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ABSTRACT 
Recent  developments  of  statistical  methods  in  molecular  phylogenetics  are  re- 
viewed. It is shown  that  the  mathematical  foundations  of  these  methods  are  not 
well  established,  but  computer  simulations and empirical  data  indicate  that  cur- 
rently  used  methods  such  as  neighbor  joining,  minimum  evolution,  likelihood, 
and  parsimony  methods  produce  reasonably  good  phylogenetic  trees  when a suf- 
ficiently  large  number  of  nucleotides or amino  acids  are  used.  However,  when  the 
rate of evolution  varies  exlensively  from  branch  to  branch, many methods may 
fail  to  recover  the  true  topology.  Solid  statistical  tests  for  examining’the  accu- 
racy  of  trees  obtained  by  neighborjoining,  minimum  evolution,  and  least-squares 
method  are  available,  but  the  methods for likelihood  and  parsimony trees are  yet 
to  be  refined.  Parsimony,  likelihood,  and  distance  methods  can all be  used for 
inferring  amino  acid  sequences of the  proteins of ancestral  organisms that have 
become  extinct. 

INTRODUCTION 
Phylogenetic analysis of DNA or protein  sequences has become  an  important 
tool for studying the evolutionary history of organisms from bacteria to humans. 
Since the rate of sequence  evolution  varies  extensively with gene or DNA 
segment (17,88,142), one can study the evolutionary relationships of virtually 
all  levels  of  classification of organisms  (kingdoms, phyla, classes, families, 
genera, species, and  intraspecific  populations).  Phylogenetic analysis is also 
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important for clarifying the  evolutionary  pattern  of multigene families (4,44, 
93) as well  as for understanding the adaptive evolution at the molecular  level 
(15.64,143). This technique also  gives  much deeperinsight into the mechanism 
of maintenance of  polymorphic alleles in populations (34, 128). 

Reconstruction of phylogenetic trees by using statistical methods  was  initi- 
ated independently in numerical  taxonomy for morphological characters (120) I 
and in population genetics for gene frequency data (13). Some of the statistical 
methods developed for these purposes are still used for phylogenetic analysis 
of molecular data, but in recent  years  many new methods have  been  developed. 
Felsenstein (31) and  Swofford et al(l24) reviewed  various statistical methods 
from  mathematical  points  of view. In this review, I discuss only  recently devel- 
oped methods or newly  clarified statistical properties of previous  methods, with 
emphasis on practical  utilities  rather  than  mathematical details or mathematical 
possibilitics. i3ecause of space limitation, 1 do not discuss  the  phylogenetic 
analysis of gene frequency  data. Citation of the literature is also restricted to 
papers directly related to the  subject. 

PHYLOGENETIC ANALYSIS OF DNA OR PROTEIN 
SEQUENCES 
It is now customary to consider  the  reconstruction of a phylogenetic tree as 
a statistical inference of a true  phylogenetic  tree,  which is unknown. There 
are two processes involved in this  inference:  "estimation" of  the  topology 
(branching pattern of a tree)  and  estimation of branch  lengths for a given tree 
topology.  When a topology  is  known, statistical estimation of branch lengths is 
relatively simple, and one can  use  several statistical methods  such as the least 
squares and  the  maximum  likelihood  methods. The problem is the estimation 
or  reconstruction of a topology.  When there are a sizable number  of DNA or 
protein sequences (say lo), the number of possible topologies is enormously 
large (more than 1 million) (14), and it is  generally  very  difficult  to choose the 
correct topology  among  them. 

In phylogenetic inference a certain  optimization principle such  as the max- 
imum likelihood (ML) or minimum evolution (ME) principle is often used 
for choosing the most  likely  topology. The ML method is a well.established 
statistical method of parameter estimation; i t  gives the smallest  variance of a 
parameter estimate when sample size is large.  However, this is true  only when a 
given  probability space is  considered.  In the construction of  phylogenetic trees, I 

maximization of the  likelihood is done for each topology  separately  by  using 
a different  likelihood  function (28), and the  topology with the highest (maxi- 
mum) likelihood is chosen as an estimate of the true  topology.  However, since 
different topologies represent  different probability spaces of parameters, it is 
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not clear whether the highest likelihood tree is expected to be  the  true  tree  unless 
an infinite number of nucleotides  are  examined (88,148,150). Indeed, it is not 
difficult to find examples in  which  the ML method is inferior to other  methods 
in obtaining the true tree, as is  mentioned  later. Note also  that the regularity 
conditions (continuity and  differentiability of the  likelihood  function)  required 
for the asymptotic properties of ML estimators are not  satisfied in phylogenetic 
reconstruction (148, 150). Some authors have suggested that topologies are 
parameters, but these parameters  are  not  included in the likelihood  function 
that is maximized, 

Extending Cavalli-Sforza & Edwards' (14) idea, Rannala & Yang (97) at- 
tempted to estimate a topology under the assumption  that a new species is 
formed  following the birth-death  process in statistics. In  this  case, a topology  is 
trcaled as a random  variable.  Mathematically, this is a reasonable  approach, but 
since the  birth-death  process is unlikely to describe the real  speciation  events 
(25), it is still unclear how  useful  their  new  approach is in  real  data  analysis. 
Note also that  the  pattern  of  nucleotide  substitution  often  changes with site and 
time,  particularly  when  long-term  evolution is considered  (see later), and at this 
moment no study has been  made  on  this  problem. 

A similar criticism applies to all other  tree-building  methods,  though the na- 
ture  of the criticism  varies with the method. That is, the statistical  foundation 
of topology estimation by  any optimization  principle is not  well  established. 
Nevertheless, computer simulations have shown  that  the  optimization  principles 
currently used  generally  work  well  under  biologically  realistic  conditions. 

The method of phylogenetic inference currently used in molecular  phylo- 
genetics can  be  classified  into three major  groups: distance methods, likeli- 
hood methods, and  parsimony  methods.  Recently,  Hendy  and  colleagues (53, 
55, 56) proposed  the  use of the Hadarnard  conjugation  for  phylogenetic  re- 
construction  (closest  tree  method).  However, its practical utility is  yet to be 
examined. 

Distance Methods 
In distance methods, an evolutionary distance is computed for all  pairs of se- 
quences, and a phylogenetic tree is constructed from pairwise  disfances by 
using the least squares, minimum evolution, or some other criterion. The evo- 
lutionary distance used for this  purpose  is  usually an estimate of the  number 
of  nucleotides  or  amino  acid  substitutions  per site, but other distance  measures 
may also be used. There are a large number  of  distance  methods  for  construct- 
ing  phylogenetic  trees (31,88,89), but those  commonly  used are based  on the 
principles of least squares  and minimum evolution. 



LEAST-SQUARES (LS) METHODS The  principle  of LS methods  is  to  compute 
the  minimurn s u m  of squmd differences between  observed pairwise distances 
and estimated pairwise distances (patristic distances) (88).for a given  topology 
and  to choose a topology  that  shows the smallest minimum  sum  of  squared 
differences. Cavalli-Sforza & Edwards (14) suggested  that the ordinary or gen- 
eralized LS methods  can be  used  for distances computed  from  gene  frequency 
data, whereas  Fitch & Margoliash (37) used a weighted LS method.  Later 
Bulmer (9) implemented and formalized the generalized LS method  for DNA 
and  protein  sequence data. 

However, LS methods  often  give  negative  branch lengths, and  mainly for 
this  reason the accuracy  of the topology  obtained  is  not particularly high (74. 
1 1 I ,  I 12, 121).  One way  to  rectify  this  problem is to  conduct the least  squares 
estimation of branch  lengths  with  the restriction of  no  negative  branch lengths 
(14,31). Bulmer (personal communication)  and Gascuel(39) have  shown  that 
in the  case of four  scquences,  this  restricted LS method  gives the same results 
as  those  obtained by the neighbor joining method,  which  is  mentioned  later. 
However,  this  does  not  seem  to  be  the  case  when  the  number of sequences is 
greater  than four, because  neighborjoining also occasionally produces  negative 
branches. 

MINIMUM  EVOLUTION (ME) METHODS In  this  method, the branch lengths of a 
tree are estimated by a certain  algorithm  from pairwise distance data, and the 
total  sum (S) of  branch  lengths is computed for each of the possible topolo- 
gies, The  topology  that  shows the smallest S value  will then be  chosen as the 
most  likely tree (23). In  this  method,  branch lengths are estimated either by 
Fitch & Margoliash's  algorithm ( I  10) or by the ordinary LS method (69, 102). 
Rzhetsky & Nei [ 102) presented a formal  mathematical  treatment of this  method 
for DNA and  protein  sequcnce  data  and  simplified the computational  algorithm 
considerably. Thcy (10.13 also presented a theoretical foundation of this  method 
by showing  that  thc  expected  value of S is smallest for the  true  topology  when 
unbiased estimators of nucleotide or amino  acid substitutions are uscd as dis- 
tance  measures. Of course, this does not  mean  that a tree with the smallest S 
value  is  cxpccted  to  he  thc  true  tree  unless a large number of nucleotides or 
amino acids are used. 

Kidd & Sgaramella-Zonta (69) suggested  that the total  branch lengths [L(s)] 
be computed by summing the obsofure values of all branch  lengths  under the 
conjecture that there are no  negative  branches for the true topology.  However, 
t($) does  not  have a nice statistical property that permits the fast computation 
of S values  and  the statistical tests  as  developed  by  Rzhetsky & Nei (102, 104). 
Note also that in the  presence of statistical errors, some  branch  lengths  may 
become  negative by chance even  for a correct topology (1 19). Furthermore, if 
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one  wants  to  have an ME tree  without  negative branchcs, a better way  would 
be to estimate branch lengths by the  least squares method  under  the constraint 
of nonnegative  branches. 

Although the MErnethod is statistically appealing, i t  requires a large  amount 
of computational time to examine  all different topologies if the  number of 
sequences (m) is greater than 10. For this reason, Rzhetsky & Nei (102, 105) 
suggested  that the neighbor joining (NJ) tree (see below) be first constructed 
and  then a  set of topologies close to this NJ tree be examined to find a tree 
with a smaller S value  (temporary ME tree). A new set of topologies close to 
this  temporary ME tree (excluding  previously  examined topologies) are now 
examined  to  find a tree with  an  even smaller S value. This  process will bc 
continued until no tree with a smaller S is found, and  the  tree with the smallest 
S is  regarded as the ME tree.  The  theoretical  basis  of this strategy  is  that  the 
ME tree is generally identical or close to the NJ tree when nt is  relatively  small 
(102, 1 IO) and thus the NJ tree  can  be  used as a starling tree when m is  large. 
They (105) also suggested  that a special  type  of  bootstrapping  could  be  used  for 
generating topologies for examination.  Kumar (77) devised a new algorithm to 
obtain  an ME tree, extending the NJ algorithm to examine  many  potential ME 
trees. This algorithm  does  not  examine  all topologies, but computer simulation 
has  shown that it almost  always  examines the true  tree  even if nt is quite large. 

FOUR-CLUSTER ANALYSIS In  phylogenetic analysis, it is often important  to 
establish the evolutionary relationships of four groups  of  organisms. For exam- 
ple, the evolutionary relationships of animals, plants, fungi, and  protists  have 
been studied for many  decades,  yet we do not  have a definitive  answer,  partly 
because  each  group contains so many  different  kinds of organisms (5,45, 1 16, 
139). In  most  methods of phylogenetic analysis the number of organisms  to  be 
included is limited  because  of  computational difficulties. For  this reason, only 
a few representative organisms  are used  from  each group, but this  procedure 
often gives erroneous  conclusions (2). 

Thc four-cluster analysis (101) is  an application of the theory of the ME 
method (104) and  can  handle a large  number of species from  each  group  of 
organisms as long as each group is  known to be monophyletic, and i t  docs 
not rcquirc any information  regarding the branching  order  of  organisms within 
groups.  Let A ,  B, C, and D be  the  four  monophyletic  groups or clusters, 
and suppose that A ,  B ,  C, and D contain mA, ms, n ~ c ,  and ma sequences, 
respectively. In this case, there are three  possible  unrooted  trees of clusters, 
i.e. TI = ( ( A E ) ( C D ) ) ,  TZ = ( ( A C ) ( B D ) ) .  and TJ = ( ( A D ) ( B C ) ) ,  and one 
of  them  must  be correct. This correct tree is expected  to have the smallest sum 
of branch lengths. Let SI , S2, and S3 be  the sums of branch  lengths for trees 
TI , Tz, and T3. To compute SI, S2, and S,, we  have  to  know the phylogenetic 
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relationships of all  sequences  within clusters, but what  we need  is  to compute 
the differences SI - S2, SI - S3, and $2 - 33.  These differences  can be computed 
by a simple algorithm  without  knowing the phylogenetic relationships within 
clusters, and  the statistical significance  of each difference can  be  tested. 

This technique was applied to resolve the branching  pattern of animals, 
plants, fungi, and a group of protists,  using  ribosomal RNA genes. It was con- 
cluded  that  animals and  fungi  are  significantly closer to each other than to the 
others (78). 

NEIGHBOR  JOINING  (NJ)  METHOD This method (1 12) is a simplified  version Of  

the ME method  for  inferring a bifurcating  tree.  In  this  method, the S value 
is not computed  for  all  or many different  topologies, but the examination of 
different topologies  is  imbedded in the algorithm, so that  only one final tree is 
produced.  Computation oi S starts with a star phylogeny, in which  all interior 
branches are assumed to be 0. This  tree  is clearly incorrect, so the S value (So) 
is  much higher than the S for  the true  tree. The next step is to compute Sij for 
a tree in which  sequences i and j are paired and are separated  from  the  rest  of 
the  sequences  that still form a star  tree. If i and j are the  neighbors  connected 
by only one node  (e.g.  sequences 1 and 2 in Figure lA), then Sij is smaller 
than SO. Therefore, computing &j’s for  all pairs of sequences and choosing the 
smallest Sij, we can  identify a pair of neighbors. Once this  pair is identified, 
they are  combined as a single unit  and  treated as a single sequence in the next 
step. This process is continued  until all multifurcating nodes are resolved into 
bifurcating  ones. In practice, any distance measures are subject to stochastic 
errors, so that the NJ tree  obtained  may  not  necessarily be the true tree. 

According to computer simulations (77, 102),  this  method  nearly  always 
produces the same topology as that  of the ME tree when the extent of sequence 
differences is sufficiently  large and the  number of nucleotides  examined is large 
(>500). When the  latter  condition is not satisfied, however, the NJ tree  can  be 
considerably  different from  the ME tree (104), yet  the difference in S between 
the NJ and ME trees is usually  statistically  nonsignificant.  Furthermore,  using 
computer simulation, Kumar (77) showed  that when the NJ and ME trees are 
different, the latter tree is not necessarily closer to the  true  tree  (topology),  When 
a large number of closely  related sequences are used 
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The efficiency of distance measures in obtaining the correct tree depends on 
at least two factors:  the linear relationship with the number of substitutions 
and the standard error or coefficient  of  variation of the estimate of the distance 
measure. For Kimuta’s (?O) model of nucleotide substitution, several authors 
have  attempted to produce  better distance measures  than  the  original estimator 
(43, 114, 127), but  the  utility  of these distance measures with actual data has 
not  been  tested. 

Many distance measures for estimating the number of nucleotide  substitu- 
tions per site (6) become  inapplicable  when the distance is very large,  because 
they  usually  involve logarithmic terms in the mathematical  formula  and  the ar- 
guments of the  logarithms  often  become  negative. This problem  can be avoided 
by expanding the logarithmic terms into an infinite series, but the variance of 
the distance obtained in this way seems to be quite large when the sequence 
divergence is high (106,  126).  However,  phylogenetic trees are generally con. 
structed  with  pairwise distances whose values are rather small (say d < 0.5). 
In this case, the use of p ,  Jukes-Cantor,  and Kimura distances is usually  suffi- 
cient for topology  construction.  However,  if d is large or if there is evidence 
that the substitution  rate  varies  extensively among sites and  with  evolutionary 
lineage, the gamma distance (65,79) is expected to produce better  trees.  For 
some special sets of data, even  more complicated distance measures may give 
better  results.  For  example, DNA sequences of  the  control  (D-loop)  region 
of mitochondrial DNA evolve in a complicated way (73), and a special model 
(131) has been  developed for analyzing data for this  region. 

Maximum Likelihood (ML) Methods 
DNA LIKELIHOOD METHOD The idea of using an ML method for phylogenetic 
inference was first presented  by  Cavalli-Sforza & Edwards (14) for gene fre- 
quency data, but  they encountered  a number of problems in implementing the 
method.  Later,  considering nucleotide sequence data, Felsenstein (28) devel- 
oped an algorithm for constructing  a  phylogenetic tree by the ML method. The 
first  model of nucleotide  substitution  used was rather simple and did no1 take 
into account the transitiodtransversion bias,  which is often  observed in actual 
data. This deficiency  was later removed  by using a more realistic model  involv- 
ing five parameters (31). A number of authors developed  more  general  models 
(33, 51, 131, 146), and some of  them  have  been  implemented  in  computer 
programs (1,32,92, 149) 

However, for obtaining the true  topology, sophisticated models do not  nec- 
essarily give better results than simple models such as the Jukes-Cantor  model, 
though the likelihood  value of an ML tree is almost always  higher for the former 
models  than for the latter (40, 100). In fact, computer simulations have  shown 
that  under cenain circumstances a simple model  gives a higher  probability of 
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obtaining the true tree than acomplicated model,  even if sequence  evolution  has 
occurred following the  latter model (150). Of course,  this  result was obtained 
in a simulation with four sequences, and it is  not clear what  will  happen if more 
than four sequences are used.  However, this problem is the same as that. for 
distance methods discussed above, and it emphasizes  the  difficulty of topology 
construction mentioned  earlier,  It  should also be noted  that the pattern of nu- 
cleotide substitution varies  from site to site (132) and  with  evolutionary  time 
(3,49,76, 132), particularly  when  long-term  evolution is considered. At this 
moment, it is not clear how these factors affect the topology estimation by ML. 

A serious problem  with ML is the  computational  time. Even if the  number 
of sequences is about ten, it requires an enormous amount of computational 
time, Olsen et a1 (92) developed  a faster algorithm, but it still requires a large 
amount  of  time  if many topologies are to be examined. Saitou (109) and 
Adachi & Hasegawa (1) took  a  different  approach to tackle this  problem  using 
a new algorithm. Their algorithm (star-decomposition algorithm) is essentially 
the same as that of the NJ method,  except  that the ML principle is used in 
finding neighbors  instead of  the ME principle. In Adachi & Hasegawa’s (1) 
computer software MOLPHY,  the star-decomposition (SD) tree is  regarded as 
a first potential ML tree from  which trees with  higher ML values are searched 
for by using other algorithms such as local branch rearrangement. In practice, 
however, the SD algorithm seems to be quite efficient  in  obtaining the me 
tree,  and  the relationship between the SD and  exhaustive  search  algorilhms for 
ML trees may be similar to that  between  the NJ and ME algorithms (100; T 
Sitnikova & M Nei, unpublished  results). 

PROTEIN-LIKELIHOOD METHOD When  the DNA sequences are  relatively 
closely  related to one another, DNA likelihood methods seem to work well. 
However,  if  they aredistantly related and encode protein sequences, many com- 
plications arise because the rate of synonymous substitution is generally  much 
higher  than that of  nonsynonymous substitution and the transition/transversion 
bias  exists. The relative frequencies of the four nucleotides at third  codon 
positions also varies considerably  with sequence (63,76), suggesting  that the 
stationary  model  of nucleotide substitutidn  is not appropriate. By contrast, the 
evolutionary change of protein sequences does not suffer very  much from these 
problems  and seems to be much simpler  than  that of  DNA sequences when long- 
term  evolution is considered. Noting this property, Kishino et a1 (72) proposed 
a  protein-likelihood  method by using  Dayhoff et al’s (1 8) empirical  transition 
matrix for 20 different amino acids.  Adachi & Hasegawa (1,3) extended  this 
method by using  various  transition  matrices including Jones et al’s  (66)  matrix 
for nuclear proteins and  their own for mitochondrial  proteins.  They  applied 
these  methods to various sequence data and obtained  reasonably  good  trees for 
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several groups of vertebrate  organisms (1 1,12). Analyzing  mitochondrial gene 
data for 1 1 vertebrate species, Russo et  al(lO0) showed  that protein sequences 
are more  reliable  than DNA sequences for  obtaining  the correct phylogeny. 

Maximum Parsimony (MP) Methods 
In MP methods, a given set of nucleotide (or amino  acid) sequences are consid- 
ered, and the nucleotides (or amino acid$) of ancestral sequences for a hypothet- 
ical topology are inferred  under  the  assumption  that  mutational changes occur 
in all directions among the four different nucleotides (or 20 amino acids). The 
smallest  number of nucleotide substitutions that  explain  the entire evolutionary 
process  for the given  topology  is  then  computed. This computation is done 
for all  other  topologies,  and  the  topology  that  requires the smallest number  of 
substitutions is  chosen to be  the  best tree (22,3547). 

If there are no multiple substitutions at each site, MP is expected to generate 
the correct topology as long as enough  parsimony-informative sites (79) are 
examined. In practice,  nucleotide  sequences are often subject to backward and 
parallel substitutions, and this introduces  uncertainties in phylogenetic  infer- 
ence.  When  the  true  tree has a special  type of  topology  and  branch lengths, MP 
may generate an  incorrect  topology even if  an infinite  number of nucleotides 
are examined (27). This can happen even  if the rate of nucleotide substitution 
is  constant  for  all  evolutionary  lineages (55, 129, 157). Furthermore, in parsi- 
mony analysis it is  difficult  to  treat the phylogenetic inference in a statistical 
framework  because  there  is no natural way to compute the  means  and  variances 
of  minimum  numbers of substitutions obtained by the parsimony  procedure. 
However,  under  certain circumstances, MP is quite efficient in  obtaining the 
correct  topology (89). Note also that MP is  the  only  method  that can easily take 
care of insertions and deletions of nucleotides,  which  sometimes  give  important 
phylogenetic information. 

WEIGHTED PARSIMONY One factor that  makes MP inefficient is the transi- 
tiodtransversion bias  and  the  heterogeneity of substitution rate among  differ- 
ent nucleotide sites. In the  control  region of mitochondrial  DNA,  the  tran- 
sition/transversion  ratio (R) is as high as 15 in humans (13th and the rate 
heterogeneity as measured by the inverse (1 /a) of the  gamma parameter (65) 
seems to be as high as 6.7 (73, 131, 140).  In this case, nucleotide sites with 
transitional  changes or high substitution rates are not  very  informative for phy- 
logenetic  construction when relatively distantly related sequences are used. The 
reason  is  that at these sites multiple substitutions are likely to have occurred, 
and this will introduce noise in phylogenetic inference. 

One way to reduce this noise is to give higher  weights to transversional 
changes or slowly  evolving sites and lower  weights to transitional changes or 
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fast  evolving sites (26, 124). In thisxase, the  tree  length no longer  gives an 
estimate of the minimum  number of nucleotide substitutions, but this  method 
substantially improves the probability of obtaining the correct topology (60, 
91). One problem  with  this approach is that we do not  know  the  actual R 
value for the data set under  investigation.  In  this case, it is possible to use a 
so-called dynamically  weighted  parsimony  method (1 13, 141). In this method, 
a probable R value is first used to generate an MP tree, and then a new R 
value  is estimated from the tree obtained, This new R value is then used to 
generate a new MP tree.  (In  practice,  all  different  nucleotide  pairs are weighted 
differently.) This process is repeated  until a stable MP tree (or trees) is obtained. 
This is a time-consuming  method and does not guarantee the convergence  of 
an MP tree.  Nevertheless,  computer simulations have  shown  that  this  method 
substantially improves the probability of obtaining the correct tree when R is 
high (134). A similar weighted  method  can  also be  used to take into account 
the variation of substitution rate  among  different  sites (38, 141). 

STATISTICAL  TESTS OF PHYLOGENETIC TREES 
! During the past  two decades, many authors have  studied the statistical methods 

for testing the reliability of the tree obtained. Some of these studies have  been 
reviewed by Felsenstein (31), Li & Gouy (83), and  Li & Zharkikh (84). Here 
I present a brief  summary of recent studies on the subject. Statistical tests of 
phylogenetic trees  can be divided  into  two  categories: a test of reliability  of a 
tree obtained and a test of topological  differences  between two or more  different 
trees obtainable from the same data set. 

Reliability of an Estimated Tree 
INTERIOR BRANCH TESTS One way of knowing  the ieliability of  an estimated 
tree is to examine  the reliability of each  interior  branch.  This is particularly 
appropriate for trees  constructed by distance methods,  Consider  the tree for 
five sequences given in Figure I(A). In  the case of five sequences, there  are 15 
possible unrooted  bifurcating trees, and each tree is  composed  of five exterior 
branches and two interior  branches. Suppose one  obtains  tree ( A )  in Figure 1 
by some tree-building  method. The reliability of this  tree  (topology) is assured 
if the two interior branch  lengths f and g are different from 0 and positive 
Therefore, by testing the null  hypothesis of f=  0 and g = 0, we  can establist 
the validity of the tree. In general, the  null  hypothesis of an interior branct 
length b = Ocan  be  tested  by computing the  standard  error [$(&)I of an  estimatc 
(h) of b. Since & is known approximately to follow the normal  distribution ever 
when the number of nucleotides  examined is as small as 100 (IOZ), the nul 
hypothesis of b = 0 can be tested by examining the statistical  significancr 
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of  the  normal deviate 2 = 6/s(&), This test  is  called  the interior-branch test 
(1 19). 

This type of test was first used  by  Nei et a1 (90) for’a UPGMA tree and  then 
by Li (81) for an  unrooted tree when the  number of sequences is four or five. 
Later Rzhetsky & Nei  (102, 104) developed  a  fast  algorithm for computing 
s(6) using the ordinary  least-squares approach and made it possible to use this 
test for a large number of sequences. This method requires a specific model of 
nucleotide substitution, and the test seems to be robust about the substitution i 
models  unless the extent of sequence divergence is  high (134). 

In this  method,  the  confidence  probability (PC) that & > 0 is  computed by 
using the Z test, and if the  probability  is  higher  than 95% or 99%, then & 
is  considered  to  be  significantly  positive. One theoretical  problem concerning 
Rzhetsky & Nei’s  (102)  method  was that PC was computed without considering I 

the estimation error of the topology  obtained. If we take  into account this error 
in the  computation of confidence  probability, the actual  confidence probability 
(Ph)  can be smaller than  the  original PC value (1 19). In  practice,  however, the 
difference between PC and Pb is  small if we consider the region of PC 2 0.99. 
Sitnikova (1 17) produced  an  approximate formula Pi = 3Pc - 2, where PC > 
2/3. This is  a  useful  formula  for computing P& because  the  computation  of 
PC is  much simpler than  that of Pi. 

Another interior branch  test  that is applicable to distance trees is Rodrigo & 
Dopazo’s (98) bootstrap  test.  This  test is different from  Felsenstein’s bootstrap 
test,  which  is  mentioned  below,  and is intended to examine the  reliability of 
each interior branch for agiven topology.  As  in the case of  Felsenstein’s  test,  the 
same number of nucleotides as that of the original sequence is randomly sampled 
with  replacement for each set of sequences, and the lengths of  all branches’are 
estimated by a  given  tree-building  method  for  a  given  topology,  which was 
obtained by the original sequence data. This process  is  repeated many times 
for  the same topology. Therefore,  the  length  of  an  interior  branch  varies  from 
replication to replication. We count the number  of replications in which  a  given 
interior branch  takes  a  positive  value (& > 0), and  the  proportion  of theseamong 
the entire set of replications is used as an estimate of the  confidence  probability 
(PC) of the interior branch. The advantage of  this  method  is  that it requires 
no particular substitution  models  and thus is applicable for a  wide  variety  of 
situations (1 17). The computational time required is also much shorter than 
the analytical method  when the number  of sequences is large. However,  when 
the  number of nucleotides  examined is small, this may give  biased estimates of 
PC’s. 

A number  of authors (31, 124) have  suggested  that the null hypothesis  of 
b = 0 could  be  tested by the  likelihood ratio test,  because  the  trees  with b s 0 
and  with b 2 0 are  nested.  In  the case of  phylogenetic  trees,  however,  this 
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test does not seem to be justified (42,.150,151), and  computer  simulations (40, 
134) have  shown  that the test may give strong statistical support for a  wrong 
topology. The DNAML program in PHYLIP computes the confidence  interval 
of a branch length, but  this  interval also does not seem to be reliable (134). 

FELSENSTEIN’S BOOTSTRAPTEST One of the  most  commonly used tests of the 
reliability of an  inferred tree is Felsenstein’s (30) bootstrap test. In  this  test, 
the reliability of an inferred tree is examined by using Efron’s (24) bootstrap 
resampling technique. A set of nucleotide sites is  randomly  sampled  with 
replacement from the original set, and  this  random set is used for constructing a 
new phylogenetic tree. This process is repeated many times, and the  proportion 
of replications in  which  a  given sequence cluster (sequence partitioning; e.g. 
sequences 1 and 2 vs others in Figure 1A) appears is computed. If this proportion 
( P B )  is high (say, PB > 0.95) for a sequence cluster, this cluster is considered 
to  be statistically significant. The null hypothesis of this test as implemented 
in MEGA (79) is  the same as that of the  interior  branch  test. In recent years, a 
number of authors (57, 119,155, 156, 158) have  shown that this  test is generally 
very conservative except for high PB values close to 1. Zharkikh & Li (158) then 
invented  a  method to rectify  the  conservativeness of P B ,  but it is  not  yet clear 
whether this correction method is applicable to the cases of  many sequences. 

Although Felsenstein’s  bootstrap test can  be  very  conservative, I believe  that 
it is a  useful  method for evaluating the statistical reliability of  an inferred tree. 
The actual pattern of nucleotide  substitution  is very complicated (76, 146) and 
often changes with site and evolutionary  time (132). Therefore, it is better 
to use a conservative test for examining  trees for distantly related sequences. 
However, we have to be cautious  even  with  this  conservative  test,  because  any 
tree-building method  may  generate  an  incorrect  tree almost consistently for a 
given data set,  as is mentioned  later. Furthermore, when  a  tree  is  produced  for 
closely related sequences, one may use  mathematically  more  rigorous  methods 
such as the interior-branch  test (1 19) or the Zharkikh & Li  test (158). Note 
that  Felsenstein’s (30) original bootstrap  method is slightly different  from  the 
method described above and is for testing  a consensus tree  generated by repeated 
resampling. The null hypothesis of this test is  not clearly  specified, but it should 
be similar to the one mentioned  above. 

Tests of Topological Diferences 
MINIMUM EVOLUTION m e s  The second class of tests is a  cornpatison ol 
two topologies in terms of the  quantity  used  for an optimization process of 
phylogenetic inference.  Previously  we  mentioned  that the minimum  evolution 
tree is a tree with  the smallest sum SM of  branch  lengths. In practice,  however 
there may  be  several other trees  whose Sis greater  than 27, but is  not significantl) 



different  from  the  latter. These trees are potentially correct trees, and thus one 
may  want to keep  them  until other data are obtained to identify the true  tree. 
Rzhetsky & Nei (102) developed a statistical method for testing the difference 
( D  = Ss - SA) in S between  two  topologies. This test  is  equivalent to the test 

' of the lengths of  the interior branches at which the two topologies are different, 

incorrect ones.  When unbiased distance estimators are used, the expectation 
[E(D)] of D = SB - SA for topologies (A) and (B)  is given by f/2, wherefis I I the true length of  the left interior branch of topology (A) (102). Therefore, if I 
D is significantly greater than 0, we can establish the validity of topology (A). 
However, if D is significantly smaller than 0, topology (E)  will be the correct 
one, Similarly, comparison of topologies (A) and (C) gives  the  expectation of 
D (= Sc - SA) equal to 3(f + g)/4 (102). Therefore, the null  hypothesis 
for the  test of D has a clear-cut biological  meaning. Using this test, one can 
identify  topologies  that are not  significantly different from the ME tree. 

Rzhetsky & Nei's (102) method for testing D's is dependent on  the  mathe- 
matical  model on which a particular distance measure is based  and requires an 
intensive  computation  when m is large.  Nei (89) suggested that the hypothe- I i 
sis E(D) = 0 can  be  tested by a bootstrap  method.  In  this test S is computed . I 
for a given pair of topologies (i and j )  for each sequence resampling,  and 
Di, = Si - SI is  computed. If this is repeated  many times, we can compute i 
the mean D and  its  standard  error. Therefore, we  can  test the null hypothesis of 
E(D) = 0. When  there  are  several  potentially correct trees, Dl] can be computed 
for all pairs of i andj  by using the same set of resampled sequences. 

The D test  mentioned above is  clearly  related to the interior branch  test  men- 
tioned earlier, but  the exact relationship  remains  unclear. One might speculate 
that if every interior branch of the ME tree is significant, the D test  will also 
establish  that S, is  significantly  smaller  than S for any other tree. If this is the 
case,  the  interior  branch  test or the  Felsenstein  bootstrap test would be simpler 
than the D test  in  finding a reliable tree. 

Some authors (124) criticized the NJ method as producing  only one final tree, 
rather  than  several  potentially correct trees. This criticism is valid.  However, 
if all the  interior  branches of a NJ tree are statistically supported, there will be 
no  need  to  consider other alternative trees. By contrast, if some of the interior 
branches are not statistically supported, one may consider the alternative trees 
that can be generated by changing the  branching  pattern for each nonsignifi- 
cant interior branch. This approach would be simpler than the enumeration of 
alternative  trees by using the D test mentioned  above. Another approach to this 
problem is to construct a condensed tree (79) in which  all  weakly supported 
interior  branch-lengths are reduced to 0. This tree is conceptually similar to a 
consensus  tree (123), which  is  constructed for MP trees. 

Suppose that  topology (A) in Figure 1 is the correct tree and (E)  and ( C )  are I 

I 

ML TREES One might think that a simple test  for  the  difference in topology 
between an  ML  and asuboptimal tree would be to  use  the  standard log likelihood 
ratio (LR) test, Unfortunately,  this cannot be done because all bifurcating trees 
have the same number  of degrees of freedom (31). Kishino & Hasegawa (71) 
suggested that  the difference in log  likelihood  value  between an ML tree and a 
suboptimal tree be tested by using  the  variance of the difference in single-site 
log likelihood  between the two  trees.  However,  these  authors  have not specified 
the null hypothesis of this test in relation to the  topological  differences as given 
in Figure 1. Without  knowing  what  is  being  tested, it is  difficult to interpret the 
results of the test. Clearly, a detailed study of the theoretical  basis of the test is 
necessary. 

As mentioned  earlier, the number  of possible topologies is enormously  large 
even when  the  number of sequences is about 10. If  an unlimited  amount  of 
computer time is available, it is possible to conduct a large number  of  bootstrap 
resamplings and evaluate the probability of occurrence  of  each  topology. If a 
particular topology  occurs  with a high  probability (say P > 0.95), one may con- 
clude that  this  topology is most likely to be  the  correct  one. In practice, it is  usu- 
ally  unnecessary to consider all topologies because  most topologies have  an  ex- 
tremely low probability  of occurrence. Furthermore, i t  is often  possible to iden- 
tifyasmallnumber(say 1O)ofpotentiallycorrecttopologiesonthebasisofother 
biological information. In these cases, one can  evaluate the relative  bootstrap 
probability values  of  the  potentially correct topologies.  However,  even if we 
consider a small  number  of  potentially correct topologies,  Felsenstein's  boot- 
strap procedure requires a prohibitive  amount of computer  time  for ML trees. 

To cope with this problem, Kishino et a1 (72) developed  two approximate 
methods of computing the bootstrap  probability of the i-th topology (Pi ) .  In 
the first method,  the MND method, the log  likelihoods .!(I), .!(2), . , . , and e(&)  
for topologies 1,2, . . . , and k are assumed to follow a multivariate  normal dis- 
tribution, of  which  the  means,  variances,  and  covariances  are  estimated by 
Kishino & Hasegawa's  method (71). One can then choose a random set of 
.!(I), e(2), . . . , t(k) from this distribution and  then determine the  topology  that 
has the highest  likelihood. This topology is  the  ML  tree in this set of sample. 
This process  is  repeated many times,  and  the  probability [ P ( i ) J  that  the i-th 
topology is the ML tree is determined. If a particular  topology has a P ( i )  value 
of 95% or higher, then this topology is assumed to be  the correct topology. In 
the second method, the RELL method,  the  log  likelihood at each site [ t ( j ) ]  is 
computed for all k topologies,  and for each  set of bootstrap-resampled sites, 
the sum [x l ! ( j ) ]  of log likelihoods for individual  sites is computed for each 
topology. If this  process  is  repeated  many  times, one can determine P( i ) ' s .  

The above test  procedures,  particularly  the  latter  one,  seem to be more  rea- 
sonable than  Kishino & Hasegawa's earlier test (71). However,  this  method  has 
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one  problem,  which is  how to choose a set of potentially correct trees, partic- 
ularly when the  number of sequences is large.  Kishino et a1 (72) proposed an 
ad hoc procedure to solve this  problem, but its utility is still untested. 

MP TREES As mentioned  earlier, it is difficult to develop any  parametric  test 
for MP trees  because  of the nonrandom nature of “minimum  numbers of 
substitutions.”  Templeton (135) suggested a nonparametric test for compar- 
ing two  topologies  that  is similar to Kishino & Hasegawa’s (71) test for ML 
trees. However, the null hypothesis of this test is also unclear in relation to the 

inferred MP trees  would  be  Felsenstein’s bootstrap test,  though one has to be 
cautious about  the  possibility of inconsistency of MP methods (see below), i 

- I Y  

topologies  to be compared.  Probably the best way  of  testing the reliability of i 
1 

MERITS AND DEMERITS OF DIFFERENT 
TREE-BUILDING METHODS 

Criteria of Comparison 
Because.there are many different  tree-building  methods, one is  naturally inter- 
ested in the merits  and demerits of different methods. There are  several  different 
criteria for comparing different tree-building methods. Important ones are (a) 
computational speed, (b) consistency as an estimator of a topology, (c) statisti- 
cal  tests of phylogenetic  trees, ( d )  probability of obtaining the correct topology, 
and (e) reliability of branch  length  estimates. 

The computational  speed of  each  tree-building  method  can  be  measured 
relatively  easily,  though it depends on the algorithm used. According to this 
criterion, the NJ method  is superior to most other tree-building  methods  which 
are currently in use. This method  can handle a large  number of sequences 
(m > 100) even  with a personal  computer,  and the application of bootstrap tests 
is  easy. The orthodox MP, LS, ME, and ML methods examine all possible 
topologies searching for  the MP, LS, ME, and ML trees, respectively. Since 
the possible number of topologies  rapidly increases with m (14), it  is  difficult 
to use  these  methods when m is large. In the case of ME, however,  simplified 
algorithms (77, 104, 105) seem to be as efficient as the  exhaustive  search in 
obtaining the correct tree. It is hoped  that similar simplified algorithms will  be 
developed  for  other  methods as well. [In the case of MP methods  the  branch 
and  bound  method (54) may be used  when m 5 20.1 Note  that a vast  majority 
of tree topologies are clearly incorrect when rn is large, and there is no need to 
examine all  these  trees. The algorithm suggested by Rzhetsky & Nei (104,105) 
may be used for identifying MP and  ML or suboptimal MP or ML trees rapidly. 

A tree-building method is said to be a “consistent estimator” if the method 
tends  to give the  correct  topology as the  number  of  nucleotides used (n)  

I 
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approaches infinity (27). The NJ, ME, and LS methods are a consistent es- 
timator if unbiased estimates of nucleotide substitutions are used as distance 
measures (19, 102,112), and so is the ML method  when the correct  model of 
nucleotide substitution is used (148). By contrast, MP is  often  inconsistent, 
as mentioned  earlier. In practice,  however,n is usually  of  the  order of hun- 
dreds to thousands, and in this  case  even NJ, ME, LS. and ML may fail to 
produce the correct tree with a relatively  high  probability when MP fails (60, 
62,115). Therefore, consistency is not always a useful  criterion for comparing 
the efficiencies of different tree-building  methods. 

We have  already discussed statisticat tests of phylogenetic trees €or several 
different tree-building  methods. At present, the statistical methods  for testing 
NJ and ME trees are well  established. Solid statistical tests are also available 
for trees obtained by the generalized LS method (9, 137). In the  case of ML 
methods,  however, there seem to be many complications, as  mentioned  above. 
The best method for testing MP trees is probably  Felsenstein’s  bootstrap  test, 
as long as  the cases of inconsistency are avoided (30). 
The probability of obtaining the correct topology is probably  the  most im- 

portant criterion for comparing different  wee-building  methods,  but  this  is also 
the most difficult problem to study.  During the past 15 years, many authors 
have studied this  problem, yet we do not have a clear-cut answer, as is discussed 
below. Another important criterion for comparing different methods is the re- 
liability of branch  length  estimates. Once the correct topology  is  obtained for 
a given data set, this  problem  can be studied  relatively  easily.  Theoretically, 
ML, LS, NJ, and ME are expected to give  more reliable estimates of  branch 
lengths than MP. At present, MP (and sometimes ML) trees  are  almost  always 
presented without branch  length  estimates. This practice is regrettable  because 
it gives a distorted picture of a phylogenetic  tree. Since computer  programs are 
available for estimating branch  lengths of MP trees  (123), any tree should be 
provided  with  branch  length  estimates. 

Probability of Obtaining the Correct Topology 
In most cases of phylogenetic  reconstruction, we  never  know the true  phylogeny 
for  real data under  investigation, so it is difficult  to  study this problem empiri- 
cally.  However, if we use an appropriate  mathematical model, we can simulate 
the evolutionary changes of DNA sequences  following a given  model tree. We 
can then reconstruct a tree by various  methods using the artificially generated 
present-day sequences and  compare the topology of the tree obtained with that 
of  the  model  tree. If this process is repeated many times, we can  estimate the 
probability of obtaining the correct  topology (PT), and this  probability  can be 
used for comparing the  efficiencies of different tree-building methods (7, 89, 
95. 133). 
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THEORETICAL STUDY When the number of sequences  examined (m) is small 
(four or five), it is possible to evaluate PT analytically for the NJ, LS.  and 
MP methods (1 11, 119, 155). These studies have  shown that when the evo- 
lutionary rate is more or less constant for  all  four or five sequences, NJ has 
a slightly  higher Pr value  than MP, which  in  turn  has a somewhat higher PT 
than Fitch & Margoliash's (37) LS method  (1 1 1). Both the ordinary and gen- 
eralized LS methods are inferior to the ME method  in obtaining the correct 
topology (103). This inferiority seems to be partly due to the fact that the LS 
methods  often generate negative  branches, as mentioned  earlier.  However,  an- 
alytical  evaluation of PT is very difficult when rn is large,  and the conclusion 

, obtained  from these studies may  not  apply to a wide  variety  of situations. No 
study  has  been  made for ML trees even in the case of m = 4. For this rea- 
son, comparison of PT among  different  methods  is  usually done by computer 
simulation. 

COMPUTER SIMULATION If  we use computer  simulation, PT *s can  be estimated 
for a variety  of  evolutionary conditions. Thus, a large  number of simulation 
studies  have been done during the  past 15 years. The results obtained before 
1990 have  been  summarized  by  Nei (89), but there are many recent studies (40, 
48,50,60,  61,74,91, 102,  115,  148,  150). It is  not easy to summarize these 
studies because  different  authors  considered  different  evolutionary models and 
used different  computer  algorithms. 

One of the most  popular  model  trees  used in computer simulation is the 
unrooted tree of four sequences in the form  given  in Figure 1(D), where a, 
b, and c represent the  expected  number of nucleotide substitutions per site. 
When a = b = c and u is greater than 0.1 but smaller than 0.5, almost any 
tree-building  method  produces  the correct topology if n is greater than  100. 
Therefore, this  model tree is not useful  for  discriminating the efficiencies of 
different  methods.  For  this  reason, many authors have  assumed a > b. If  we 
use  the  Jukes-Cantor model  of nucleotide substitution, the MP method  becomes 
inconsistent when b = c = 0.05 anda 2 0,394  (134). Therefore, MP always 
fails  to  produce  the correct tree when a large  number of nucleotides is used. 
However, NJ and ML usually  recover the correct tree in this case if a < 0.5. 

Some authors (59)  have  used cases of  an  extremely  high degree of sequence 
divergence (a = 2.83; p distance = 0.65, and& = c = 0.05: p = 0.05) to 
show a superiority of ML methods.  However,  such  divergent sequences are 
almost  never used in practice because  of  the  difficulty  of sequence alignment. 
Therefore,  such a study  is  not  biologically  meaningful. For the same reason, a 
large  part  of  computer simulations conducted by Huelsenbeck (60) also do not 
seem to be biologically  meaningful (91). Although he considered the complete 
two-dimensional space for a and b = c(0 5 p 5 0.75; 0 5 corrected distance 

d 5 00) for the sake of completeness, actual data used for  phylogenetic  analysis 
fall into a relatively  small  portion  of  the space near  the  origin (108). When b 
and c are of  the order of 0.05 and 0.1 < (I 0.5, MP is  generally less efficient 
than NJ, which  is in turn less efficient than ML (48,  50, 60, 134). However, 
when a, b, and c are all of the order of 0.01 - 0.025 and n is about 1O00, all 
three methods reconstruct the true tree quite easily (134). 

Note that the comparison  of different tree-building  methods is not  always 
straightforward when a complicated model  of  nucleotide substitution is used, 
because appropriate computer  programs are not  always  available. Thus, Tateno 
et a1 (134) compared  the  robustness  of MP, NJ, and  ML  using available com- 
puter programs for the case where  the substitution rate  varies  among  nu- 
cleotide sites following the gamma distribution. Since the  computer program 
for ML was  not  available, their comparison of NJ and  ML  was  not  adequate. 
Using a newly  developed ML algorithm with the gamma distribution (147). 
Huelsenbeck (61) attempted to rectify  Tateno et al's  inadequate  comparison 
between NJ and  ML.  However, he used a continuous  gamma distribution for 
NJ but a discrete version for ML. Although this difference  would  not a f k t  
the final conclusion significantly, it illustrates a difficulty in computer sirnu- 
lation. This problem  is  compounded by the fact  that for the NJ or ME meth- 
ods, biased distance measurers often give a higher PC value  than  unbiased 
distances. 

The model tree (D) in Figure 1 obviously  does not cover  all possible types 
of trees for four sequences. The model tree ( E )  is different  from tree (D) in 
that two long branches  with  length a are now neighbors and two short branches 
with length b are also neighbors.  Interestingly,  this model tree  gives  different 
relative Pr values compared to those for tree (0). Some results  for the two trees 
are given  in  Table 1. In tree (D), ML gives the highest PT value  among  the  three 
methods ML, MP, and NJ, and  NJ  with p distance shows the lowest value. In 
tree ( E ) ,  however, ML gives  the  lowest PT, whereas NJ withp distance gives the 
highest. Furthermore, both  unweighted and  weighted  MP show much higher 
PT'S than ML. These results were  obtained  apparently  because in parsimony 
and NJ with pdistance short branches  tend to attract  each  other. Yang (150) has 
also shown  that  even when the evolutionary rate is constant, ML can  be inferior 
to unweighted MP. These results indicate the difficulty of obtaining a general 
conclusion about the relative  efficiencies of different  tree-building methods, 
even for the simplest  case of m = 4. 

A number of simulation studies have  been done for the cases of six  or  more 
sequences, although it is  difficult to consider more  than a dozen sequences, 
When m is  very  large,  the interior branch  lengths  become very small if we  want 
to make  the  most  divergent sequence pair  biologically  reasonable (d 5 1 .O). For 
this reason, Pr becomes  very low for  any  method,  and an enormous  amount 
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lsble 1 Percent probabililies of obtaining the cornct tree topology 

Number Tree D Tree E 
Nucleotides NJ MP ML NJ MP ML 
(n) p JC K2 UW W p JC K2 UW W 

100 44 68 12 41 64 76 98 73 14 88 96 64 
200 41 79 81 52 80 84 100 83 82 91 99 76 
300 43 81 88 59 80 92 100 88 86 98 100 ' 82 
500 35 94 95 62 89 97 100 96 94 100 100 90 
800 29 96 96 63 94 98 100 98 96 100 100 94 
l o o 0  35 99 99 66 98 100 100 99 99 100 IO0 96 

by using Kimura's (70) two-paramefer  model with a tranrilionltranrversion  tate ratio of 2. and the method of 
In both  trees D and E in Figum I .  II = 0.4.1, E 0.1 I and c = 0.05 wen arsurned. Sequencer  data  were  generaled 

Abbrtviationr: NJ. netghbor-joining mthod; p .  p distances; IC, Juker-Canlor distance; K2, modified Kirnura 
simulation wm LC s d m c  as t h a ~  of Ne1 et al(91). 

dirrancc (32); MP. maaimurn parsimony method; U W ,  unweighfed; W. weighted; ML, maximum  likelihood 
method. 

of computer time is required (77, 133). The model trees considered  usually 
represent the case of constant rate or its modifications (50, 110,  112,  121, 
122). In some of these studies (110, 121), the exhaustive search of MP or ML 
trees was not done because of an excessive computer time required, but the 
true topology was always  included. Therefore, the simulations were  somewhat 
more favorable for MP or ML than for NJ. In  general, these simulation studies 
have shown that ML is as good as or better  than NJ, which is in  turn  often 
better  than MP. However,  the  number  of  these studies is quite limited, and it is 
difficult to extrapolate these results to other cases. 

A somewhat different type of simulation was  conducted by Kuhner & 
Felsenstein (74). They  generated  a  model tree of 10 sequences following the 
branching  process in statistics in each replication, and the sequence data gener- 
ated according to  this  model tree were used to reconstruct  a  phylogenetic  tree. 

' The topology of this tree was  then  compared  with  that of the model  tree. The 
topological difference between the model tree and the estimated tree was mea- 
sured by the number of the nonidentical sequence partitions between  the  two 
trees being  compared (d7) (96). They considered a case of low divergence with 
an expected value of the root-to-tip  branch  length  equal  to 0.0193 and  a case of 
high divergence with  an  expected  value  of 0.193. The average dT values for the 
low divergence case with a  constant rate were 1.95, 1.82, and 1.64 for MP, NJ, 
and ML, respectively  when n = 1,000, whereas dT's for  the  high divergence 
case were 0.68, 0.67, and 0.54 for MP, NJ, and  ML,  respectively. Therefore, 
on the basis of dTvalues, ML is better than NJ, which is in turn slightly better 
than  MI?  However, the differences in dTamong the three different methods are 
very small. Note  that the above  comparison was done with  very special types 
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of model  trees  that seem to  have had very short interior  branches  occasionally. 
(None of the model trees used  was published,) Therefore, many inferred  trees 
should have had multifurcating nodes,  yet  the  authors  did  not  treat them as such; 
they accepted  whatever  resolution of the multifurcation  a  particular computer 
algorithm produced. Here again,  we see an example where  the  comparison of 
different methods is  algorithm-dependent. Note that ML algorithms often give 
zero branch lengths even if the true tree is apparently  bifurcating (16). 

Despite many recent computer simulations, the interpretation of the results 
is  not as straightforward as was originally  expected, and  more careful studies 
are needed to know the relative  efficiencies of different methods.  However, i t  is 
now clear that any method is not almighty, and there  are  situations in which one 
method is more efficient  than  others  in obtaining the true  tree  and  that,  unless 
the evolutionary rate varies  drastically  with  evolutionary  lineages,  all the three 
methods considered here generally  give the same or similar topologies (1 10). 
Computer simulations have  also  indicated  that one of the  most  important factors 
is the number of nucleotides or amino acids used  per sequence and  that if this 
number  is small, one cannot produce reliable trees. 

TESTS BASED ON KNOWN PHYLOGENIES Although it is  generally  difficult  to 
know the true topology  in  real  data analysis, there are a few such  cases. Onr 
is  a phylogenetic tree experimentally  produced by artificial  mutagenesis  with 
T7 phages (58). However,  this  type of experiment produces only one or a 
few replications, so it is difficult to compare different  methods  statistically. 
Furthermore, the pattern of nucleotide changes produced by mutagens seems 
to be somewhat unusual (8). It is thus  unclear  whether we  can extrapolate the 
results obtained from these experiments to real cases. 

However, there are few  instances in which the phylogenetic tree for  a group 
of organisms is firmly  established on the paleontological and morphological 
bases. One such example is given in Figure 2(A). The complete nucleotide 
sequence of mitochondrial DNA (mtDNA) has recently been  published for the 
1 1 vertebrate species  given in this  figure, MtDNA in  these species contains 13 
protein-coding genes, the number of shared codons for each gene  varying from 
52 to 582. A phylogenetic tree was reconstructed for each of these genes  and for 
the entire set of genes (3682 codons),  and  the  trees  obtained  were  compared  with 
the true tree (100). In  this  study,  amino  acid sequences rather than nucleotide 
sequences were used, because the former produced  more  reliable  trees. 

When  all 13 genes were used,  all  tree-building  methods (NJ, ML, and MP) 
produced  the correct tree irrespective of the algorithm used. A few genes 
(usually large genes) such as NdS, Cy& and C03 also produced  the  correct or 
nearly correct topology.  However,  some genes (e.g. 1202, Ndl.  Nd3, and Nd41) 
almost always produced  incorrect trees regardless of the  method  and algorithm 
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I Figure 2 (A)  Known  phylogeny  for 11 vertebrate species. The  total  amino  acid  sequences of 
13 coding  genes of mitochondrial DNA produced  the  correct  phylogeny  with  a  bootstrap  value of 
100% for  each  interior  branch. (S) When the lamprey  and sea urchin sequences  were  added, m 
incorrect  topology  was  produced  with  high  bootstrap  values. 

used. This result clearly indicates that some genes are more suitable than others 
in phylogenetic inference and  that all the  tree-building  methods  tend to produce 
the same topology  whether the topology is correct or not. Similar results were 
obtained by Kumazawa & Nishida (80). Since only  13 genes were studied, it 
was  difficult to evaluate  the  relative  efficiencies  of the different tree-building 
methods. In general,  however,  sophisticated  methods  such as the ML method 
with Jones et al's substitution model  were  no  better  than simple methods such 
as NJ with p distance or ML star-decomposition  algorithm. Similar results 
were  obtained by Cao et al (1  1, 12). These results suggest that  the  pattern 
and  the rate of amino acid  substitution vary with a group of organisms (also 
with  evolutionary  time) and  thus  sophisticated  mathematical  models  do  not 
necessarily  generate  better  results. 

However, a surprising result was obtained when the  lamprey and sea urchin 
sequences were  added to the 11 sequences in Figure 2(A): a clearly  wrong tree 
[Figure 2(B)]  was obtained  by  all  tree-building  methods  even  when  all genes 
were  used,  and a bootstrap  test  showed  strong statistical support for this wrong 
tree! The reason  for this is  unclear,  but the unusually  slow rate of evolution of 
fish genes and the change in the  pattern  of amino acid substitutions with.site 
and time (76) seem to be contributing  factors. 

Empirical studies of a few cases of  known phylogenies  have  shown  that 
when the  sequences used are relatively closely related  the correct phylogeny  is 
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generally obtained  as the number of codons or nucleotides  increases but  that 
the topology of distantly  related sequences may  well be  incorrect  even when a 
large number  of  codons or nucleotides  are used and a bootstrap  test may give 
strong statistical support for it. 

THE MOLECULAR CLOCK AND  LINEARIZED TREES 
The molecular clock is one of the  most  important  concepts  in  molecular evo- 
lutionary  genetics, yet it has  been controversial for many decades (21,36,82). 
Strictly speaking, the rate of nucleotide or amino acid substitution would  never 
be constant over the entire evolutionary  process  because  nucleotide or amino 
acid substitution is a complicated process  that is dependent on the  evolution- 
ary stability and  functional changes of genes. Therefore, if  we study a large 
number of nucleotides or amino acids and the extent of sequence divergence is 
sufficiently  large,  we  would surely be able to detect  the  heterogeneity of evo- 
lutionary rate. Yet,  the extent of rate heterogeneity is usually  moderate  when 
relatively  closely  related sequences are used, so that  one  can  use  an approxi- 
mate clock to obtain  rough estimates of times of divergence  between sequences 
from molecular data. Actually, a number of molecular evolutionists (75, 136) 
have attempted to estimate divergence times  even when the  molecular clock 
fails. 

To use a molecular clock for estimating divergence  times,  however, it is 
important to test  the applicability of a clock for  the  data  set  under considera- 
tion. If a molecular clock does not  hold,  we  must  identify and eliminate the 
sequences that  deviate  significantly  from the assumption of rate constancy. Af- 
ter elimination of these sequences, we can reestimate  the  branch  lengths of 
the tree for the remaining sequences under  the  assumption  of  rate  constancy. 
A tree constructed in this way  is called a linearized  tree and  can  be  used  for 
estimating the  divergence time of  any  pair of sequences  provided  that  the rate 
of substitution can  be  estimated  from ,other sources  such as fossil  records or 
geological dates (130). In this case, the test of a molecular  clock need  not be 
very strict, because  the estimates of  divergence  times obtainable are generally 
very rough. Actually, we  may retain certain important  sequences  even if they 
evolve significantly  faster or slower than the average,  unless they distort the 
tree substantially. 

A commonly used test of  the  molecular clock is  the  relative rate test for three 
sequences (36,87,125,145), but this  test is not appropriate for our purpose. We 
need a test'that  is applicable for many sequences  simultaneously.  Felsenstein 
(29) suggested that  for trees constructed by distance  methods the  test  be done 
by comparing the  least-squares  residual sums obtained  under  the  assumption 
of rate  constancy (Rc)  with that for the case of no such  assumption (RN) using 



Fisher's F test.  When  the  ordinary or weighted least-squares method  is  used 
to compute Rc and RN (Fitch  and  Kitch  programs in the PHYLIP package), 
it is implicitly  assumed  that  pairwise  distance estimates are independently  and 
normally  distributed.  Normality may not be seriously violated, but pairwise 
distances are positively correlated because of the tree-like relationships of the 
sequences, Therefore, this  is  not  a rigorous statistical test (3 I), 

The hypothesis of rate constancy  can also be  tested by computing the  like- 
lihood  values  with  and  without  the  assumption of rate constancy (31). m i c e  
the difference of the log likelihood values between the two cases is expected 
to follow the x 2  distribution asymptotically  with m - 2 degrees of freedom. 
Goldman (42) questioned  the x 2  approximation  of the test statistic, but  Yang 
et al's (151) simulation study suggests that  the x' approximation is acceptable 
in  most cases. 
Takezaki et a1 (130) presented two simple methods of testing rate constancy 

specifically  designed to identify sequences evolving  excessively fast or slow: 
the  two-cluster and the branch-length  tests.  In these methods, the root of the 
tree  is first established by using  outgroup sequences as in the case of Figure 
2(A), where the fish genes can be regarded as outgroups. The two-cluster test 
examines whether the difference in average  branch  length  between two clusters 
of sequences created by an interior node  is statistically significant or not. This 
test is done by computing the standard error of the difference between the two 
average  branch  lengths  and  applying  the 2 test.  If this 2 test shows  that one 
branch  length is significantly  different from the  other, the one that is more 
different  from  the  average  root-to-tip distance for all sequences is eliminated. 
In the  branch-length  test,  the root-to-tip branch  length (y) is computed for all 
sequences, and the difference between they value for a particular sequence and 
the average (8) for all sequences is computed. This difference is then subjected 
to a statistical test to identify the sequences  that  evolve  significantly faster or 
slower. 

The deviation of y from j~ can also be tested by Uyenoyama's (137) gener- 
alized least-squares method. Since the generalized least-squares estimates of 
branch  lengths  have  a smaller variance than theordinary least-squaresestimates, 
this test is expected to be more powerful  than the above methods.  However, the 
application  of  this  method to the case of a large  number of sequences is difficult 
because it requires a large amount of computer  time. For our purpose, we do 
not need a very powerful  method to detect the rate heterogeneity,  because we 
are interested  only in approximate rate constancy. 

Once  excessively  fast- or slow-evolving sequences are eliminated, one can 
construct a  linearized tree under  the  assumption  of rate constancy,  using 
the method  described by Taketaki et al (130). Linearized  trees  have been 

constructed to estimate the times of divergence for various  pairs of Drosophila 
species using  the  alcohol dehydrogenase gene sequences and the  geological 
estimates of the times of formation of the Hawaiian islands (99, 130). These 
studies indicate that when  many sequences  (about 40 sequences) are used,  the 
time estimates remain  nearly the same even if some sequences that  evolved 
significantly slower or faster (1% level)  than  the  average  are  included. The 
same method has also been  used for estimating the times  of  origin of the orders 
of placental mammals and birds (52). 

PERSPECTIVES 
In this  review, I have  discussed  recent  developments in phylogenetic  analysis 
that are biologically  important. I have emphasized that the statistical foundation 
of phylogenetic inference is not  well  established  for  any tree-building method 
and that there is an urgent need to  clarify this foundation.  However,  computer 
simulations and  a few empirical studies suggest that currently used  methods 
such as the NJ, ME, MP, and ML methods generate reasonably  good  phylo- 
genetic trees (topologies) when a  sufficiently large number of nucleotides or 
amino acids are used.  In general, all  these  methods  produce the same or similar 
trees unless the evolutionary rate extensively  varies with evolutionary lineage. 
When  the  evolutionary rate varies  with  evolutionary lineage, MP tends to be 
less efficient than other methods in obtaining the  true  topology, but if the extent 
of rate heterogeneity is very high,  all  methods may fail to  identify the truetopol- 
ogy. MP methods also tend to give  more  biased estimates of branch  lengths 
than others. However, MP methods  have  an advantage over other  methods  in 
that they can easily utilize information  generated by insertions/deletions. 

In practice, the number of nucleotides or amino acids used is sometimes 
quite small, and the sequences analyzed are closely related. In this case,  any 

, tree-building  method would make  some errors in topology construction, and the 
use of a simple method would be sufficient for obtaining rough evolutionary re- 
lationships of sequences. By contrast, when the  extent of sequence divergence 
is very  high  and  the  pattern  of  nucleotide or amino acid substitution remains 
nearly the same for all sites during the entire evolutionary  time, ML methods 
are expected to give better results in topology  estimation than other  methods, 
The only problem is whether the substitution  pattern  remains  the same or not 
for a long evolutionary time. If this  pattern  varies with site and changes  with 
time, the advantage of ML methods  over other methods  would  decline,  because 
other methods require less rigid  assumptions  about  the  substitution  pattern  than 
ML methods.  Another  complicating  factor is sequence  alignment. When there 
are many deletions and insertions, it is often very difficult to have a reliable 



sequence alignment, and a relatively small difference in sequence alignment 
often  has a profound effect on the  phylogenetic tree reconstructed. Yet,  few 
studies have  been  made  on  the sensitivities of different tree-building  methods 
to the  alignment differences. At this moment, the relative efficiencies of differ- 
ent tree-building  methods  remain  unclear,  particularly when various  biological 
factors are considered. 

Our current  knowledge of the  relative efficiencies of different  tree-building 
methods is largely  based on computer simulation and some theoretical consid- 
erations. However, our ability to simulate the real process of DNA sequence 
evolution is limited, and  in  the future the relative efficiencies should be stud- 
ied  by using actual sequence data for known  phylogenies.  Fortunately, as the 
amount of sequence data increases, the  number of known  phylogenies for which 
such a study can be done is increasing. Therefore, we will  probably be able to 
know the empirical telative efficiencies  in the near  future. 

In the  past two decades many investigators  have studied the molecular  phy- 
logeny of three basic forms of life, archaebacteria, eubacteria, and eukaryotes, 
but the results obtained are still  conflicting (20, 46,  68,  144). To resolve this 
problem, Golding & Gupta (41) examined  the relationships of gram-positive 
bacteria, gram-negative  bacteria, archaebacteria, and eukaryotes using 24 dif- 
ferent protein sequences, and  showed  that different proteins generate differ- 
ent but statistically significant  topologies. On the basis of this result, they 
hypothesized that eukaryotes evolved by fusion of  an archaebacterium and a 
gram-negative  bacterium. While this hypothesis is interesting and  should  be 
pursued in more detail, it  should be kept in mind  that  current statistical tests 
are not very reliable for examining the evolutionary events in such ancient 
times. 

This proviso applies even  to  phylogenetic  trees of different phyla, classes, 
and families.  Note  that  we  could  not reconstruct the correct phylogeny  even for 
vertebrates and invertebrates by using mtDNA (Figure 2 4 .  Therefore, great 
caution  is  necessary in interpreting  molecular  phylogenies for distantly re- 
lated  organisms. Since our statistical methods  depend  on so many simplifying 
assumptions, it is not always clear whether we are uncovering  the Prenealoa- 

- w  " 
ical history of early  evolution or merely describing the extent of functional 
differentiation of genes that have  been  highly  conserved. [Note that there are I 

only two amino acid  differences  between  calf  and pea in a sequence of 105 
! 

amino acids of histon H4 (88). Do they represent stochastic changes of amino 
acid sequences?] In this  type  of  study,  we should use both quantitative and 
qualitative characters (68). Here we need some principles of the cladistic ap- 
proach as well as the statistical approach,  It is also important to examine a large 
number of genes and analyze them simultaneously (20). 

In  this article, I have  been concerned  primarily with statistical inference 
of  phylogenetic  trees.  However, 
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gure 1. Parameter  optimization  simulations  performed on the Bar-1 fragment from Bamase.  a, MC simulation trajectory from which 
nitial GA population was  drawn; b, effect of population  size; c, effect of joint search; d, fraction of conformations can id  forward 

next generation; e, effect of side-chain free energy  minimization; f, effect of AG,,,,, standard deviation recalculation frequency. 
jimulatiow were  performed relative to a standard set of parameters: population size, 50; number of generations, 60; number of 
Pal=  applied to joint, 50; q luca l  recalculation  frequency, 60; fraction of  conformations camed forward to the next generation. 

; rounds ofside-~hain minimization, 50; T, 300 K. The kcy in  each figure shows  the parameter vnlurs used. 


