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ABSTRACT Macromolecules  carrying  biological  informa- 
tion  often  consist of independent  modules  containing recurring 
structural motifs.  Detection of a  specific structural motif  within 
a protein (or DNA) aids in  elucidating  the  role  played by the 
protein (DNA element) and the  mechanism of its  operation.  The 
number of crystaliographically  known structures at high res- 
olution is increasing  very  rapidly. Yet, comparison of three- 
dimensional structures is a  laborious  time-consuming  proce- 
dure  that typically requires a  manual  phase. To date, there is 
no fast automated procedure for  structural comparisons. We 
present an eflicient 0(n3)  worst  case  time  complexity  algorithm 
for achieving  such a goai  (where n is  the number of atoms in the 
examined structure). The method  is truly three-dimensional, 
sequence-order-independent, and thus insensitive to gaps,  in- 
sertions, or deletions. This algorithm is based  on the geometric 
hashing paradigm, which  was  originally  developed for object 
recognition  problems  in  computer vision. it introduces an 
indexing approach based  on  transformation invariant repre- 
sentations and is especially  geared  toward  efficient  recognition 
of partial  structures’ih rigid  objects  belonging to large  data bases. This algorithm is  suitable for quick  scanning of struc- 
tural data bases and will  detect a recurring  structural motif 
that is u priori unknown. The algorithm  uses  protein (or DNA) 
structures, atomic labels, and their three-dimensional  coordi- 
nates. Additional information pertaining  to the  structure 
speeds the comparisons.  The  algorithm is straightforwardly 
padelizable,  and several  versions of it for computer vision 
applications  have  been  implemented  on the massively  parallel 
connection machine. A prototype  version of the  algorithm has 
been implemented and applied to the detection of substructures 
in proteins. 

One of the  basic  emerging  principles in molecular  biology  is 
the  modular  nature of DNA  sequence  elements and of the 
corresponding  sequence-specific protein factors recognizing 
them.  The  domains  appear to be independent units (I). 
Structural  and  functional  studies of these  domains have 
demonstrated  the  existence of several structural motifs.  The 
motifs include  the helix-tum-helix (HTH) (21, zinc  fingers 
(3), homeodomain (4). leucine  zipper (9, helix-loophelix 
(61, Ser-Pro-Lys-Lys  histone (7), proline-rich (8) and glu- 
tamine-rich (9) motifs,  the antiparallel p-sheet (10) apparently 
inserted in the  minor  groove.  and more recently  a pair of 
&strands in the major  groove of the DNA (11). All of these 
motifs typically  include less than 100 amino  acid  residues. 
Finding a given structural motif in a  protein may clearly aid 
in understanding its role (12). The latter is inferred by analogy 
with other  proteins  containing  the motif. Structural  compar- 
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isons are thus  central to molecular  biology.  The  problem we 
are faced  with  is to devise eficient techniques  for  routine 
scanning of structural  data  bases and searching  for  recur- 
rences of inexact  structural  motifs. The degree of allowed 
errors is to be determined by the user. 

The most commonly used computerized  macromolecule 
comparison  approaches deal  mainly with Comparison of the 
primary structure of molecules.  They  are  based on character 
string comparison  algorithms. most of which use  variations  of 
the  dynamic programming technique (for a good survey,  see 
ref. 13). Structural  comparison is superior to this primary 
sequence  analysis,  since it takes into account  the spatial 
geometric  structure of the  molecules  involved and  not  only 
their order on the  primary  chain.  The  increasing  need  for 
direct structural analysis of macromolecules  has led to the 
development of several  computerized  methods (14-16), 
These  methods,  however. look for  predefined motifs in  the 
secondary  structure of the  macromolecule.  Moreover.  these 
motifs are usually composed of contiguous  amino  acids on 
the primary chain,  such as a-helices  or  p-sheets.  The  method 
that we develop  enables  elucidating  similar  substructures in 
different molecules  without  specifying in advance :vhat these 
structures  should  be.  Moreover.  the motifs do not necessarily 
involve contiguous  amino  acids. so the  approach is truly 
three  dimensional (3D). This  enables  detection of various 
structural patterns. 

Currently.  true  3D  structural  comparisons  are  carried  out 
mainly  using interactive  computer  graphics  and  visualization 
facilities. The  programs  compare  the  locations of every  pair 
of corresponding  atoms in any two specific structures. Al- 
though useful, this tool falls short ofwhat is needed.  Since  the 
computer  graphic  programs  compare  either  two  complete 
(crystal or computed)  structures or any  user-specified  sub- 
sections,  they are excellent for individual protein or nucleic 
acid  analysis but are very  time consuming for extensive 
comparisons. 

From  a  mathematical  standpoint, the structural compari- 
son  problem between  two  molecules  can be formulated  as 
follows. Given the 3D coordinates of the  atoms of two 
molecules, find a rigid transformation  (rotation and transla- 
tion) in space so that  a  “large”  number of atoms of one 
molecule matches  the  atoms of the other molecule. The 
matching should  preserve not  only the  geometric  constraints 
of a rigid  body  but also  the  “labeling”  constraints of the 
individual atoms (i.e.. atom  types) and their relevant  chem- 
ical  links. Moreover,  one  needs an efficient comparison 
technique of each  structure  versus all previousIy  known 
structures  simultaneously. 

Abbreviations: ZD and 3D. two and three dimensional. respectively: 
HTH. helix-[urn-helix: RS. reference se1. 
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The  mathematical problem  stared above is closely related 
to the model-based  recognition problem of 3D  rigid objects. 
This problem has been intensively investigated in computer 
vision. One of the major  problems in this field  is to discover 
previously known objects in scenes,  where  some of the 
objects might appear to partially occlude  each  other. This is 
the, so called, model-based  object  recognition  task (for 
extensive  surveys,  see refs. 17 and 18). By considering  a 
molecule as  an  object  consisting of many rigidly connected 
features  (atoms), one can apply some of the  computer vision 
techniques to our problem. Partial occlusion  here is equiva- 
lent to the  absence of partial substructures. 

Several  techniques  have been suggested to tackle this 
problem. Some of them (19) exploit specific visual features 
that do not translate  favorably to our problem.  Others (20) 
employ tree  search  techniques  resulting in exponential algo- 
rithm complexity.  The most relevant  techniques for our 
purpose are those  known  as alignment (21). pose-clustering 
(221, and geometric hashing  (23) (for  a  comparison of these 
techniques,  see  ref. 24). 

Recently,  the  geometric hashing  paradigm for model-based 
object  recognition  was  introduced by Lamdan ef al. (23, 25, 
2 6 ) .  Ilisrechnique is especially geared toward recognition of 
partially occluded  objects belonging to large-object  data 
bases,  and its complexity is  a  low-degree polynomial in the 
objects size. It is also very well suited  for  massive parallel 
implementation,  and  prototypes  of this algorithm have  been 
implemented  on the highly  parallel connection machine (27. 
28). Techniques  derived from computer  vision  have not  been 
yet  applied  to molecular biology. We believe that their 
application will result in  a significantly better  performance 
than  the manual graphics  methods  currently used  not  only 
because  they  introduce  a fully automated  approach but  also 
because  they  have  a key  ability to detect  patterns not  known 
a priori. 

The algorithm presented here includes  automated scanning 
of a large number of structures. It assumes no a pr ior i  
predefined motif. It is a  true  geometrical 3D comparison 
algorithm and  thus is completely  independent of the  order of 
the amino  acids in the primary  chain.  Furthermore, since  the 
algorithm is sequence-independent, it is insensitive to gaps, 
insertions, or deletions. which constitute  a major  difficulty in 
structural comparisons based on sequence  alignments. In 
principle, it can  be implemented  for  both structure-related 
sequence motifs [sequence  patterns that are  associated with 
a specific structure (2911 and structural  motifs  (whose actual 
sequences may vary). It is general  and can be  used on  both 
molecular model and crystal structure  data. In addition to 
atomic  coordinates,  such  a  data  base  should preferentially 
also  contain  consistently defined sets of properties. such as 
secondary  structures and  hydrogen  bonding (29). Several 
such  data  bases are being developed.  Our  algorithm can  use 
protein or DNA/RNA  structures,  atomic labels, conforma- 
tion coordinates,  secondary  structures.  and tertiary interac- 
tions (29) in its  structural  comparisons (30). The more  infor- 
mation included in thedata base: the faster is the  comparison. 

Although growing  fast.  the B-DNA crystal  structure library 
is stitl  limited. Currently  there  are  several DNA structural 
computation  schemes (e.g., refs. 31-34). The RNA structural 
information is mostly  derived from tRNA  crystal structures. 

A version  of our proposed algorithm has been  applied  (35) 
to proteins  that  have  been  compared using other  methods. I t  
recovered all the  alignments that have been  obtained by the 
other  methods,  but  whereas all these other methods used 
some  additional  information, which has  been crucial for their 
success,  our  algorithm  used no prior assumptions. 

The  Geometric Hashing Paradigm 

The  geometric  hashing paradigm for model-based ‘object 
recognition  was introduced by Lamdan et al. (23. 25) .  Effi- 

cient  algorithms were developed for recognition of rigid 
objects both in two and three  dimensions. 

We present  here  a  variant of the  geometric hashing tech- 
nique  for  recognition of identical partial structures in rigid 3D 
objects.  For the  moment we wifl use purely geometric 
language  whose biological equivalents are  as follows. A 
(geometric) rigid object is analogous to  a molecule.  Such  an 
object  consists of a set of points, which correspond to atoms. 
Each point  may have  a label (the name of an atom). Given a 
data base of  known objects  (molecules)  and an observed 
object,  the algorithm  finds  those  objects in the  data  base, 
having  large  substructures  nearly identical with substruc- 
tures of the  observed  object.  The  points of matched  sub- 
structures  should  have  equivalent  labels and identical 3D 
coordinates  modulo  translation and rotation (rigid  morion) in 
space. No a pr ior i  knowledge of the desired  substructure is 
assumed. 

In a model-based  object  recognition  system,  one has to 
address  two  major  interrelated  probIems,  namely,  object 
representation and  matching. The  representation  used must 
be  rich enough to allow reliabte distinction  between  the 
different objects in the  data  base, yet terse enough to enabIe 
efficient matching. A major  factor in a reliable representation 
scheme is its ability to deal with recognition of partial 
substructures. In the  geometric hashing technique  objects  are 
represented as  sets  ofgeometric  features (in our case, points), 
and their geometric  relations  are  encoded using  minimal sets 
of such  features  under  the  ailowed  object  transformations (in 
our case, rigid motion). This is achieved by standard  methods 
of analytic  geometry  invoking  coordinate  frames  based on a 
minimal number of features  and  represknting  other  features 
by their coordinates in the  appropriate  frame. In the  sequel 
we present  the  geometric hashing method  for 3D point 
matching  under  translation and rotation. 

The  substructure  recognition problem  can  be rephrased to 
the following point-set  matchingtask,  where  one is given a  set 
of known  (model) point sets and an observed point set. The 
recognition  task  becomes the following subset  isometry  prob- 
lem: Is there a rotated  and  translated  subset of some model 
point set that  matches  a  subset of the  observed point set, so 
that  both  the  geometric  and  labeling  constraints are satisfied? 

Representation of Geometric Constraints.  Our goal is to 
represent  a  set of 3D points belonging to a rigid body by  few 
intrinsic parameters.  This  representation should efficiently 
encode  the  geometric  constraints of a rigid body, be trans- 
lation and  rotation invariant, and  enable handling of partial (a 
pr ior i  unknown)  substructure  information. 

Assume that we are given an  arbitrary set of rn points 
belonging to  a rigid body. One can pick any ordered triplet of 
noncollinear  points in the set and represent at1 the  other 
points using this triplet. Specifically, let em, elD, eal be  an 
ordered triplet of noncollinear points. These  three  points 
define  a  plane. One may choose  an orthogonal 3D coordinate 
system  centered  at em such that the  above  mentioned plane 
is the ( x ,  y )  plane,  the x axis is in the  direction of the  vector 
elo - ew, they  axis is orthogonal to it  in the  counterclockwise 
direction. and the z axis is orthogonal to the plane  and its 
direction is  defined by the right  hand rule. Since we are 
dealing with  rigid motion,  the Length  of the unit vector can be 
predefined.  Let e,,  e,. e, be the  relevant  unit  vectors. Any 
point v in the 3D space  can be represented in the  above 
mentioned  coordinate  system: namely, there is a triple of 
scalars ((I, 0, y )  such that v = ae, -b f tey  + ye, + ew. 

In the  sequel we refer to  the  ordered triplet (w, elo, eol) as 
a  reference set (RS). Application of a rigid  motion T will 
transform  the point v to Tv = aTe, + PTe, + yTe, + Tern. 

It is easy to see that the triplet (Te,, Te,, Te,) is an 
orthonormal 3D basis, which can be obtained  from  the RS 
(T%, Tela, Teal) as above.  Hence,  the  coordinates (Q, p ,  y) 
of a 3D point (atom)  are  invariant  under a rigid  motion. 
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Improvements of the  Basic Paradigm. In the  previous 
section we have  described  the basic geometric hashing 
scheme for 3D substructure  detection.  Various  improve- 
rnents are  possible. I n  particular, one can  design  an O(n3) 
worst case  algorithm for thar purpose. although the practical 
run  time ofthe previous version should also be  much less than 
its worst  case  estimate.  This  other  version is also more space 
efficient and  requires  a hash table of Oh3)  only. On the  other 
hand, we use  somewhat  weaker  geometric and  labeling 
constraints. In this  section we sketch this second more 
efficient (in the  worst case) algorithm. 

In the  scheme  described  above, we used  full 3D bases that 
were associated with three-point RSs. One  may, however, 
use somewhat  weaker  information:  namely, two-point RSs. 
Given  a  two-point RS. any  other  (noncollinear) point in the 
3D space  defines a plane  with this RS. Compute  the  two- 
dimensional (ZD) coordinates of this point in the  above 
mentioned  plane using a 2D orthonormal  coordinate  frame, 
which is associated with the RS (the first point  is the origin, 
and  the  vector  from it to the  second point defines  the x axis). 
The address  to  the hash table this time will  be the labels and 
the  length of the RS segment, and the label  and the 2D 
coordinates (in the  appropriate  plane) of the point. Since this 
procedure is done  for all reference pairs, the hash table will 
take O(n3) space. 

The recognition  stage will  be similar to the  previous 
version,  only this time one  has to pick a  reference pair  on  the 
observed  object  instead of reference triplet. Hence  the worst 
case  compfexity  reduces to Oh'). Since  weaker  geometric 
and  labeling constraints  are applied in this version,  one may 
expect  somewhat  more  candidate  solutions passing the first 
voting  stage.  This  ambiguity will  be easily resolved in the 
least squares  and final verification steps of the  algorithm. 

Yet another way to reduce  the  computational load is to 
apply the algorithm (in the first stage) to C" atoms  only. 
Besides  the  reduction of computation, it also allows us  to 
base  the  comparisons on stable structures.  Such an approach, 
however, does not allow us to  apply  labeling constraints. 

A significant improvement in the efficiency of the algo- 
rithm can  be  achieved by  taking groups of atoms  rather than 
single atoms  as  primitive building blocks of the  substructures. 
In such a case, a single group may serve as a  natural RS (if 
it has more than  three  noncollinear  atoms).  thus improving 
both  the  space  and run  time worst  case  complexity to O(n'). 
where n is the  number of groups. For example, in the DNA 
natural  primitive atom groups are  adenine,  cytosine,  guanine. 
and  thymine.  Obviously,  a  generalized version of our algo- 
rithm  can  handle both atom  groups  and single atoms. 

Experimentaf Results 

A version of the  proposed algorithm has been  applied (35) to 
proteins  that  have  previously been compared using other 
methods. In particular. we  have implemented  an  improved 
version of the  algorithm that compared only C" atoms and 
used two-point RSs, as described in the  previous  subsection. 
Specifically. our technique  has been  used in the following 
experiments. 

(i) To  find  nonpredefined similar domains in bacterial 
ferredoxin  from Peptococcus oerogenes. Excellent fit of our 
results with those of Rossman and Argos (38) has been 
obtained. 

(ii) Two members from the  phospholipase A2 proteins were 
compared-phospholipase A2 from  bovine pancreas  and Cro- 
ralus owox venom.  These  proteins  have been  previously 
compared by Renetseder et a!. (39)  using standard  techniques 
(i.e., finding "by eye" a similar  core and then aligning  using 
the  least-square  procedure). Again, our alignment corre- 
sponds  exactly to that  reported by Renetseder et al. (39). 

(iii) The HTH motif  was located in several  bacterial re- 
pressor  proteins  just as  noted in the annotated  protein  data 
bank (PDB). In our  experiments we have  compared  three 
transcriptional  regulatory  proteins  known to contain  the 
HTH motif  tryptophan  repressor (PDB code, ZWRP). A Cro 
(PDB  code.  1CRO). and  phage 434 Cro (PDB  code. ZCRO). 
To give a  flavor of our  experimental results we describe this 
example in more detail. 

In ICRO,  there  are  four  crystallographically  unrelated 
monomers in the  asymmetric unit. These monomers  have 
been assigned  chain identifiers 0. A, B, and C. The  dimer of 
lCRO that exists in solution is presumed to be the G B  dimer, 
which  is  thought to be the  one  that  actually  binds DNA. We 
use the B monomer i n  the comparisons  shown  below, but 
comparisons using all four  domains  produce  similar  matches. 

The sequence  positions  where  the HTH motifs appear  are 
as follows: 

Protein Positions  Sequence 
2WRP 66-88 MS QRELKNELGA GIATITRGSNS 
lCRO 14-36 FG QTKTAKDLGV YQSAINKAIHA 
ZCRO  15-37 MT QTELATKAGV KQQSIQLIEAG 
In the  three pairwise comparisons  below (see Table l), our 

method  succeeds in matching the HTH motif from  one 
protein to the HTH motif  from the  other.  Very  few  other  atom 
pairs are  matched, showing that the o n l y  equivalent  sub- 
structure between the  proteins is the HTH motif  itself. The 
atom pairs outside  the HTH motif are 3D nonlinear  matches. 

For each  pair of matching substructures  Table 1 gives  the 
sequence  numbers of the matching atom:. the  transformation 
between  the  substructures (translation :.parameters in  ang- 
stroms and rotation  angles in radians), and the rms distance 
between  the matching substructures  subject to the  appropri- 
ate  transformation. In  these  examples one of the  proteins  was 
taken  as  the  data  base  (model)  and  the other protein  was as 
the unknown structure  (scene). 

Although the HTH motif does  conserve  the linear sequence 
structure,  our algorithm  did  not exploit this assumption but 
rather tackled the problem as  a  3D-matching  problem.  More- 
over. it  had no u priori information  that it was  the HTH motif 
we were  looking for. 

( i v )  Two  proteins from  the calmodium/calcium binding 
protein group were  compared-parvalbumin and intestinal 
calcium  binding protein. Several  matches  were  obtained. 
Two of these  correspond to the  alignment  reported by Taylor 
and Orengo (40). 

(1,) Bovine  liver rhodanese  contains  two  motifs, which have 
been compared both by Taylor  and  Orengo (40) and by  
Ploegman et a/. (41). yielding simiiarresults. Our matches are 
almost identical  to those  obtained (40, 41). 

( v i )  Two  lysozymes have  been compared from  hen  egg 
whites and T4 phage. Our matches  compare  favorably with 
those of Rossman  and  Argos (38). Weaver et a/. (42), and 
Taylor and Orengo (40). 

Details of the programming, results, and  their  comparisons 
with the previously  published resultsare  presented  elsewhere 
(35). I t  should. be noted,  however.  that  previously  published 
matches  are based  on linear sequence  structural  compari- 
sons. where contiguous amino acids are matched.  Our 3D 
comparisons had no such prior  assumptions  and  have  also 
unraveled  some real 3D sequence-order-independent 
matches. We expect that intensive  applications ofthe method 
to the  crystallographic  data base will yield additional  recur- 
ring spatial motifs. 

Conclusion and Future Research 

We have  presented an  algorithm for structural  comparisons. 
As the  computational  approaches  and  structural  predictions 
of DNA, RNA, and in particular, proteins  improve (43), such 
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Table 1. Painvise  matchings of the  HTH  motif in three 
proteins:  2CRO  (phage 434). lCRO ( A  phage),  and  2WRP 
(tryptophan  repressor) 

Model Scene  Model Scene Model Scene 
2CRO 2WRP 2WRP lCROB lCROB 2CRO 

63-T 

37-G 
36-G 
35-E 
34-1 
33-L 
32-Q 
31-1 
30-s 
29-Q 
28-Q 
27-  K 
26-v 
25-G 
24- A 
23-K 
22-T 
21-A 
20-L 
19- E 
18-7- 
17-4  
1CT 

13-L 

9-R 

44-F 

43-R 

103-V 
- 

- 

- 
8 8 3  
87-N 
86-S 
85-G 
84-R 
83-T 
82-1 
81-T 
80-A 
79-1 
78-G 
77-A 
76-G 
7 5 - t  
74-E 
73-N 
72-K 
71-L 
70-E 
69-R 
68-4 
6 7 3  
66-M 
65-E 
64-G 
63-R 
62-L 
61-L 
#E 
59-E 
58-v 
57-1 

53-T 

%A 

- 
- 

8 8 4  
87-N 
86-S 
85-G 
84-R 
83-T 
82-1 
81-T 

79-1 
78-G 
77-A 
76-G 
75-L 
74-  E 
73-N 
72-K 
71-L 
70-E 
6 9 4  
68-Q 
6 7 4  
66-M 
: 65-E 
'64-G 

60- E 
63-R 
61-L 

59-E 

36-A 
35-H 
34-1 
33-A 
32-K 
31-N 
30-1 
29-A 

- 

28-S 
2 7 4  
26-Y 
25-v 
24-G 
23-L. 
22-D 
21-K 
20-A 
19-T 
18-K 
17-T 
16-4  
15-G 
14-F 
13-R 
12-M 
11-A 
10-Y 
9-D 
8- K 
7-L 
6-T 

- 

55-V 

44-1 

51-Y 
52-A 

36-A 
35-H 
34-1 
33-A 
32-K 
31-N 
30-1 
29-A 
28-5 
27-Q 
26-Y 
25.V 
2 4 4  
23-L 
22-D 
21-K 
20-A 
19-T 
18-K 
17-T 
16-4  
15-G 
14-F 
13-R 

10-Y 

8-K 
7- L 

39-K 

60-4 - 
53-N 
- 

SO-M 
49-A 

3 7 4  
36-A 
35-E 
34-1 
33-L 
3 2 4  
31-1 
3 0 4  
29-0 
28-0 
27-K 
26-V 
25-G 
24-A 
23-K 
22-T 
21-A 
20- L 
19-E 
18-T 
17-Q 
16-T 
15-M 
14-K 

- 

13-L 
12-A 
11-1 
10-R 
9-R 
8-K 
7-K 
6-L 

2-L 
- 

- 

0.29.  -2.53: rms. 0.90. Columns 3 and 4:  translation. -16.6, -49.6. 
Columns 1 and 2: translation. 16.6, -7.7.  -2.4; rotation. -0.11. 

-20.1: rotation, -2.34, 0.64. -0.90: rms. 1.29. Columns 5 and 6: 
translation, -23.4,  -45.2, -19.7: rotation. 1.91, -0.77.  -2.59: rms. 
0.97. 

an algorithmic tool, borrowed  and  adapted from computer 
vision, can be very extensively  implemented. We have im- 
plemented a preliminary  version of the  geometric hashing for 
molecular  biology applications on a serial computer.  The 
initial experiments  show  considerable  promise. 
We view the  presented  algorithms only as  a basic para- 

digm.  Additional  biological information can be incorporated 
into this basic  framework. In  particular, one  can  consider  the 
chemical links between various atoms  and  groups of atoms. 
Any such additional  information  adds  additional matching 
Constraints and may speed  up  the  algorithm. 
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