tested both global and local multiple 
alignment methods for their ability to identify the or- 
dered  series  of motifs that are conserved throughout the 
hemoglobin, kinase,  ribonuclease H (RH), and aspartic 
acid  protease  protein  families. The study  presented  here, 
while not exhaustive, indicates that all the methods an- 
alyzed  suffer, to varying  degrees,  from three types  of 
problems: ( I ) the inability to produce a single multiple 
alignment from  correctly  aligned  subsets  of the input 
sequences, (2) sensitivity to the number of sequences in 
the test, and (3)  sensitivity to which  specific  sequences 
are in the  test  The ramifications of these shortcomings 
for the identification of functional motifs, as well as 
phylogenetic reconstruction, are discussed. 

Methods Used for Comparative Analysis of Alignment 
Programs 

subject to insertion, deletion, and duplication. There  are 
two features of motifs that must be considered  in their 
evaluation. The first, the motif  density,  is the percentage 
of the sequences in  which a given  motif  is present. The 
second, the motif conservation, is  the  degree to which a 
motif is conserved  in  various  members  of the family 
(i.e., are  the residues  identical, or has conservative re- 
placement occurred? have  insertions and deletions [ in- 
dels] occured? or can more than one  set of residues  define 
a motif?).  The motif conservation can be expressed in 
a variety  of  ways. In the PRALIGN program, e.g., the 
user specifies the number of  mismatches and indels al- 
lowed within the motifs as two separate parameters. 

Initially we planned to develop an  independent 
scoring scheme to’measure the global  “goodness”  of the 
alignments produced by the  global  methods. It soon tie- 
came apparent, however, that some of the methods could 
not even  identify the motifs known to be involved in 
the function of a given protein family.  We decided, 
therefore, to score  for  each  method‘s ability to detect 
each motif in four different data sets. A score for each 
motif is the percentage of the number of sequences in 
each data set for  which the motif  is  correctly identified 
(see figs. 1-4; correct motifs are indicated by blackened 
bars and  roman  numerals). Some methods could find 

All analyses  were conducted on a SPARCstation 
GS running SUN OS 4. I .  1. The test sequences were  ex- 
tracted from the  nonredundant database composed of 
PIR version 34.0, SWISSPROT version 23.0, and 
GenPept (translatp GenBank version 73.0) developed 
by the National CeQter for Biotechnology Information, 
National Library of Medicine ( W. Gish, personal com- 
munication). 

one  or  more correct motifs  in more than one subset of 
the sequences without being  able to align these motifs 
to one  another to produce a single multiple alignment 
of the all the  input sequences. In these  cases the  total 
percent correct match is a combined score of the aligned 
subsets (tables 2-5 ) , allowing full credit for motif iden- 
tification in each  subset as if the motifs  were  each  aligned 
correctly throughout the set. -?Xis scheme allows us to 
compare local and global  methods to one  another  as 

Scoring  for Motifs 
In general, we define a motif as a conserved con- 

tiguous run of 3-9 residues  often  involved  in the function 
or structural integrity of a protein, as inferred  by  multiple 
alignment analysis or laboratory experiments. In some 
cases only remnants of a motif can be found, and we 
call this a semiconserved  motif (e.g., see fig. 3, motif 
11). Occasionally a single  residue,  which is completely 
conserved among all members of a protein family,  is 
found between larger motifs. In such cases we consider 
the single  residue as one of the motifs comprising the 
ordered series of motifs (e.g.,  see  fig. 4, motif 11). An 
ordered series  of motifs is  defined as a set  of  conserved 
or semiconserved motifs that are found in the same ar- 
rangement relative to one another in all the sequences 
of a protein family. The spacing between the motifs can 
be highly variable,  reflecting the regions  of a protein that 
are less  restricted by functional or structural constraints. 
These regions  may  evolve more rapidly and be more 

- 
well as among themselves. 

Test Data Sets 
We have chosen four protein families as data sets 

to test the ability  of the multiple alignment methods to 
reconstruct known  biologically  informative patterns. To 
date, standard sets of  protein  sequences  have not been 
established  for  assessing  multiple alignment methods. 
The hemoglobin  family  has  often  been  used to illustrate 
the reconstructive ability of a new multiple alignment 
method. In light  of the extensive  hemoglobin-sequence 
conservation, it is not surprising that many methods 
succeed  in  aligning  various  members of this family  rea- 
sonably well. 

A more rigorous test of these  methods would be to 
measure their ability to identify the highly  conserved 
motifs involved  in the function of  various protein fam- 
ilies. Many of these  motifs were first inferred from pri- 
mary protein-sequence multiple  alignment analysis and 
were confirmed by biochemical and crystallographic 



Tablc 2 
Scuruu fnr I'rogrurnu 'I'cslcd Using Clol)ins 

Program and 
No. of 

Tested (7 residues) (5 residues) ( 5  residues) (5 residues) (3 residues) Parameters/Comments' 

1 

Sequences  Motif I Motif I 1  Motif 111 Motif IV Motif V 

Global Methods 

AMULT 
12 . . . . . .  
10 . . . . . .  
6 . . . . . .  

ASSEMBLE 
P 12 . . . . . .  

IO . . . . . .  
6 . . . . . .  

CLUSTAL V: 
12 . . . . . .  
10 . . . . . .  
6 . . . . . .  

v, 
4 

DFALIGN: 
12 . . . . . .  
IO ...... 

GENALIGN: 
12 . . . . . .  
10 . . . . . .  
6 . . . . . .  

z . . . . . .  

I00 
IO0 
IO0 

IO0 

I00 
IO0 
IO0 

IO0 
IO0 
I00 

92 (67, 25)' 
90 (60, 30) 
83 

IO0 
IO0 
IO0 

I00 
I00 
IO0 

I00 
IO0 
IO0 

92 IO0 IO0 

100 IO0 IO0 
Did  not  perform alignment, since filter  produces empty plotsb 

92 
92 
92 

IO0 
I00 
100 

IO0 
90 

looc 

I 00 
IO0 
I00 

IO0 
IO0 
IO0 

100 
IO0 
IO0 

IO0 
IO0 
100 

100 83 (67, 17)' 
90 (50, 40) 80 (60, 20) ' 

83 (50, 33)' 67 (2 X 33) 
/ 

_/' 

IO0 
I00 
IO0 

IO0 

IO0 

100 
100 
IO0 

IO0 
IO0 
100 

92 (67, 25) 
90 (60, 30) 
67 (2 X 33) 

Single-order alignment; defaults except: 
indel = 8 (4-10) and iteration = I 
( 1-41 

Defaults except: FIL-SUM algorithm 

FIL-LOG, I = 8 (8- 12) 

Defaults; parameters tweaked  are: 
painvise:  indel (1-8) and k-tuple 
(1-2); multiple alignment: I(6-12) 
and E (2-10) 

Defaults 

Defaults dxcept:  match  weight = 2; NW 

Defaults  except: match weight = I; NW 



MULTAL 
I2 . . . . . .  IO0 
IO . . . . . .  IO0 
6 . . . . . .  IO0 

Matrix wcightd = 0-5: cycles' = 12; 
indel = 20; window size f: 15-50; 
cutoff score = 900-300; span' 
= 8-128' 

90 
90 
90 

100 ,..- 
IO0 
100 

IO0 
100 
IO0 

IO0 
100 
100 

TULLA: 
10 . . . . . .  90 
6 . . . . . .  83 

80 
83 

80 
83 

80 
67 

80 
83 

RGW = 2-4-6; median 2 or 4 (2-12) 
RGW = 8 (4-12) - 

MACAW: 
12 . . . . . .  
IO . . . . . .  
6 . . . . . .  

PIMA: 

75 
70 

IO0 

92 
80 
67 

75 
70 
IO0 

67 
60 
67 

67 
60 
67 

Cutoff score = 30 (20-30); MD = 50% 
(25940%); result list size = 1 0 0 ,  for 
all subsets;  several overlapping blocksh 

. . . . . .  
VI 

VI 

12 
4 IO 

6 . . . . . .  
. . . . . .  

IO0 
IO0 
I00 

100 
IO0 
IO0 

IO0 
IO0 
IO0 

100 
I00 
I00 

1 0 0  
100 
IO0 

E = 0.33; ML clusters' 

SB clusters' 
PRALIGN: 

12 . . . . . .  
10 . . . . . .  
6 . . . . . .  

67 (33, 2 X 17) 
60 (3 X 20) 
33 

75 (33, 25,  17) 
60 (3 x 20) 
33 

67 (33, 2 X 17) 
20 
0 

84 (67,  17) 
50 
50 

Window size = 20 (10-40); word size 
= 3 (3-5); MC = I (0-2); indel 
= 0; MD = 30%  (20%-50%) 

NOTE.-The  score  for  each  test is calculated as a percentage of the  no, of  sequenk  in each  data  set in which  the motif was identified. Some methods find the  correct  matches in >I subset of the  data  without 

' Deviations from default  parameters  are  indicated  by a dash  for a single  data set and  by a bracket  for  two  data scts or for new parametcn used in all tests. The  explored  range of parameter  values is  indicated in 

bASSEMBLE tends  to  produce  only  "correct"  results or nothing. 

dSpccifies the mix ratio between  the identity matrix and  the PAM250 (e.&, a weight 012 indicates a 0.8 lidentity matrix1 + 0.2 (PAM250) mix). 
Specifies the  no. or attempts  the  program  makes lo merge  subalignments. 4 

m MULTAL allows  the  user to change paranleten for cnch  cycle.  Thus, 1110 range  shown ill sonic or the  pnranreters Indialles tllc change d lllnl pnrnmcler for cnch eyclc. 

' Creates  alignments  by  using two types of clusters. maximal  linkage (ML) clusters  (Smith  and  Smith 1990) and  sequence branching (Sa) clusters  (Smith  and  Smith 1992). 

being  able to align  these  subsets to one  another. In these  cases,  the total  percent  correct  match is  a combined  score of the  subsets  (values in parentheses).  Abbreviations  are as in table 1 .  

parentheses. 

Has gaps in motitts). 

Painvisc  distance uppr  limit k r  the  compntison of  nll sequences. 

Creares  several blocks for each  cluster.  One  has to manually (with the  help ol the MACAW editor) merge  them to get  the  percentages for each  cluster. 



Table 3 
Scores for  Programs Tested Using Kinases 

Program and 
No. of 

Tested (6 residues) ( I  residue) ( I  residue) (9 residues) (3 residues) (3 residues) (8 residues) ( I  residue) Parameters/Comments 

1 

Sequences  Motif I Motif I I  Motif 111 Motif IV Motif V Molif VI Motif VI1 Motif Vlll 

Global Methods 

AMULT 
12 . . . . . .  
IO . . . . . .  
6 . . . . . .  

ASSEMBLE 
12 . . . . . .  

I O  . . . . . .  

CLUSTAL V: 
6 

12 . . . . . .  
IO . . . . . .  
6 . . . . . .  

QI 
3 

. . . . . .  

DFALICN: 
9 . . . . . .  

10 . . . . . .  

6 . . . . . .  

1 0 0  
I00 
1 0 0  

83 

90 
67 

1 0 0  
IO0 
IO0 

IO0 

IO0 

100 

83 
90 
67 

58 (33.  25) 

30 
0 

92 
80 (50, 30) 
83 

IO0 

100 

IO0 

92 100 
90 100 
67 I00 

83 I00 

0 100 
0 100 

92 (50, 42) 100 
80 IO0 
67 IO0 

IO0 IO0 

IO0 100 

100 100 

I00 
100 
100 

I00 

IO0 
IO0 

IO0 
IO0 
100 

100 

100 

IO0 

I00 
IO0 
IO0 

100 

I00 
IO0 

100 
IO0 
IO0 

L 00 

IO0 

IO0 

I00 
IO0 
1 0 0  

100 

1 0 0  
1 0 0  

IO0 
100 
IO0  

IO0 

IO0 

100 

IO0  Tree-based alignment 

1 0 0  = 4 ( 1 4 )  
Single order alignment; iteration 

1 0 0  (67, 33) Defaults except:  FIL-SUM 
algorithm. 

50 70 I RLLOG, I 8 (8-12) 

100 (58,  42) Defaults; parameters tweaked  are: 
90 (50. 40) painvise:  indel (1-8) and k- 

100 (67, 33) tuple (1-2); multiple alignment: 
I (6- 12) and E (2-  10) 

100 Begin weighting sequence 3 with 

IO0 Begin weighting sequence 2 with 
value 2 

value 2 

value 2 
61 Degin wcighling sequence 2 with 



GPNALION: 
12 . . . . . ,  
I O  , . . . . .  
6 ...,.. 

12 . . . . . .  
IO . . . . . .  
6 . . . . . .  

I O  . . . . . .  
6 . . . . . .  

MULTAL 

TULLA: 

IO01 75 (42,  33) 
80 (60. 20) 60 (40, 20) 
67 50 

IO0 75  (58. 17) 
1 0 0  80 
83 33 

90 ’ 60 
83’ 83 (50, 33) 

83 I00 ~ ’’_ I O 0  IO0 
80 I O U  100 100 (2 x 50) 
83 (50, 33) 1 0 0  (2 X 50) 100 (2 X 50) 100 (2 X 50) 

83 (50, 33) . 100 100 100 (58,42) 
50 1 0 0  IO0 1 0 0  
67 1 0 0  IO0 IO0 

80 IO0 IO0 90 
67 IO0 IO0 100 

IO0 
IO0 
I00 

90 
100 

92 (67, 25) 1>cfi111ltr C X C C ~ ~ :  NW;  mrllch 

83 
90 wcigllt = I 

I00 Cycles = 14; window  size - 15- 
I00 140; cutom score = 900-200; 
IO0 all others as in table 2b 

90 RGW = 8-10-12, median 8 
33  Defaults 

Local Methods 

MACAW: 
12 . . . . . .  67 0 75 IO0 IO0 83 IO0 0 Cutoff score = 30 (20-30); MD 
IO . . . . . .  70 0 50 IO0 IO0 90 90 0 = 50% (20%-50%); result list 
6 . . . . . .  100 0 0 1 0 0  IO0 IO0 IO0 50 size = 1 0 0 ,  for all subsets; 

several overlapping blocks‘ 
PIMA: 

12 . . . _ . .  loo 92 92 IO0 IO0 100 IO0 IO0 SB clustersd; E = 0.33 (0.2-1.75) 
I O  . . . . . .  1 0 0  90 IO0 90 90 90 90 50 (30, 20) SB clustersd 
6 . . . _ _ _  1 0 0  100 67 IO0 IO0 IO0 IO0 IO0 SB clustersd; E = 0.5 (0.2-1.75) 

PRALIGN: L 

12 . . . . . .  1 0 0  84 (2 X 42) 50 (33, 17) 33 75 (42, 33) 75 (42, 33)  33  33 Window  size = 20 (10-40); word 
IO . . . . . .  90 80  (30, 2 X 20) 20 40 70 (40, 30) 60 (2 X 30) 30 30 size = 3 (3-5): MC = I (0-2) 
6 . . . . . . 67 (2  X 33) 67 (2 X 33) 0 0 67 (2 X 33) 67 (2 X 33) 67 (2 X 33) 33 indel = 0; M D  = 30% 

(20%-50%) 

NoTE.-AII dcsignntions and abbrevialions QIT ns in lnblcs I and 2. 
‘See footnote “c” ortable 2. 4 

See fmtnores “dl’-“g” or table 2. 
e See footnote “h” of table 2. 

See footnote “i” of table 2. 
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Table 4 
Scores for Programs Tested Using Proteases 

Program and 
No. of 

Tested (3 residues) (5 residues) (3 residues)  Parameters/Commems 
Sequences  Motif i Motif I1 Motif 111 

Global Methods 

AMULT. 
12 . . . . . .  
10 . . . . . .  
6 _ . . _ _ .  

ASSEMBLE: 
12 . . . . . .  
I O  ...... 
6 ...... 

CLUSTAL V: 
12 . . . . . .  
10 . . . . . .  
6 . . . . . .  

12 . . . . . .  
10 . . . . . .  
6 . . . . . .  

GENALiGN: 
12 . . . . . .  

10 . . . . . .  
6 ...... 

I2 ...... 
IO . . . . . .  
6 . . . . . .  

10 . . . . . .  
6 . . . . . .  

DFALIGN: 

MULTAL: 

TULIA: 

MACAW. 
12 . . . . . .  
10 . . . . . .  
6 . . . . . .  

12 . . . . . .  
10 . . . . . .  
6 . . . . . .  

12 . . . . . .  
10 . . . . . .  
6 . . . . . .  

PIMA: 

PRALIGN: 

92 
90 
67 

58 83 
80  (50, 30) 70 (40, 30) 
0 50 

Did not perform alignmen& since filter produces empty  plotsb 

1 0 0  
100 
1 0 0  

100 
100 
100 L 

92 

90 (70, 20) 
67 

83 
90 (50. 4 0 )  
50 

70 
83 

75 (50, 25) 
70 (40, 30) 
0 

100 (70.  30) 
100  (70. 30) 
50 

67  (42,  25)' 

50  (30, 20)' 
33 

58 (33, 25) 
70 (30, 2 X 20) 

* 

0 

50 (30, 20) 
33 

50 (2 X 25) 
70 (30, 2 X 20) 
67 

100 
100 
83 

58 (25, 2 X 17) 

80 (60, 20)' 
0 

75 (50, 25) 
90 (SO, 40) 
33 

70 (40, 30) 
0 

Tree-based alignment SD o d e  
Single-order  aiignrnent;  indel = 8 (4-10); iteration = 1 
(1-4)  
Tree-based  alignment; SD ordering 

Defaults; parameten tweaked are: pairwise: indel (I-@* 
k-tuple (1-2); multiple alignmmt 1 (6-121, E (2-10) 

\ 
Defaults  excepr: match weight +,4- deletion  weight 

= 2; NW 

Defaults except match  weight = 21 W 

Cycles = 14;  cutoff score = 900-m all others as in 
table 2d 

RGW = 2-44 median.4 (2-12) 
RGW = 6-8-10 median 8 (2-12) 

Local Methods 

1 0 0  
i 00 
1 0 0  

l o o  
100 
100 

25 
30 
0 

67  Cutoff scox = 20 (10-20); MD = 31,3046, 33% 
70 (20%-50%);  result list size = 1c0, for all subsets; 
33 several  overlapping blocks' 

42 (25, 17) 42 (25, 17) SB clustersf 

0 33 SB clusters' 
60 (40.20) 70 SB  clusters';  E = 0.33  (0.2-1.75) 

67 (2 X 33) 34 (2 X 17) 67 (2 X 25. 17)  Window  size = 20 (10-40); word sizc = 3 (3-5); MC 
I o 0  (40,2 X 30) 30  70 (30, 2 X 20) = 1 (0-2);  indel = 0 MD = j(P, (2046-5046) 
loo  (3 x 33) 0 30 

NoTE.-AII designations  and  abbreviations are as in  tables 1 and 2. 
'SD ordering uses the  standard  deviation  between sequence p a i ~  to form an  order. 

See footnote "b" of table 2. 
e See footnote "c" of tabte 2. 
'See footnotes '*d'*-''g" of fable 2. 
e Sce footnore  "h" of table 2. 
'See footnote "i" of table 2. 

\ 
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analysis. In addition to the hemoglobins, therefore, we  of three motifs that  contribute  to  the active site of the 
have analyzed three such data sets: the kinase family,  enzyme. The most prominent motif is three consecutive, 
the  aspartic acid protease family (@th.eukaryotic  and conserved  residues-aspartic  acid, threonine,  and gly- 
viral),  and  the RH region of both the RNA-directed cine (single-letter  code, ‘‘DTG”) (fig. 3 ) .  Jt has been 
DNA polymerase (the reverse transcriptase)  and  the suggested that  the aspartic acid  proteases  evolved through 
Escherichia coli RH enzyme. duplication of a singledomain prototype (Tang  et al. 

From each family we have  selected a representative 1978).  The retroid  family  aspartic  acid proteases are 
s t  of sequences uith a broad  phylogenetic dishbution. about half the size of the cellular  proteases. Primary se- 
The percentage range of identical  residues among all quence analysis  of  retroid  proteases  indicated an ordered 
sequence pairs 111 the hemogIobin data set  is 10%-70%. series of three motifs,  suggesting that they function as 
The percentage mge of identical  residues among all dimers  and  that they  diverged from the eUkarYOtiC as- 
sequence pairs =- m h  o f ~ e  enzymatic data =a is partic acid proteases  prior to the latter group’s dupli- 
8%-30%, i n d i e  h t  only those residues involved in  cation event ( P a l  and Taylor  1987; Doolittle et d. 
function  are conserved among these  highly divergent 1989 CrYmloPPhiC studies  SuhWuendY C O d h ~ e d  
sequences. n e & _ m e n B  offigures 1-3 were extracted the dimeric  nature  and catalfiic site of  the  retrovirus 
from  larger aliwas ( 5 u 5  sequences) produced by aspartic acid PrOtaq% as Predicted from Primar3. %?- 
the program DFAJJGN ad cornad manually. e% quence analysis (Miller  et d. 1989).  The  aspartic acid 
of test sequences a d a b l e  through EMBL (identi- protease data set includes pepsin (only the amino-ter- 
fication no. DS16117). mind domain of this doubledomain  protease)  from 

The h e m 4 6  set includes and &globins mammals, birds, and fungi and from representative 
from mammh and birds; myoglobins from members of the retroid  family,  such as retroviruses, cau- 

designated  five e o n s  of the alignment to serve as the  1992). 
ordered series of motifs defining the globin  family. There The RH domain of the FQ4Adirecte.d DNA poly- 
is no  external masure of the  authenticity of this choice, merase  (reverse transcriptase) of the retroid elements 
as there  is in the case of enzymatic protein families (see resides in  the carboxyl one-third of  the protein. Amino 

below). The decision was made to provide a test for  the acid sequence comparisons of the retroviral proteins 

globins that is consistent with the tests of the kinase, correctly predicted the position of the RH activity in  the 

aspartic acid pmtease, and RH families.  We score for RNA-directed DNA polymerase by identification of 
motifs conservd with the E. cdi RH sequence (Johnson 

five motifs lh conserved Or semiconserved et al. 1986). Subsequent mutational studies confirmed 

and hemogl&b from insects, plants, and bacteria. We limovirus=, and r e ~ o ~ n ~ ~ n s  (fig- 3) (Mclure  

throu&Out the phSilogenetic distribution Of the dobin the position (Tanese and Gaff 1988).  The Motif’ is antially helical re@on motifs I’ highly consew& motifs ofthe =Qoid family  and ElcoIi and ‘“9 in &Om E and.F r@velY, are within RH proteins have been shown to cluster in the 
the heme-binding and motifs IV and V are  in site, as identified in thi crystal of the E. coli 

et al. 1987). domain (Davies et aL 1991) (fig. 4). The RH data set 

fe &t the most basic Of OeUular members of the retroid  family, including retrovinses, 

mw -Waenoe &* On *e basis Of *e roposons, and group I1 plasmids of filamentous asco- 
of  the ordered series of eight motifs found  in  their cat- mycete mitochondria ( ~ a ~ ~ ~  1993). 
alytic domains (Hanks and Quinn 199 1 ) (fig. 2). Crys- Subsets of 6, 10, and 12 sequences  were  used to 
d1ogW’hic stidis ofthe Cyclic adenosine monoPhos- assay the ability of each  method to identify the ordered 
Phate-deWnht Votein khase confirm  that most of series  of  motifs  defining each protein family. There  are 
the conserved mot& ofthe kinase  Protein Core do c lu rh~  two reasons for  varying the sequence number: ( 1 ) by 
into the regions of the protein involved  in nucleotide varying the number of subsets of sequences  tested, we 
binding and (bighton et al. 1991 1- The kinase could evaluate the effects of both the sensitivity to the 
data set includes serine/threonine, tyrosine, and  dual number  of sequences and to specific sequences in each 
specificity k i n a s  from mammals, birds, fungi,  retro- test; and (2) some  methods  can  only handle small data 
viruses, and herpes viruses. sets (table I ). Each  six-sequence data set contains  the 

The eukaryotic aspartic  acid protease family con- widest distance distribution of sequence relationship. 
sists of pepsins chymusin, and renins. These proteases The 10- and 12-sequence data sets were created by ad- 
have two  domains. Each domain has an ordered series dition of sister  sequences to the 6-sequence data sets. 

reg0ns and % respectively (fig. ) (Bashford RH protein ( atayanagi et 1990)  and the HIV-1 RH 

The eukar).otic proteins ‘onstitUte a large ’ includes sequences from E. coli and representative 

p r ~ ~ s e s .  ne% voteins have been by Pn- caul imovim,  hepadna*ses, retromsposons, ret- 



Table 5 
Scores for Programs Tested  Using R H  1 

Program and 
No. of 

Tested (3 residucs) ( 1  rcsiduc) (3 rcsiducs) ( 5  residues) Parnmcters/Comments 
Sequences  Motif I Motif II Motif 111 Motif IV  

Global’Methods 

AMULT: 
12 . . . . . .  
IO . . . . . .  
6 . . . . . .  

02 ASSEMBLE: 
12 . . . . . .  
IO . . . . . .  
6 . . . . . .  

CLUSTAL V: 
12 . . . . . .  
IO . . . . . .  
6 . . . . . .  

12 . . . . . .  
10 . . . . . .  

-6 . . . . . .  
GENALIGN: 

I2 . . . . . ,  
10 . , . . , .  
6 . . . . . .  

0 

DFALIGN: 

92 
IO0 
100 

IO0 
IO0 
IO0 

IO0 
100 
100 

100 (83, 17)b 
80 
lOOb 

75 (58, 17) 67 (50, 17) 
70 60 
83 (50, 33) 67 

Did not perform alignment, since  filter produces empty plots‘ 

75 
70 
67 

IO0 
60 

100 

58 
90 
67 

75 (58, 17) 
70 
50 

59 (25, 2 X 17) 
90 (60, 30) 
80 (50, 33) 

75 (33, 25,  17) 
80 (2 X 30, 20) 
50 

83 IO0 
IO 100 
67 IO0 

67 (33, 2 X 17)b 75 (33,  25, 17)b 

67 67 
70 (40. 10)b 90 (30,  3 x 20)b 

,’ 
_ r  

Single-order alignment; defaults except: 
iteration = 4 (1-4) 

Tried FILLOG and  HL-SUM algorithms for 
all 

Defaults; parameters tweaked  are:  painvise: 
indel (1-8) and k-tuple (1-2); multiple 
alignment: 1 (6-12) and E (2-10) 

Begin weighting sequence 3 with  value 3 
Uegin weighting sequence 4 with  value 3 
Begin  weighting sequence 2 with  value 2 

Defaults except: NW, match  weight = I 



MULTAL 
I 2  . . . . . .  92  (75, 17) 
IO . . . . . .  I00 (70, 30) 
6 . . . . . .  1 0 0  

IO . . . . . .  I 0 0 b  

6 . . . . . .  1 0 0  

TULLA 

MACAW: 
I2 . . . . . .  
IO . . . . . .  
6 . . . . . .  

12 . . . . . .  
IO . . . . . .  
6 . . . . . .  

12 . . . . . .  
IO . . . . . .  
6 . . . . . .  

VI PIMA: 

PRALIGN: 

92 (58, 2 X 17) 
90 
83 

50 
50 

75 (50, 25) 
80 (60, 20) 
67 

40 
67 

83 
70 
83 

80 (2 X 40) 
50 

Cycles = 1 4 ;  cutoff score = 900-200; AI1 others 
as in table 2c 

c 

Defaults except: RGW = 8-10-12 median 8 

Local Methods 

58 
80 
83 

83 
1 0 0  (80, 20) 
100 

75 
80 
83 

42 
70 
67 

75 
80 

IO0 

67 (2 X 33) 
80 (60, 20) 
67  (2 X 33) 

58 
70 
67 

67 (33, 2 X 17) 
80 (40, 2 X 20) 
67 

50 (33, 17) 

33 
L 40 

17 
40 
67 

92 (42, 33,  17) 
90 (70,  20) 
83 (50, 33) 

17 
20 
50 

Cutoff score = 20 (10-20); MD = 25%, 30%, 
33% (209~50%); result list size = 1 0 0 ,  for all 
subsets; several  overlapping blocksd 

ML clusters'; E = 0.2 (0.2- 1.75); I = 5.5 (5-7) 

ML clustersc; E = 0.33 (0.2-1.75) 

Window size = 20 (10-40); word size = 3 
(3-5); MC = I (0-2); indel = 0; MD = 30% 
(20%-50%) 

NoTE.-AII designations  and  abbnvialions a= as in  tables I and 2. 
'See bomb "W of table 2. 
See hotnote "c*' ortable 2. 
Sac footnotes "d"-"B" of table 2. 
See rbolnote "h!' of  lable 2. 
See footnote "i" ortable 2. 
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I 

HUMA 
HAOR 
HADK 
HBHU 
HBOR 
HBDK 
MYHU 
MYOR 
IGLOB 
GPUGN 
GPYL 
GGZLB 

A 
i 

V L S P A D K T N V K A A W G K V  PHP D L S  
M L T D A E K K E V T A L W G K A  SHP DLS 
V L S A A D K T N V K G V F S K I  

V H L T P E E K S A V T A L W G K V  
V H L S G G E K S A V T N L W G K V  
V H W T A E E K Q L I T G L W G K V  
G L S D G E W Q L V L N V W G K V  
G L S D G E W Q L V L K V W G K V  

S P L T A D E A S L V Q S S W K A V  
‘I A L T E K Q E A L L K Q S W E V L  

G V L T D V Q V A L V K S S F E E P  
M L D Q Q T I N I I K A T V P V L  

HUMA 
HAOR 
HADK 
E?WU 
HBOR 
HBDK 
MYHU 
MYOR 

II I5 
D 
- 

E 
- 
F 

I 
H K K V A D A L T N A V  
H K K V A D A L S T A A  I 

H K K V A A A L V E A V  
T P D A V M G N P K  

I 
K K Y L G A F S D G L  

Iv V - 
G 

- 
H 

t I 
H U M  V D P V N F K L L S H C  

HBDK V D P E N F R L L G D I  
MyHu I P V K Y L E F I S E C  

RG. 1.-Multiple alignment of representative globin  sequences. The five motifs scored for in the c o m p t i v e  a+& are indicated by 
blackened bars and the numerals I-V. Black/white reversals of columns within the motifs indicate the most cowrved residues  of the.motifs 

’ and their conservative substitutions based on the similarity scheme (F,Y). (M,L,I.V), (A,G), (TS), (Q,N), (K,R), a d  (ED). If the same 
number of matches occurs for more than one residue  in a column,  then one set is arbitrarily chosen for black/white m d .  The conserved 
helices of the globins arc indicated by overlined regions and the  letters A-H. The set of 12 sequences includes HAHU (human), HAOR 
(duckbill  platypus). and HADK (duck) a-chain hemoglobins and  HBHU (human), HBOR (duckbill piatypu), and HBDK (duck) &chain 
hemoglobins.  MYHU (human)  and MYOR (duckbill  platypus) are myoglobins. The remaining hemoglobin sequences are IGLOB (insect, 
Chironomzu fhurnmi), GPYL (legume. yellow lupine),  GPUGNI  (nonlegume.  swamp oak), and GGZLB (bacteriq V&ecvdira sp).  The two 
other test sets of globin sequences are subsets of these  sequences; set 10 = set 12 without HAOR  and  HBOR. and set 6 is comprised of HAHU, 
HBHU. MYHU, IGLOB, GPYL. and GGZLB. 

The sequences of the four protein families tested seven amino acids (fig. 1 and table 2). The kinase  family 
display a wide range of motif  density,  motif  conservation, has well-defined  indei  regions  interspersed among eight 
and indels. The globins are highly conserved with few highly conserved motif?,  each  of  which varies from one 
indek, and the five motifs range  in  size from three to to nine  amino acid  residues in size (fig 2 and table 3) .  
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The aspartic acid protease and RH sequences have the sensus sequences to one another produces a progressive 
greatest  range of motif density, motif conservation, and multiple alignment.  In  addition,  GENALIGN  allows  the 
indels (figs. 2 and 3). The size of @e three motifs of  the user to chose either the Needleman-Wunsch (NW) or 
protease is from three to five amino acid  residues, and consensus word (CW) algorithms (for definitions,  see 
the four motifs  of the RH data set  vary  from one to five the section Basic Algorithms) for the alignment, while 
amino acid  residues (tables 4 and 5 ) .  These latter two CLUSTAL V permits the user to specify individual pa- 
tests are more difficult than either the globin or kinase rameters for both the pairwise and multiple alignment 
tests.  stages. AMULT and DFALIGN  produce a progressive 

multiple alignment directIy  from  the  clustering  stage. 
Description of Alignment Methods Analyzed . AMULT then produces a final multiple alignment 
Multiple Alignment  Strategies through optimization of the progressive multiple align- 

ment. A novel feature of  AMULT  provides the option 
of producing a progressive  multiple  alignment directly 
from the pairwise  ordering  stage,  bypassing the phylo- 
genetic clustering  stage.  Two  methods (MSA and 
TULLA) produce a progressive  multiple alignment and 
then a final multiple alignment. The MSA method can 
also produce a final  multiple alignment, bypassing the 
progressive multiple alignment  stage, ifthe user supplies 
the  upper bounds for all sequence  pairs that is  necessary 
for the multidimensional dynamic programming on a 
restricted space.  ASSEMBLE and MWT produce a final 
multiple alignment directly  from the pairwise  analysis. 
The MSA and MWT methods differ from the others 
because they compute an optimal multiple alignment 
with  respect to a well-defined  multiple  alignment  scoring 
function.  The source code  for GENALIGN has been 
licensed to IntelliGenetics and, therefore, is no longer 
available. All other developers  have made their source 
code available upon request, as is the standard practice 
in the scientific community. 

has been  suggested  by  several  deGeloperS ( Waterman and 
Perlwitz  1984;  Feng and Doolittle  1987; Taylor 1987). 

The diagram in figure 5 s w m ~ ~ ~ &  the basic im- This approach begins with alignment of the two most 
Plementation Of the V k O u s  algorithms employed in  the closely related sequencff (as determined by pairwise 
nine different global multiple alignment methods ana- analysis) and subsequently  ad& the next  closest se- 
h e d  (table 1 1 (Barton and Sternberg 1987~~. 1987b; quence or sequence  group to this initid pair. mis process 
Feng and Doofttle 1987; Taylor 1987,  1988; Martinez continues, in an iterative fashion,  adjusting the posi- 
1988; Lipman et al. 1989; Subbiah and Harrison 1989; tioning ofindels in dl sequences. n e  majorshoflcoming 
VinWn and A % a  199 1; Hi@m et a l a  1992; K k O &  of this approach is that a bias may be introduced in the 
1993). Table 1 indicates the V a r h s  algorithms em- inference of the ordered series of motifs  because  of  an 
Ploy& bY each method. In light of  the  computational overrepresentation of a subset of sequences. More re- 
expense of simultaneous comparison of protein se- cently  developed  metho&,  such % MSA, use a sequence- 
quences, all n ~ t h o d s   h e i n  by comparing all SWencff weighting  scheme to correct for this potential  problem 
in a pairwise  fashion.  Several methods cluster the se- (table 1 ) (Altschul et al. 1989). 
quences into subalignments by using a similarity mea- 
sure (GENALIGN and MULTAL) or a phylogenetic Methods 
tree (CLUSTAL V, AMULT, and DFALIGN). GEN- We  have  analyzed  three local multiple alignment 
ALIGN,  MULTAL, and CLUSTAL V subsequently methods  (table 1 ). MACAW (multiple alignment  con- 
align the clustered subalignments to  one  another by em- struction workbench) automatically performs multiple 
ploying  various consensus methods that reduce each alignment of input sequences and also  provides a mul- 
subalignment to a single  consensus  sequence.  Allowing tiple alignment sequence editor (Schuler et al. 1991 ) e  

the subaIignments to be merged by aligning their  con-  This method begins  with  pairwise  analysis of all se- 

There are two basic  software approaches in deter- 
mining the similarity among proteins. The following 
global  methods construct an alignment throughout the 
length of the entire sequence:  AMULT (Barton and 
Sternberg 19874  I987b), DFALIGN (Feng  and Doolit- 
tle  1987), MULTAL (Taylor 1987, 1988), MSA ( L i p  
man etal. 1989),TULLA(SubbiahandHamson 1989), 
CLUSTAL V (Higgins et al. 1992),  and MWT (Kece- 
cioglu 1993). A subclass of global  methods attempts first 
to identify an ordered series of motifs and  then proceeds 
to align the intervening regions, e.g., GENALIGN 
(Martinez 1988),  and ASSEMBLE (Vingron and Argos 
1991 ). Local methods only attempt to identify an or- 
dered  series  of motifs while  ignoring  regions  between 
motifs, e.g., PIMA (Smith and Smith 1990, 1992), 
PRALIGN ( Waterman and Jones 1990) , and MACAW 
{ Schuler et al. 1991 ). Brief descriptions of the basic al- 
gorithms, scoring  matrices, and penalties  for indels used 
in all the methods analyzed are presented  below 

.; (table 1 ) . 
\. The concept of a progressive  multiple alignment 

Global Methods 
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PDCLM 
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EGFR 
HSVK 

CAPK D Q F E R I X T L  Q E G ~ R V M L V K H M E  
&fLCK FSMNSKEAta  LVCTCTEKS 
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A N Y K R L E K  
T R P R N V T L  

RAFI S E V M L S T R  ~ T V Y K G K W H G D  
CMOS E Q V C L L Q R  IVYKATY 

LVWMGTWN 

'VEATARGLS 
PSGRLRAD 

'PDSSHPD 
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ESLRLEVKLFQI 

DQLvt  GRTLF 
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PSKH 
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RAFI 

P i R r  

K L E F S P K D N  
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R V Y A A S T R T P A G S  
L P M G Y M T X  

O L Y A V V S E  

S N L Y M  
H E I V L  
E R V Y M  

G P L Y M  
H K L Y L  

D N L A I  
N S L G T  
E P I Y I  

I1 
T G N H Y A M  
T G L K L A A  
T R Q P Y A I  

Q G Q R V V A L  
X T L K Y A V  

R G V P V A I  
G T T R V A I  
N T L V A V  

H S Q A T M K V A V  
E K V X I P V A I  

I 

V M E Y V P G G E M F S H L R R I G  
P M E Y I E G G E L P E R I V D E D Y H L T  
V M E L A T G G E L P D R I I A K G S P T  
V P E P L D   L D L K R Y M E G I P K D Q  
Q V E L C E N G S L D R P L E E Q G Q L S  
V T Q W C E G S S L Y K H L H V Q E T  

V T E Y M S K G S L L D P L K G E M G K Y L  
IIMEP  GGNVTLHQVIYGAAGH(15) 

RPSEPHARPYAAQIVLTPE~L 
EVDTMVPVR  QICDGILFn 
ERDATRVLQ  MVLDGVRYL 
PLGADIVKKPYMQLCKGIAYC 
RLDEPRVWKILVEVALGLQPI 
KPQMPQLIDIARQTAPGMDYL 

RL  PQLVDMAAQIASGMAYV 
LSLGKCLKYSLDVVNGLLPL 

--..- -- - ~~ ~ - 
VFES R L I G V C T Q  
PDGM T F L Q R  H S N X H C P P S A E L Y S N A L P V G P S L P  SHLNLTGESDG(54) NDSPVLSYTDLVGPSYQVANGMD~I, 

K Q P I Y I   V M E L V Q G G D P L T F L R T E G A   R L R M K T L L Q M V G D A A A G M E Y L  

EGFR R L L G I C L T S  T V Q L I T Q L M P F G C L L D Y V R E H K D N  IGSQYLLNWCVQIAKGMNYL , 
,%YX PLLDLHVVSGVTCLVLPKYQ  ADLYTYLSRRLN  PLGRPQIAAVSRQLLSAVDYI I 
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quences, to identify  potential  motifs.  Only those motifs 
found in all painvise  alignments are coalesced into blocks 
that  the user  can then manipulate with the on-screen 
editor. The PIMA method begins  with a pairwise  analysis 
of all sequences, then constructs a tree on the basis  of 
this order and derives a pattern at each node by using 
the progressive alignment approach (Smith and  Smith 
1990, 1992). This is continued in an iterative fashion 
until a root  consensus panern is  achieved  using the 
amino acid  class  hierarchy (see Scoring Matrices). 
PRALIGN is a method based on the CW approach 
(Waterman 1986;  Waterman and Jones 1990). Words 
are found on the basis of user-specified  word length 
(number of contiguous  residues) and window  length 
(number of consecutive  residues to search within for a 
word ) and motif  density and motif  conservation param- 
eters  (for definitions, see Methods Used for Comparative 
Analysis of Alignment Programs). 

Basic Algoriihms 
The bidlogically interesting formulations of the 

multiple alignment  problem are in the class of so-called 
NP-complete  problems (i.e., nondeterministic polyno- 
mial  time cornpIete problems). This implies that algo- 
rithms that can find an optimal multiple alignment for 
~ n - ~ s e r  of input sequences--called uexact algorithms"- 
are unlikely to be efficient.  However,  exact algorithms 
that can efficiently  find an optimal alignment  for specific 
sets of sequences  exist, and some are known (Canillo 
and Lipman 1988; Kececioglu 1993) and  are included 
in this analysis ( e g ,  \"SA and MWT). Algorithms that 
can efficiently find an alignment that is guaranteed to 
be close to the optimal alignrnent-called "approxi- 
mation algorithms"-are possible, and some have  re- 
centIy been  described  (Gusfield  1993;  Pevzner 1993). 
Whether the best alignment  produced by these new  al- 
gorithms includes the ordered series of  motifs that define 
a given protein  family  remains to be determined. Only 
the algorithms and approaches implemented in the 
multiple alignment methods in this study will be briefly 
described. 

The dot matrix approach has been used  extensively 
in sequence analysis.  In  brief, a two-dimensional array 
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of two sequences is created, and a dot is placed for 
matches. In the ASSEMBLE method the dot matrix is 
initially employed as a filter to identify and  retain only 
those motifs that  are conserved among a given set of 
sequences, prior to the use  of dynamic programming. 
States and Boguski ( 1990) have written an elegant his- 
tory and detailed description of the various biological 
applications of the  dot matrix method. 

Most of the methods compared here employ dy- 
namic programming,  which finds an optimal alignment 
for two sequences on the basis of various scoring 
schemes. The scoring scheme is  usually based on a value 
for matches and replacements (see below) and on a pen- 
alty for indels (see below). The major shortcoming of ' 

this approach, when  applied to more than  two  sequences, 
is that it requires intensive computer lime (CPU time) 
proportional to NK, where Kis the number of sequences, 
and N is their average  length. In 1970, Needleman and ' 

Wunsch  wrote the first dynamic propmming algorithm 
for the global comparison of two sequences. In brief, a 
two-dimensional a m y  of the sequences is employed to 
find  maximal matches while penalizing for indels (Nee- 
dleman and Wunsch 1970). This method has formed 
the basis of most of the subsequent extensions to higher- 
dimensional arrays for multiple sequence alignment. A 
significant reduction in CPU time for the case of two 
sequences, with little loss in sensitivity,  was achieved by 
the use of the dot matrix method coupled to the NW 
algorithm, resulting in  the Wilbur-Liprnan (WL) Ago-, 
r i a m  (Wilbur and Lipman 1982). Another improve- 
ment  to the NW algorithm, when  extended to multiple 
sequences, wasdachieved  by the use of  pairwise  align- 
ments  to restrict the search for optimal paths  among 
multiple sequences, thus creating the  Camllo-Lipman 
(CL) algorithm (carrill0  and Lipman 1988). 

Two of the three local multiple alignment methods 
analyzed here employ the  Smith-Wateman (SW) al- 
gorithm (Smith  and Waterman 1981).  This algorithm 
was the first useful approach for  identifying subsequences 
within larger sequences, and it allows  for indels of ar- 
bitrary length within the subsequence. The use of this 
algorithm in the MACAW alignment editor, however, 

FIG. 2.-Multiple  alignment of representative  eukaryotic  kinase-protein sequences. The  eight motifs scoredfor in the comparative analysis 
are  indicated by blackened bars and the numerals I-VIII. CAPK (bovine cardiac muscle), MLCK (rat skeletal muscle), PSKH (Hela  cell), 
CD28 (Succhuromyes cerwisiae), and CMOS and RAFl (human  oncogenic proteins) are  the sequences of serine/threonine-specific kinase 
proteins. WEE1 isa dual specificity kinavfrom S. pombe. CSRC (chicken  oncogenic  protein), VFES (felinesarcoma  virusoncogenic  protein), 
PDGMR (mouse, PDGF receptor).  and EGFR (human, EGF receptor) are sequences of tyrosine-specific kinase proteins. HSVK is the herpes- 
simplex-virus kinase. The asterisk and residues in parentheses  indicate a HSVK duplication  that  provides a second conserved motif VIII. 
Numben in  parentheses indicate the number of amino  acids in insertion/deletion positions not included  in the alignment  display. All other 
designations are as in  fig 1. The two other test sets of kinase sequences are subsets of these sequences; set IO = set I2 without MLCK and 
mRC. and set 6 is comprised ofCAPY CD28. WEE\, VFES, PDGMR. and EGFR. 
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does not allow the introduction of indels within a sub- 
sequence. 

One global method (GENALIGN) and one local 
method [PRALIGN ) are based on  the CW approach to 
the multiple alignment problem (Karlin et al. 1983; 
Waterman 1986). It is assumed that the CWs defining 
a given protein family are unknown. All subsequences 
of a specific word size are then searched for within a 
given window among dl the input sequences. Waterman 
and 3ones ( 1990 1 have  written a detailed description of 

.;.. I 
the CW approach applied to both DNA and protein se- 
quences. 

Scoring Matrices 
Various types of amino acid exchange matrices 

are  available  to assist in aligning protein sequences 
(Fitch  and Margoliash 1967; Dayhoff et al. 1978; 
Feng et al. 1985; Taylor 1986; Rao 1987; Risler et 
al. 1988). Values  for replacing one residue with an- 
other are based on physical/chemical similarities, 
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FIG. 3.--Multiple atignment of representative aspartic acid protease sequences. The three motif's scored Tor io the comparative analysis 
are indicated by blackened bars and  the numerals 1-111. The retroid family aspartic  acid protease sequences are horn the retroviruses HTLV-I 
(human T-cell leukemia v i r u s  type I). RSV (Rous Sarcoma virus). SRV-I (simian retrovims type I), HIV-I (human immunodeficiency virus, 
type I ) ,  and MoMLV (Moloney murine leukemia virus): the  caulimovirus CaMV (cauliflower m&c virus); and tk retmbansposons Copia 
and 17.6 (Drosophilu melunogatler) and T y 3  (Succhnromyces cerevisioe). PEPH (human), PEFC (chicken). and PEPP (fungus Penicillium 
junlhinelhm) are the amino-terminal half of pepsin  sequences. All other  designations  are as in fiq I and 2. The two other test ses of aspartic 
acid protease sequences are subsets of these sequences; set 10 = set 12 without SRV-I and 17.6. and set 6 is comprised of PEPH. MoMLV, 
CaMV, COPIA. 17.6, and TY3. 
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AMULT’ I 
GENAUGN. 
MULTAL, 
CLUSTAL v 

FIG. 5.-Schematic  representation of the  basic  strategies employed by nine  different globaI multiple alignment methods. All methods 
perform initial  pairwise alignments and  then progress through various  stages,  before  producing  a progressive or final multiple alignment. The 
loop on the T U L U  and AMULT methods  indicates  that  an optimization procedure can be performed on the multiple alignment at  the 
indicated stage. All abbreviations  are as in the  text. The asterisks ( ) indicate one  of two  user-specified  st’ftegies for the AMULT program. The 
plus sign (+) indicates  that MSA uses the progressive multiple alignment strategy  to provide  the  upper  bounds for all sequence pairs in  the 
mult@mensional  dynamic prbgramming on a  restricted  space. The user may  specify  these  upper bounds, thereby ovariding the  progressive 
multiple alignment step. 

Insertions and Deletions 

Alignment of protein sequences  often requires the 
introduction of indels to maximize the similarity be- 
tween  sequences. There are basically two different 
methods for scoring  indels. The most commonly used 
method assesses a constant, length-independent penalty 
(C 1. The second method charges a length-independent 
penalty for the initiation of the indel ( I )  and a length- 
dependent penalty for extending the indel (E). One of 
the methods analyzed in this study, TULLA, uses an 
indel score referred to as the relative gap weight (RGW) 
that assesses a constant indel penalty  relative to how 
many sequences have this indel. The greater the  number 
of sequences containing a common indel, the higher the 
penalty. 

Parameters 

The raie-limiting step of this study has  been deter- 
mining the appropriate user-specified parameters of  each 
method for each data set. The number of user-specified 
parameters varies from method to method (from one 
to seven). Often the  same parameter is called by different 
names in  different  programs. We  have adopted a uniform 
parameter listing throughout this study, therefore, the 
indel  penalty is the gap penalty, C is the constant, length- 
independent indel penalty, and I+E is the initial, length- 
independent plus the extension, lengthdependent indel 

! 

penalty.  In the ASSEMBLE program I+E is the “first” 
and “second” penalty, and  in CLUSTAL V it is the 
“fixed” and “floating” penalty, Word size is called “k- 
tuple” in CLUSTAL V and  “amino acid  residue length” 
in GENALIGN. The ody parameter common to all 
methods is the indel penalty. In PRALIGN the I+E 
penalty is only applied to the word size, thus forming 
part of the motif conservation. 

A range of parameter conditions has been  explored 
for each method. Changes that have provided  signifi- 
cantly  better  results, as judged by the motifidentification 
criteria,  when substituted for the default parameters, are 
indicated  in tables 2-5. The sofhvare developers have 
also been  given the opportunity to improve the results 
of the test  of their methods by altering source code or 
by  suggesting alternative parameter-mg combinations. 
Few  suggestions  were forthcoming that improved the 
test  resulis; although, those changes thar resulted in im- 
provement have been incorporated into this analysis. 

Results 
Although the program MSA correctly aligns the set 

of  six  globin  sequences, it could not be tested further 
because of space requirements greaterthan the 40 mega- 
bytes of RAM and 40 megabytes+ swap (Lipman et al. 
1989). The preliminary program MWT, which is an 
implementation of the exact algorithm for maximum 
weight-trace multiple alignment problem, could not 



Comparison of Protein Alignment Methods 589 

produce results at all with our test  sets. We attribute this 
to  the space limitarians of our computer (Kececioglu 
I 993). 3 y  using a set of six globinq  with >50% identity, 
however, MWT produces the correct alignment (un- 
published observarion). An implementation of the a p  
proximation algorirhm  for MWT that.is space efficient 
is in progress (J. Kglecioglu, personal communication). 
Future testing wiIl determine whether either MSA or 
MWT can corredy identify  motifs that define a protein 
family. These two methods will not be considered  fur- 
ther. 

Our cornpararive  analysis  indicates three distinct 
types of problems in multiple sequence alignment. The 
most significant  problem encountered is the inability to 
merge subsets of  Sequences in which motifs have  been 
correctly idenrified. to provide a single multiple align- 
ment (tables 2-5 ). The global  method  GENALIGN and 
the I d  method PRALIGN exhibit this problem  for  all 
data sets to w i n g  degrees,  depending both on  the 
number of sequences and on which  specific sequences 
are analyzed (tabIes2-5). In the kinase  test,  several other 
methods-ASSEMBLE,  CLUSTAL V, MULTAL, 
TULLA,  and PMA-exhibit this problem to a minor 
degree. In this cast rhe problem  stems  from the inability 
to recognize  single-residue  motifs that are common be- 
tween, subsets (table 3 and fig. 2).  

Both the protease and RH data sets  have some mo- 
tifs that display low' motif conservation (e.g., fig. 3, motif 
11, and fig 4, motif IV). Most of  the methods exhibit 
varying degrees  of inability to merge correctly aligned 
subsets of sequencg,,from these  more distantly related 
data sets (tables 4 arid 5 ) .  It should be noted that an 
additional weighting parameter was developed for 
DFALIGN (D.-F. Feng and X. F. Doolittle, personal 
communication) to speciiically correct this type of  error. 
This parameter allows the user to specify an additional 
weight (a  value of 2 or 3 is sufficient ) to be added to  the 
score for  each identical match beginning  with a user- 
specified  sequence.  For  example,  in the kinase test set a 
weight  of 2 is added for each  identical  residue common 
between sequences beginning  with the third sequence. 
Use of this parameter is absolutely  necessary to achieve 
the scores  of tables 3-5 for the DFALIGN program. Ex- 
treme caution should be exercised in the manipulation 
of this parameter even by expert  users (R. F. Doolittle, 
personal communication ). 

The second problem is the degree to which the 
number of  sequences in the test  set  affects the ability to 
recognize motifs. Most methods perform better with 
larger data sets. In some cases, however,  even though 
the accuracy of  identifying  motifs  increases  with the 
number of sequences, the inability to merge correct sub- 
sets of the data set is introduced into the multiple align- 
ment  (tables 3-5, comparing sets of 10 vs. 12). 

The third problem, sensitivity to specific  sequences 
in the data sets, appears to be a more general problem. 
One might  think that  the degree to which a method could 
identify  motifs  would not vary  significantly as a function 
of addition or deletion of sister  sequences to  the  data 
set, but only  in the globin test is this problem negligible. 
Sensitivity to specific  sequences is most consistently ex- 
hibited by the global methods GENALIGN and 
AMULT and by the local method PIMA, although all 
methods suffered to a degree  from this problem 
(tables 2-5 ) . 
Discussion 

Protein sequences  with >50% amino acid residue , 

identity c a n  usually be unambiguously aligned by many 
of the multiple alignment methods currently available. 
Among protein sequences with ~ 3 0 %  identity, it can  be 
fairly  straightforward to find the ordered  series  of motifs 
when the motifs are well  conserved and when  few indels 
have occurred (table 3 and fig. 2). It is  difficult,  however, 
to discern the ordered series of motifs that define a pro- 
tein family and  to obtain an adequate global multiple 
alignment that can be used  in subsequent phylogenetic 
inference, if the motifs are not well conserved and if 
significant  indels have occurred (tables 4 and 5 and figs. 
3 and 4). 

We  have  identified three specific problems that are 
exhibited to various  degrees by all the  methods tested. 
The first, the inability to produce a single multiple aIign- 
ment, could be due to  an indel penalty that is too high. 
This seems unlikely, since we have  varied the indel pen- 
alties in  most methods without alleviating this problem. 
The extra paraiketer of the DFXLIGN method, which 
allows the user to increase the weight  for matches as the 
distance between sequences increases,  suggests that  the 
inability to produce a single multiple alignment from 
subsets could be  addressed as a matrix problem. Perhaps 
'identical residues common among distantly related pro- 
tein sequences should have a higher  value,  especially  if 
they occur in small contiguous runs. The point, in the 
divergence of a family  of  protein  sequences, at which 
such an increase  in the values  of identities should take 
precedence over more standard matrix scores needs to 
be investigated. Currently, subsets are merged by ad- 
justing  the placement of indels and appropriately re- 
ducing or increasing the number of indels to produce a 
single multiple alignment as a final manual refinement. 

The second problem, the sensitivity to  the number 
of sequences, and the third problem, which  specific  se- 
quences are  in the test set, are serious problems. The 
increase from 6 sequences to 10 sequences,  by  the ad- 
dition of sister sequences to the test data sets, usually 
increases the ability of most methods to identify motifs. 
This increase,  however,  is accompanied by the intro- 
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duction of the inability to merge correct subsets. The  The area of computational biology that encorn-; , - .  1 

addition of  only  two  more  sister  sequences to  the 10- passes both sequence-search and alignment  algorithms 
sequence set, howevq, causes a decrease  in  identification has created a plethora of methods. In only a few instances 
of  motifs. This effect is most  significant  for the protease have developers attempted to evaluate the multiple 
and RH tests (tables 4 and 5 ) .  Why so many of the alignments produced by their methods by comparing 
methods are sensitive to sequence number and specificity them with  experimentally  determined structures (Barton i 
is  an area that warrants further investigation on the  part and Sternberg 1987a, 1987b; Subbiah and Harrison 
of the sofnuare  deveIopers.  Such shortcomings should 1989). The field is now  sufficiently  developed  for ade-: ' 

warn biologists that variation in data sampling could quate testing of methods on real  sequence  data.. It is no i 
lead to erroneous conclusions  regarding the ordered se- longer sufficient that algorithm  developers  merely pr@- 
ries of motifs defining a protein family, as well as the Pose Yet another approach to these problems. It is in-; 
phylogenetic  history  of  the  gene,  when  these methods cumbent  upon  the Software  developers to sPeC$' the 
are used. limits of new methods on the basis of an adequate sam- 

It is surprising that the global methods perfom pling Of known protein familieS. Likewise it is the Ob- 

ofthe ordered series of motifs  present isthe four different trolled tests and  to SUB- fUrtha di~*ons for the 

(global or local) based  on the CW approach perform Perhaps use the = sequences  de- .' 

results the biologist-user should exercise caution in the we *is sNdy not Only = a guide for 
use of methods or cw either local or protein-sequence methods for biologists, but  that it also 
global, to infer functional motifs. provides an overview of the problem and a language 

,It is obvious that a' method that can identify an with which to communicate with the mathematicians, 
ordered series of  motifs,  in  which individual motifs can statisticians, and computer scienti& in the field. This 
vary in both motif  density and motif conservation, is analysis also provides the algorithd developzrs  with a 
just the first stage  of obtaining a structural or evolution- more informed perspective on the nature of the biolog- 

arily meaningful multiple protein-sequence alignment. i d  pattern recognition in primary sequences. 

Once this is achieved, the intervening regions  of the  or- The ability to infer the ordered series of motifs that 

dered  series of motifs  must be aligned.  Such an alignment define a protein family is not trivial. While the parameter 

can then be used  for  phylogenetic reconstruction, for values utilized in the various methods analyzed in this 

classification of additional sequences, and for determin- study may serve as a guide for inferring  motifs in other 

ing  significantly  different  subsequences among  the se- protein sequences, they should in no way be considered 

quences that will  provide additional information about as the parameters that will always find the motifs. The 

functional properties, e.g., substrate specificity. state-of-the-art  strategy for the inirial inference of the 
motifs defining a protein family from primary sequence 

alignment approaches that are designed to reconstruct merit methods and human pattern-mognition skills. 
the evolutionary relationships  between proteins. Such 
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