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Introduction 
In order to determine protein structure from 

amino  acid  sequence, two central problems must 
be  overcome: some form of free  energy function 
must be  developed that is able to distinguish 
between the functional  conformation and all the 
rest, and a confomational search  method must be 
devized that can  find that functional  conformation 
using available computing resources. 

The most realistic  method to date for studying 
protein motion is Cartesian space molecular dy- 
namics, using a n  explicit description of all the 
protein and solvent molecule atoms (Allen & 
Tildesley, 1989; Brooks et aZ., 1991).  Force  fields at 
this level are highly evolved  (Aqvist et nl., 1985; 
Weiner et al., 1984; Brooks et al., 1983; Hagler, 
1985; k et d., 1995; Kang et ul., 1996), and a num- 
ber of studies  have shown that there are significant 
free energy minima near to the functional  confor- 
mation  (Brunne ef nl., 1995;  Kitson ct nl., 1993). It is 

Abbreviations used: GA, genetic  algorithm; MC, 
Monte Carlo; IFU, independent  folding  unit; BJTI, 
bovine trypsin  pancreatic  inhibitor; ESP,  the  dictionary 
of  secondary  structures  of  proteins. 

not known whether, given enough computer time, 
simulations started from arbitrary points would 
converge to the functional conformation.  The  very 
large computing requirements have so far pre- 
vented  simulation of the behavior of proteins or 
even peptides for more than a few nanoseconds, 
whereas a period of microseconds to milliseconds 
~7ould be needed to reproduce observed i a  vitro 
folding  behavior of peptides (Williams ef a!., 1996) 
and small  proteins  (e.g.  Kuszewski cf al., 1994). 
The  principal limitation on the simulation scale is 
that the energy surface with a full atom  description 
is  very  fine  grained. That  is, the energy  changes  ra- 
pidly as a function of atomic position. This pro- 
blem  becomes  more acute  as a molecular  system 
becomes  more compact. 

To overcome these difficulties, two parallel 
strategies have been pursued. First, the descrip- 
tion of the  system has been  simplified, to smooth 
the  energy  surface.  Simplification  ranges from the 
use of implicit solvation models  (Lazaridis r’t nl., 
1995),  slightly  (Brooks & Head-Gordon,  1991), 
moderately  (Srinivasan & Rose, 1995) or drasti- 
cally  (Sun ~t al., 1995)  reduced  side-chain  descrip- 
tions, approximate main-chain descriptions 
(Brooks & Head-Gordon, 1991), and lattice 
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models (Kolinski & Skolnick,  1994), extending to 
one lattice point  per two residues (Park & Levitt, 
1996). ft is clear that there  must be a price  to pay 
for these simplifications, but so far  there  have 
been  few studies (Mounge et nl., 1995;  DeBolt & 
Skolnick,  1996; Huang el d., 1996)  to establish to 
what degree the  different  simplifications  affect 
the  ability to identify the functional conformation 
reliably.  We have taken  a  relatively  conservative 
approach. An implicit  solvent description is used, 
together with all  oxygen, nitrogen, carbon and 
sulfur atoms, as well as polar hydrogen  atoms. 
An empirical  force  field, including a  Coulomb 
law description of electrostatics with partial 
atomic charges is used. Advantage is taken of po- 
tential of mean force  methods  (Avbelj & Moult, 
1995b) to parameterize this and other terms 
against experimentaI protein structures. The abil- 
ity of this force field to identify conformations 
close  to  the functional one has been investigated 
(Braxenthaler et af., 1996). 

The second strategy to over come the search 
problem is to take larger steps in the confor- 
mational space. Covalent geometry (i.e. bond 
lengths and  bond angles, and planarity of conju- 
gated atoms sets) is approximately constant for 
subgroups of protein atoms, so that confor- 
mational freedom may be expressed in terms of 
the values of the dihedral angles around single 
bonds. Although molecular dynamics in this 
space allows a larger time step, greater compu- 
tational cost partly offsets  the gains (Rice & 
Briinger,  1994).  The  restrictive  move size and  the 
cost of calculating derivatives in traditional mol- 
ecular dynamics is overcome  by  using a Monte 
Carlo (MC) or genetic algorithm (GA)  procedure. 
Much  larger changes in conformation can be ob- 
tained through the MC procedure. Large changes 
in one or  more  dihedral angles are introduced, 
and the resulting conformation accepted if the 
evaluated free energy decreases, or if the increase 
is not  too large. A  number of MC studies of p e p  
tide folding have been made (Abagyan & Totrov, 
1994;  Avbelj & Moult,  1995a).  The disadvantage 
is that, because the space of a protein molecule is 
densely packed with atoms, many moves  will be 
rejected as energetically unacceptable. 

We have previously investigated the  effective- 
ness of a torsion space MC procedure at finding 
the experimental conformation of fragments of pro- 
tein  molecules  (Avbelj & Moult,  1995a).  The meth- 
od was partly successful, in that in a. number of 
cases  low free energy, native-like  conformations 
were generated. However, competing lower  free 
energy but Iess nativelike conformations were 
often encountered, and the lowest free energy 
structures were  not  as low as the corresponding 
minimized experimental structures. Three  possible 
explanations for these limitations are: (1) Since 
these are fragments of proteins, the preferred  con- 
formation may not  necessarily  be that found in the 
full  contekt. (2) The free energy function may have 
a large number of false  minima. (3) The  *arch 

may  not  have  converged to the  lowest  free energy 
conformation  possible.  The  fact that the experimen- 
tal structures consistently  had slightly Iower values 
supported the hypothesis that this last factor 
played  a  significant role.  We  therefore sought a 
more effective way of searching in torsion  space in 
the  compact states of a  protein  molecule. 

Genetic Algorithms (GA)  offer  one  way  of 
searching more  effectively in crowded  spaces.  They 
were  first introduced by Holland  (1975) to simulate 
the  processes  of natural selection at the genetic 
level, but rapidly gained  acceptance as general 
search  methods  (Goldberg,  1989).  Possible  sol- 
utions to a search problem are represented by 
genes, and a  fitness  function is used to evaluate 
the  fitness  of  each gene. A population of genes 
evolves  by three mechanisms. (1) Point mutations, 
in which  the value at a  specific  place on a single 
gene is changed. (2) Crossovers,  in  which a portion 
of one gene replaces the equivalent portion of 
another one. (3) Survival of the fittest genes from 
one generation to  the  next. Tests on two and three- 
dimensional lattice models of proteins (Unger & 
Moult,  1993a,b) have demonstrated that GAS are 
more  effective than MC at finding the global en- 
ergy minimum.  It is still less clear  how  well the 
method performs on more  detailed descriptions of 
a protein chain. 

Dandekar & Argos (1992,  1994)  used  genetic 
algorithms to  fold C"  backbone models of proteins 
in real space off lattice. A simplified  bit-string  en- 
coding of +/$ space,  allowing  each +/$ pair to 
adapt  one of seven possible angle combinations 
(Rooman et af., 1991)  was used. Each  side-chain 
was represented by a sphere of  1.9 8, and the glo- 
bal  ene$gy or fitness  function  consisted of hydro- 
gen  bonding, secondary structure preference  and  a 
hydrophobic scatter term,  each  of  which  were 
scaled according to heuristic  constants.  The  meth- 
od  generally  relied on the  correct  pre-assignment 
of secondary structure for  success. 

Sun et nl. (1995) used a  method similar to that of 
Dandekar & Argos (1992,1994) in that all second- 
ary structure was explicitly introduced. A  full 
backbone representation was  used, with one  vir- 
tual atom per side-chain. A simulation consisted of 
mutations of five degree torsion changes and cross- 
overs at non-secondary structure positions. This 
procedure was able to find conformations which 
had  a  low  root-mean-square (RMS) deviation to 
the experimental structure in five of the seven test 
cases. 

Sun (1993) has presented the  most detailed GA 
for protein folding to date. A full atom polypeptide 
backbone  together with one atom at the centroid of 
each side-chain was used.  The  GA was  driven by  a 
dictionary of  di,, tri-, tetra-,  and penta-peptides. A 
peptide segment was chosen from the database of 
peptides by  sequence.  The search method  was 
applied to two small proteins  melIetin and pan- 
creatic polypeptide. The  conformation of a  small 
cyclical peptide was also reproduced. All the struc- 
tures were generated with an RMS deviation of 
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1.7 A within the final population in the GA simu- 
lation.  These results  were impressive, although the 
proteins simulated were present in the dictionary 
which was used to derive  the GA. The  search 
method is said to be approximately 100 to 200 
times more efficient than MC simulated annealing 
protocols. 

A more detailed review of the use of GAS for 
protein structure prediction may be found in 
Pedersen & Moult (1996). 

The search method, presented here, is tested on 
a set of 28 fragments of protein structures, up to 14 
residues long. The fragments were selected  on  the 
basis of experimental data and energetic  criteria in- 
dicating a preference to  adopt a native-like  struc- 
ture independent of the  presence of the rest of the 
protein. They were identified from a survey of the 
current literature on the folding of proteins and 
protein fragments. These fragments have  the  ad- 
vantage of being relatively small, and therefore 
present a more tractable search problem than com- 
plete proteins. A second advantage is that gener- 
ation of a native-like conformation in an Qbjedive 
search provides added information about  the con- 
text independence of a fragment, and its possible 
role in early folding. 

The structure of the rest of the  paper is as fol- 
lows. In the first section, the force  field is briefly  in- 
troduced. Next, details of the GA implementation 
are described, together with a study of optimiz- 
ation of the GA parameters. Then the results of de- 
termining the conformation of a standard set of 
protein fragments are presented, followed by an 
analysis of some of the factors contributing to pro- 
blem  cases. Finally, we discuss the sigruficance of 
the results for the further development of search 
methods and force fields, and explore  the  impli- 
cations of the results for the mechanisms of protein 
folding. 

Force field 
The force  field is the same as that used in a pre- 

vious MC study (Avbelj & Moult,  1995a,b;  Avbelj, 
1992).  These papers  should be consulted for full 
details. A short  summary  is given  here. 

All nitrogen, oxygen, carbon and polar hydro- 
gen atoms  are  represented explicitly.  Hydrogen 
atoms on aliphatic and aromatic carbon atoms 
are merged  with those atoms  in the usual united 
atom approximation. All intramolecular electro- 
static contributions are calculated using atomic 
partial charges (Dauber-Osguthorpe et al., 1988) 
and Coulomb’s law. Solvation  free energies are 
included through term-dependent scaling of the 
electrostatic contributions and solvent-accessible 
area. The  total free energy of a conformation  rela- 
tive to a random  coil  unfolded state is expressed 
as the sum of three types of contribution. These 
are the reIative  free energy of each residue for  its 
mak-t-chain conformation, expressed in terms of 
the local main-chain  electrostatic  energy; other 

intramolecular  electrostatic  interactions; and the 
solvation free  energy: 

k 

Local  backbone  electrostatic  energy 

The  first  term: 

k 

is a sum over the relative  main-chain  confor- 
mational free  energy  for all residues in the struc- 
ture. E: is the Coulomb energy of residue k, arising 
from the interactions of the NH and C=O groups 
of that residue with each other and with the NH 
and C=O groups of  the  flanking  residues, k - 1 
and k + 1 (see Avbelj & Moult (1995a), for a list of 
the interactions included and all parameters in the 
potential). &(k) is a scaling  factor dependent on the 
residue type R at position k. The  alignment of pep- 
tide dipoles is such that E; is unfavorable for  resi- 
dues in the helical  conformation, and favorable for 
those in the extended  conformation  (Brartdt & 
Flory,  1965). Thus a large degree of screening by 
the surroundings (small S coefficient)  favors the 
helical  conformation, and conversely a small 
amount of screening, the extended  conformation. 
The  balance  between  this  term and the main-chain 
hydrogen bonds effectively determines the second- 
ary structure preference of residues,  based on a 
model of secondary structure preference  arising 
primarily from  electrostatic  screening  (Avbelj L? 
Moult, 199%). 

Other  intramolecular  electrostatics 

The  second  term  in equation (2): 

represents the rest of the intramolecular  electro- 
static contribution  to the free  energy,  and is a sum 
over polar and charge group pairs k and I of type i 
and j for  which the distance betweengroton do- 
nors and acceptors is shorter than 6.5 A. E$ is the 
Coulomb  interaction  energy of the atoms of group 
k with those of 1. KG is a scaling  factor dependent 
on the type of charge or poIar groups involved. 
These  scaling  factors  partly  reflect  the  average  elec- 
trostatic screening of the different  classes of inter- 
action  by  solvent and surrounding protein groups. 
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Solvation  free  energy 

The  third  term in equation (2): 

k l  

provides an area based  solvation free energy.  The 
sum Xk is over  all  polar,  charged and non-polar 
groups in the structure. CI is a  sum  over the differ- 
ent types of non-hydrogen  atoms within a group. 
The  exponent n is 1 for carbon and sulfur atoms, 
and 3 for oxygen and nitrogen atoms.  For  each set 
of atoms of the same type t: 

Where  the A, are the estimated random  coil  confor- 
mation exposed surface areas (Lee & Richards, 
1971)  for atoms of type t. A, values are approxi- 
mated  by  the average local  accessibility of the 
atoms in the observed conformations in a set of 
114 proteins, in a manner similar to that of Shake 
& Rupley  (1973).  For  each  occurrence of a residue, 
the accessibility of its atoms, including only contri- 
butions to burial from the residue and the first 
neighboring residues on each  side,  was  calculated. 
This procedure differs  from that of Shake & 
Rupley (1973) in that the effect  of the side-chains of 
the neighboring  residues is included, reducing the 
average random accessibilities  by about 8%. The 
A, are the exposed surface areas of each atom m in 
the current conformation. 

Potential of mean  force  derivation 
of parameters 

The  set of S values in equation (3) were obtained 
by a  potential of mean  force analysis of the popu- 
lation distribution of €14 values for  different residue 
type in protein structures (Avbelj & Moult,  1995b). 
In the fuH model,  different residue dependent scal- 
ing factors are used for mainchain local  electro- 
statics  and  €or mainchain hydrogen bonding. In 
the version used in the present simulations, residue 
dependent scaling is used only for the local  main- 
chain electrostatics.  The Kii values in equation (4) 
and 0, values in equation (5) are also derived 
using a potential of mean  force procedure (similar 
to Avbelj, 1992). 

Relationship to experimental  data 

The potential of mean force  analysis leads to a 
self  consistent force field with the following  charac- 
teristics.  The cost per unit area of solvent  accessible 
non-polFr  area is 15 cal/A for aliphatic groups  and 
21 cal/A for aromatic groups. The value for  ali- 
phatic groups is somewhat  lower than the older 
values (Chothia, 1984) and much lower than 
suggested reinterpretations of data from  model 
compounds (Sharp et nf., 1991).  The  free energy 
cost per  unit area of removing polar groups from 
solvent is negligible with this parameterization and 

the de-solvation  free energy of these groups is 
effectively represented by the K, scaling. 

A strong main-chain hydrogen  bond has an 
energy of about -2.0 kcaI/mol relative to the 
unfolded state, a  little larger than has  been 
suggested from the analysis of mutagenesis exper- 
iments (Shirley et nl., 1992). The  local  electrostatic 
interaction screening parameters result in a  residue 
secondary structure preference close  to that de- 
rived from statistical analysis of proteins (see, for 
example, Gamier el al., 1978). A strong salt bridge 
contributes of the order of -1 Kcal/mol, a  balance 
between de-solvation cost and the scaled  intra 
group electrostatic energy, approximately in accord 
with mutagenesis data (Anderson et d., 1990; 
Horovitz & Fersht,  1992). This free energy function 
may be viewed as primarily representing a  balance 
between residue conformational preference  (rep- 
resented by screen local mainqhain eIectrostatics), 
formation of main-chain hydrogen bonds, and bur- 
ial of non-polar area, with  the solvation energy of 
charged groups  providing an additional constraint 
on conformation. 

Methods 

Dihedral  angle  library 

For each residue type,  a set of observed 4, $, 
and x angles was compiIed  from  a library of 255 
non-redundant protein structures (Holm & Sander, 
1994;  20/20 set, release of October, 1994). A pro- 
cessed version of the Brookhaven files in this li- 
brary is available at (Braxenthaler ef al., 1996).  Any 
protein containing a fragment to be simulated was 
removed' from the database (ie. the procedure was 
"Jack  Knifed").  These angle sets were used to  bias 
selected angles towards  the experimental distri- 
butions in many of the MC and GA procedures. 

Building  the  peptides 

Peptide molecules were assembled from GRO- 
MOS (Aqvist et al., 1985) library residue templates. 
Search performance was found to be strongly influ- 
enced by the choice of covalent geometry  templates 
(see Investigation of sensitivity to chain covalent 
geometry). N termini of the  peptides  are blocked 
with N-acetyl groups  and C tennini  with C-amino- 
methyl groups. 

Generation of random  conformations 

The initial extended peptide conformations were 
randomized using 8, $, and x angles drawn from 
the  dihedral angle library. Simultaneous randomiz- 
ation of all angles is not practical because of the 
high proportion of steric clashes encountered. To 
circumvent this problem, angles were changed  one 
residue at a  time, starting from the N terminus and 
checking  the resulting conformations for clashes, 
allowing a van der Waals overlap of up to 0.5 A. If 
the chain was  clash-free, the next residue was con- 
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structed.  When  a  clash  was encountered, a new set 
of angles for the current residue were drawn from 
the library and applied to the chain. If the con- 
struction of a residue failed ten times, the previous 
residue was reconstructed, before trying again. 
This procedure is in the worst case  exponential 
with the  length of the sequence to be built, but 
in practice has been  found to scale approximately 
linearly with the number of residues in the peptide. 

Generation of an initial  population for a GA 
using a MC simulation 

The GA is started with a population of structures 
drawn from the trajectory of a short torsion space 
MC simulation. A typical MC trajectory  was 20,000 
steps.  Samples are taken as near the end of the MC 
trajectory as possible,  once per 100 steps. 

The  MC procedure is similar  to that of Avbelj & 
Moult  (1995a):  Main-chain  moves are one of three 
types. (1) Single +/$ angle pairs (global  move). 
Angle pairs are drawn from the library. (2) Triplets 
of $/$ pairs for  consecutive residues are selected 
to produce small perturbations (less than 1.5 8, 
RMS) of any atom in the chain ends (local  move). 
Angle pairs are drawn from the library. (3) Single 
+/$ angle pairs (global  move), drawn from  a set 
of seven 4/+ regions representing the principal 
classes of conformation  (Rooman et ai. 1991). This 
move is included to represent +/$ values which 
are sparsely represented in the angle library.  The 
seven conformations as classified  by  Rooman et al. 
(1991)  are: a (A), p (B), coil (C), extended (E), 
pleated-p (B), left handed ct (G) and cis-peptide-P 
(0). 

A move mix of 60% global  library  'moves, 20% 
local library  moves and 20% from the representa- 
tive set was used. 

O f  all side-chain  moves, 50% were drawn from 
the x angles in the library, and 50% were  small 
changes of angle chosen  randomly in the range 
zero to five degrees. The ratio of mainchain to 
side-chain  move trials was 23. The Metropolis 
(Metropolis et al., 1953) move  acceptance  scheme 
was  used. That is,  all  moves  which  decrease the 
free energy are accepted. Any move  which  in- 
creases the free energy is accepted with a prob- 
ability: 

(7) 
Where AAGlo,at is the free  energy  change  result- 
ing from the  conformational  change introduced, 
T is the absolute temperature in Kelvin,  and k 
is  Boltzmann's constant. Unlike in earlier  work 
(Avbelj & Moult, 1995a), a simulated annealing 
scheme,  in  which  the temperature of the system 
is lowered during the simulation,  was  used. 
The temperature was  lowered in steps of 10'26 
every 2000 steps, starting from 300 K: 

p - - e-AAGmml/kT 

Ti = kTj-1 (8) 

Where Ti is the new temperature and Ti - is 

the temperature in the previous interval, and 
k = 0.9. 

Genetic  Algorithm 

In a GA, a set of genes represent different poss- 
ible states of the system, and diversity is obtained 
through mutations within a gene and crossovers 
between  genes. In the GAS used in this work, a 
gene consists of the information describing a  con- 
formation of a peptide, encoded as the set of $, $ 
and x angles. No mutations are used. Confor- 
mational space is searched by merging  fragments 
from  different  members of an ensemble of struc- 
tures represented by  a set of genes. 

Selection of crossover  sites 

Crossover points are selected with a probability 
related to the local conformational diversity in the 
chain. The standard deviation of the AGtWI (see 
equation (1))  term of each residue is used as the 
measure of conformational diversity: 

J(AG,~,~ - AGloca1,i.n) 
2 

Qioca1.i = N (9) 

where ojml,i is the standard deviation at residue i 
and N is the number of conformations in the popu- 
lation. AG,,,, is the local electrostatic engrgy  of 
residue i for population member (n), and AGj,,i is 
the average over all members of the population. 
The probability (F) of a  crossover at residue 
position ( i )  is given  by: 

y= ulocu1.i (10) 
EM- m-l Qloca1.m 

where M is the number of residues in the peptide. 
The probability distribution for a given peptide 
chain is compiled from the initial population of 
structures drawn from the MC simulation. 

The cross-over  operation 

(1) Two members of the population are se- 
lected  Tandomly. (2) A crossover position is se- 
lected from the Fm distribution. (3) 'Two  new 
conformations are created by superimposing the 
C"-C bonds of the N and  C-terminal portions of 
these two population members. (4) For  each of 
the new conformations an extensive  search is 
made for  sterically acceptable joint conformations: 
50 +/JI  pairs are tested, half drawn from the re- 
sidue library, and half from the representative set 
of seven conformations  (Rooman et al., 1991).  For 
each joint  trial,  all the side-chains are annealed 
by 100 rounds of MC minimization (OK). One 
round  of  side-chain minimization consists of 
changing all the side-chain  conformations,  with 
small relative  moves of less than five degrees, 
one residue a t  a time, and energy evaluating 
after each  change. (5) The  lowest free energy con- 
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Figure l a  to f show the  evolution of the  free 
energy during simulations for  different parameter 
values. All the simulations  were started with  the 
same population of conformations, drawn from a 
MC trajectory.  The  trajectory  was  obtained  by per- 
forming a 2 x 105 step simulated annealing simu- 
Iation of the  Bar-1  fragment. 

The start temperature was 300 K and the free 
energy of the system had  converged  after about 
160,000 steps  (Figure la). The GA starting popu- 
lations were obtained by extracting  conformations 
at equa1  intervals from the  first 160,000 steps of 
this trajectory.  It was observed that adequate 
diversity is obtained in the initial 20,000 steps of 
the simulation, and subsequent shorter 20,000 step 
MC simulations were  later used to generate start- 
ing populations for the GA simulations. 

From  Figure lb  it can  be  seen that for popu- 
lations of 50 or larger,  convergence  to a consist- 
ently low free energy is obtained,  while  smaller 
populations prematurely converge to a higher  free 
energy level. 

Convergence is greatly  affected by the  extent of 
the  joint search (Figure  IC). For a small  number of 
angle pair trails (1 to 10) per  crossover,  conver- 
gence is not reached until after 30 to 40 generatioris 
and then only at a slightly  higher free energy state 
(-27.5 to -28.0 kcaI/mol).  Consistent and fast 
convergence is observed  when  the  number of +/$ 
selections rises above 50 per  crossover. 

The  most sensitive parameter in the GA simu- 
lation is the fraction of conformations carried 
forward unmodified to the  next  generation 
(Figure Id). If no  conformations are leaked  from 
one generation to the next  convergence is almost 
absent.  Stable  convergence is observed  when 1O0/o 
or more  conformations  are  carried  forward mal- 
tered. It should  be noted that the final  confor- 
mation in the converged  population was not 
represented in the  initial  population in any of these 
optimization  simulations.  The structure in the in- 
itial population most  similar to the final  confor- 
mation has a Ca RMSD of 3.2 A to the  final 
simulated structure  and 3.9 8, to the crystal struc- 
ture conformation. 

A crucial step in the  crossover is the full relax- 
ation of side-chains  after a pair of backbone +/$ 
angle  pairs have been  applied  to a crossover  joint 
(Figure le). More than 50 rounds of side-chain 
minimization is required to observe  stable  conver- 
gence. Carrying out only a few rounds (5 to 20) of 
minimization  greatly  improves the performance of 
the algorithm, but is not sufficient to make the free 
energy  convergence to the  lowest  observed 
(-28.5 kcal/mol). 

Recalculation of the AGko, standard deviation 
distribution produces only a mar@  improve- 
ment in the performance of the  algorithm 
(Figure If). 

Figure 2 dustrates the convergence of the  algor- 
ithm using the final  parameter  values. The snap  
shots show the population of conformations, and 

the AG,w,,I distribution gives a measure of popu- 
lation diversity at each residue  position. 

Comparison  with MC simulations 

In earlier work  (Avbelj & Moult,  1995a), MC 
simulations were performed on a set of six pro- 
posed independent folding units; bamase (residues 
10 to 22 and 88 to 98), ribonuclease A (residues 2 
to 13), hemagglutinin (residues 100 to 113), Strepto- 
myces griseus protease A (residues 117  to 123), 
Staphylococcus aureus nuclease (residues 16 to 29), 
and for four control  regions. Independent MC 
simulations (30) were performed on  each  fragment. 
For  five of the six proposed IFUs, a low freeenergy 
near native conformation was found in at least  one 
of the simulations, but the very lowest free  energy 
structures  did not have low RMS deviation, and 
free energies lower than that of the minimized 
crystal structure  were never observed. 

A 2 x 1 6  step MC simulation (Figure la) was 
performed for further comparison with the GA. 
The starting temperature  was 300 K and the  tem- 
perature was lowered by 10% over IO4 steps. The 
simulation converges after approximately 1.6 x 105 
steps  at a free energy of -27.5 kcal/mol. The  low- 
est observed RMS deviation to the  experimental 
structure in this simulation was 3.1 A, compared to 
2.4 8, for  the  final structure in the GA simulation. 

A longer 7 x lo6 step MC simulation did not 
result in a significantly lower free energy  or  lower 
RMS deviation conformations being  observed than 
those obtained in the GA simulation. The  lowest 
observed RMS deviation in this simulation was 
2.9 A (-26.7 kcal/mol). The lowest observed  en- 
ergy for this trajectory was -27.9 kcal/mol (RMS 
deviation 3.4 A). 

Efficiency of implementation 

The  'MC simulation converges after 1.6 x I@ 
trial steps (8 x lo4 energy evaluations). For 
comparison, a normal GA simulation requires ap- 
proximately 200 crossovers x 50 joint trials x 0.3 
clash  accepted x 12 residues x 100 rounds of side- 
chain minimization x 0.4 acceptance rate x 40 gen- 
erations - 5.8 x lo7 free energy evaluations. The 
0.3 clash acceptance rate is the average fraction of 
joint trials which are not clash rejected, and the 0.4 
clash  acceptance rate is the acceptance in the  side- 
chain annealing. The computational cost of an en- 
ergy evaluation in the sidechain annealing is ap- 
proximately 1/10 of a full energy  evaluation,  as it 
consists of an  update and not of a full recalculation 
of all distances. 

This large number of free energy evaluations 
is currently only attainable through paralleliza- 
tion of the algorithm. The simulations are per- 
formed using the PVM-3 (parallel virtual 
machine;  Geist ef nl., 1993) interface on a het- 
erogeneous network of workstation architectures. 
Typically the virtual macline consists of up to 
16  SGI R400 Indigo+ and 7 IBM RISC 6000 

a 
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Figure 2. Snapshots from a GA simulation  (residues 10 to 22 of  Bamase  (Baudet & Janin, 1991)). For  each  snapshot, 
the AG!,, standard  deviation is shown  for  each  residue  along  the  sequence  together with the  family of structures. 
The  rapid  reduction of the standard  deviations shows how the  population of structures converge  in  the GA. A start 
population of 100 conformations is used,  and a carry  forward  fraction of 10%. The C" RMS deviation  between  the 
final  structure  and  the  experimental  structure is 2.4 A. 

(IBM590) processors.  Simulations are also per- The  genetic  algorithms are implemented in the 
formed on the NIST IBM SP-2 parallel compu- molecular  mechanics program J, which is written 
ter, using a  ten-node  processor  network. A in C. The  program provides a  flexible  platform for 
typical  simulation of a 14 residue peptide takes the  implementation and testing of potential  func- 
four to six hours on ten  processors. tions and search  algorithms. 
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Table I. Results for GA simulations on  proposed  independent  folding units up to 14 residues 
long 

28 7RSA 2-13 12 -30.2 1.85 --- ETAAAKFERQHM 
-21.9 2.90 --mTn”fi-- 

The Protein column gives the PDB (Bemstein et a[., 1977) code for the structure from which the experimen- 
tal conformation is taken; Range, the set of residues (PDB numbering),  and Len the  number of residues. 
For each frapent,  the first line gives the free energy of the final conformation, the RMSD to the experi- 
mental structure, and the secondary structure assignment for each  residue. The second line gives  the free 
energy  and RMS deviation of the minimized  experimental  struchxe,  and  the  experimental  secondary struc- 
ture. The Rh4S deviations are calculated on all C’ atoms of the  fragment,  excluding  the blocking N-acetyl 
and C-aminomethyl  blocking groups. *, Indicates shuctures that converged to and RMS deviation larger 
than 3.0 A. Secondary structure assignments are those of DSSP (Kabxh & Sander, 1983); H, o-helix; B, p- 
bridge; E, extended strand; G, %helix; I, 5-helix; T, turn; S, bend. The  sequence column provides the 
wuence of each frament. 

Simulation of independent  folding units imental data are available over the internet 
(Braxenthaler et al., 1996). Longer fragments were 

Simulations were performed on the full set of also simulated but those simulations were less 
28 IFUs up to 14 residues long that were found successful. 
to meet the criteria outlined above. Further de- All simulations were performed using the same 
tails of these fragments and references to exper- protocol as described in the previous sections. 
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The results of the simulations are summarized in 
Table 1 and Figure 3 shows a superimposition of 
the final structures from the simulations on  the 
corresponding experimental ones.  Final structures 
are the lowest free energy  conformations in the  last 
generation of the GA in each  case. 

Figure 4 shows the free energy of the minimized 
experimental structures compared with  the free 
energy of the corresponding simulated structures. 
In 26 out of 28 cases, the GA finds conformations 
which are of lower free energy than that of the 
rrtirtimized crystal structures, in single GA simu- 
lations. 

Agreement  with  experimental structures 

In 18 out of the 28 cases, the lowest free energy 
sfructure generated has an RMS deviation of less 
than 3 8, to  the corresponding experimental  struc- 
ture. W e  consider 3 8, a reasonable criterion for a 
successful simulation for two reasons: First, inspec- 
tion of the structures in Figure 3 shows a qualitat- 
ive  agreement for all these cases.  Second,  the 
analysis of RMS deviation matrices  (Maiorov & 
Crippen, 1995) suggests this as a threshold for 
agreement. 

Four factors suspected of contributing to 
the cases  where there is high RMS deviation to 
experimental structures were investigated; conver- 
gence, the role of the  hydrophobic effect, sensitivity 
to main-chain covalent geometry, and the effect of 
generous allowance of van  der Waals  overlaps. An 
analysis of each  of these factors is presented in the 
four next  sections. 

Convergence 

Within a single GA run, the populations typi- 
cally  converge to an RMS deviation of less than 
1 A. 

For ten of the 28 IFUS, the lowest free energ 
structures have RMS deviations larger than 3.0 x 
to the corresponding experimental structures 
(marked with an asterisk in Table 1). For  each of 
these fragments an additional five simulations 
were performed. GA simulations were started  with 
five  different MC simulations run with different 
random initial structures and different random 
number seeds. The lowest RMS deviation encoun- 
tered and  the  corresponding free  energy  for  each 
of these additional ru~ls are  shown  in Table 3. h 
four of the ten  cases, lower RMS deviation struc- 
tures were found, but only one of these was a low- 

lALC (21-32), 2.07A IBGS (10-22). 2.41 A lBGS (88-98),1.41 A lFKF (27-%),  2.44 A 1 FKF (46-59). 4.66 A 

IHGF (l00-113). f.97A lHRC (7-18). 3.03 A 1HRC (91-102), 0.42 A 1118 (99-110). 6.04 A 1LMB (15-26). 0.42 A 

1MBC (6-17),0.35 A 1MBC (29-40), 1.14 A lMBC (S9-111), 5.87 A lMBC (131-142). 0.21 A lPGA(43-54),  2.04 A 



ZMHR (67-78),2.48A 

211 B (69-82).  2.68 A 

2MHR  (102-113). 1.52A 

3LZM (99-1  11).  3.72 A 3SNS  (16-29).  4.62 A 

2116 (103-1 IZ),4.69 A 2MHR (51-62),  2.72 A 

PPCY  (18-29), 2.99 A 3 U M  (24-35), 4.66 A 

4PTI (22-33),  5.61 A 5CYT  (66-101),  0.20 A 7RSA (2-13), 1.85 A 

Figure 3. Superimposition of the  backbone  structure of all the 28 simulated  and  experimental structures. The  exper- 
imental structures are shown filled and  the  simulated  structures  are shown open.  Labels  indicate the PDB name  and 
residue  range of the  experimental  structure.  The RMS deviation  between  the  simulated and experimental structure is 
also given. Further details are given in Table 1. 

est free energy structure (3SNS 16-29). The  free  en- 
ergy of this 3SNS structure is still slightly higher 
than in the first GA simulation. Thus, for none of 
the high RMS deviation cases is a more  accurate 
lower free energy structure generated  by the  ad- 
ditional simulations. 

These results suggest that for the remaining  nine 
cases, the structure fragments may  not  be  indepen- 
dent folding units or the generated structures rep- 
resent  false energy minima  in  the  energy  surface, 
rather than failures of the  search algorithm. 

The  convergence properties of the. simulation 
were  further investigated by  performing a more 
exhaustive search on two of the  fragments in 
Table 1. A set of 20 GA simulations  were  per- 
formed  on the Protein G (Protein  Data Base, PDB: 
lpga residues 43 to 54) and BPTI (PDB: 4pti  resi- 

dues 22 to 33) hairpins. Twenty separate 20,000 
step MC simulations started from different random 
conformations,  were carried out, and the starting 
populations for the GAS drawn from these.  Figure 5 
shows  the lowest  free  energies as a function of 
RMS deviation. In these cases, a range of different 
conformations are generated, and any single GA 
run may produce a low RMS deviation confor- 
mation (less than 3 A) or an ~sentially random 
one (RMS deviation up to 6A). Thus, in some 
cases multiple GA runs are needed with the  pre- 
sent protocol. 

The role of the hydrophobic effect 

Figure 6 shows  the difference in hydrophobic 
free  energy  between the simulated and experimen- 
tal structures for  all the 28 simulated fragments. 
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Figure 4. The free energy of the  minimized experimental 
structures compared with the free energy of the corre- 
sponding simulated structures. Data from single GA 
11111s. In all but two cases the  simulation finds a lower 
free energy  conformation than the  experimental 
structure. 

For 20 of the 28 simulated structures, the  hydro- 
phobic free energy contribution is lower than for 
the  corresponding  experimental structures  and for 
some of these it is substantially lower. Although 
the free energy is lower, the differences are gener- 
ally small compared with the  total free energy 
differences  between the simulated and experimen- 
tal structures, and there is no tendency for  high 
RMS deviation to be associated with a large differ- 
ence in hydrophobic energy (see Figure 6). 

Investigation of sensitivity  to  chain 
covalent geometry 

In the initiaI simulations a high sensitivity to 
chain  covalent  geometry was observed. To investi- 
gate this effect further, three identical sets of 20 

simulations, with GROMOS (Aqvist et al., 1985), 
Discover (Dauber-Osguthorpe et al., 1988) and 
crystal structure geometries were performed on the 
bovine  pancreatic trypsin inhibitor (BPTI) hairpin. 
GA simulations were  performed with the same 
(random) starting sets of conformations and identi- 
cal sets of random number seeds for  each of the 
three geometries.  First, 20 x 20,000 step MC simu- 
lations were performed with  the GROMOS geome- 
try and the dihedral angles of each of the starting 
populations were  calculated. These dihedral angles 
were then used to generate identical  initial popu- 
lations with Discover and crystallographic geome- 
tries. 

Figure 7 shows the total free  energy of the final 
structure from  each of the 60 simulations, and 
Figure 8 shows the strudures obtained  with the 
different main-chain  geometries. It is apparent  that 
in this case the Discover  geometry generates more 
low RMS deviation and low  free energy structures 
than  does  the GROMOS geometry. In particular, 
the Discover  geometry does not show the  pro- 
nounced false minima at high RMS deviation 
found when using the GROMOS geometry. 

Table 3 shows the average difference in bond 
angle parameters between  different  geometries, 
together with the average differences  between all 
residues designated a conformation and all desig- 
nated p in the Holm & Sander (1994) library of 
protein structures. Secondary structure  was d e  
fined using the dictionary of secondary structures 
of proteins @SSP; Kabsch & Sander,  1983 . Only 
structures with resolution better than 2 R were 
included. 

The  only signhcant difference between a and p 
geometries in experimental structures is for the 
N-C"-C bond-angle, where the average value  for 
p structures is 2.8" less than for a. This parameter 
is close to the /3 value in the GROMOS library and 
close to a in the  Discover  library. Other angle 
differences in GROMOS appear more  significant. 

Table 2. Difference between two standard  covalent  geometry libraries and  crystal structure 
mah-chain geometry 

Bond angles (") 
Parameter GROMOSxtal  Discover-xtal a-p (PDB) 

'2-C-N (119.48) 3.68 (116.20) 0.40 (117.00) 0.56 

C-N-C' (119.47) -059 (121.70) 1.64 (121.77) -0.20 
0-C-N (115.35) -8.8J (123.00) -1.18 (122.71) -0.61 

c-c -0  (125.17) 5.43 (120.80) 1.06 (120.11) -0.07 
CB-c-C (111.16) 1.15 (110.10) 0.09 (110.18) 0.58 

N-C-CB (109.86) 1.96 (110.50) 2.56 (110.20) -0.31 
N-C-C (109.63) 0.44 (111.20) 2.01 (111.47) 2.76 

Significant differences are underlined. The  first two columns show the average  difference  between the 
geometry of the standard  libraries and the crystal structure geometry (taken  from PDB entry 4PTI) for 
the midues 22 to 33 of BPTl (the f3 hairpin). The  largest deviation in the  standard  libraries  compared 
to the crystal structure is for the  carbonyl  bond angle (0-C-N) using the  GROMOS topology library. 
For the Discover library the largest deviations are observed for the N-C"-C bond angles. The last co l -  
umn shows  the difference between the  average values observed in all a confonnation residues and  all 
P ones (according to the DSSP assignments) compiled from the Holm & Sander (1%) 20/20 set  of 
high-resolution and well-refined  protein structures (Kabsch & Sander, 1983). The  actual values of the 
reference geometries (GROMOS, Discover,  and databasex) are given in parenthesis.  Bond-length 
~ f m n a t i o n  is not included in this table since the largest deviation observed is only on the order of 
0.04 A. The table was compiled using ProCheck (Laskowski et a!., 1993). 
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Figure 5. Convergence of 20 independent GA simu- 
lations for two different  peptides.  a,  Protein-G hairpin 
(43-54); b, BPTI hairpin (22-33). h, these cases the GA 
does  not  always  converge  to  the  same  structure. 

Figure 6. The  difference in hydrophobic free energy  as  a 
function of RMS deviation  for  the 28 simulated  struc- 
tures. f, btructures; 0, a-structures; 0, a/P-struc- 
tures. The predominantly lower  total free energy of the 
simulated and observed structures  observed in Figure 4 
is seen to be associated  with  burying  more  non-polar 
area. 
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Figure 7. The  result  of three sets of 20 independent 
simulations of the BPTI (22-33) hairpin. In addition to 
the  crystal  structure (4PTI) geometry two different types 
of standard  mainchain  geometry were used, taken  from 
Discover  and  GROMOS  libraries. The simulations  with 
the three geometries result in different  distributions of 
RMS deviations from the  experimental  structure.  Many 
high RMS deviation  structures with low  energy  are 
obtained using the GROMOS geometry. 
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Figure 8. Families of conformations  for  residues 22 to 33 
of BPTI, obtained  from  simulations  with  different types 
of covalent  geometry. A, Crystal structure geometry; B, 
standard  (Dikcover)  geometry; C, standard (GROMOS) 
geometry. For each  geometry  the  generated  confor- 
mations are clustered in: p, a, and  Other and the nun- 
ber in each  cluster is given. The  Discover  topology 
reproduces  the  experimental  conformation  better than 
the GROMOS topology, with the  hairpin  conformation 
visited more frequently  and  the  helix  population  more 
diverse. With the GROMOS topoiogy  the  helix pop- 
lation becomes a highly  preferred minimum. 
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Table 3. Lowest RMS deviation  and  lowest free energy obtained in an additional  five runs for  each 
of the ten FUs, which in the  main  simulation  converged to an RMS deviation larger  than 3.0 8, 

~ ~~~ 

Protein Range 

lR(F 49-59 
lHRC 7- 18 
lIlB 99-110 
lMBC 99-111 
1UBQ 3-15 
ZIlB 103-112 
3LzM 24-35 
3LzM 99-111 
3SNS 16-29 
4 m  22-33 

~ ~~ ~~ ~~~ ~ 

Lowest RMS deviation 
~~ 

Lowest  free energy 
Free energy RMS deviation (Ca) Free energy RMS deviation (C) 

-33.14 3.16  -33.93 4.51 
-26.93 2.87 -28.03 321 

-28.20 4.02 -29.12 6.12 
-24.90 3.62 -31.05  6.91 
-24.17 - 1.53  -27.15 5.53 
-25.54 4.43 -27.61 6.12 
-24.13 3.29  -31.01 3.78 
-24.80 - 2.74  -30.65 2.43 
-26.40 2.71 -30.90 5.72 

-25.88 3.66 -30.28 6.03 

~~ ~ 

Only for four of these is a sub-3.0 A structure obtained in the  additional simulations, and only one of these four 
is a Iowest free energy structure. The remaining nine may not be independent folding units, or the generated 
structures may represent false minima in the free energy surface. 

Quality  of sidechain conformations 

There are clear sidechain conformational prefer- 
ences as a function of backbone  conformation in 
proteins (Dunbrack & Karplus, 1994). We have 
analyzed the simulations to determine SLhether 
these conformational  preferences are reproduced 
using a potential of mean force parameterized 
from experimental structures: 

n 

QGXI = Ci(+;J/, X I )  (13) 
i=l 

where ti(+, 9, xl) is the free energy for sidechain 
conformation (xl) for residue i, depending on the 
current backbone  conformation (9, J/). The poten- 
tial was derived from the 20/20 set of proteins 
(Holm & Sander, 1994). The backbone  confor- 
mation is classified into  one of seven  bins as de- 
fined by Rooman ef al. (1991).  For the side-chains, 
three bins are defined (gauche(-), trans, and 
guuche(+) corresponding to -a", lW, and +a"). 
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Figure 9. The sidechain free energy (AGx,) for strut- *- generated by the GA for the 28 proposed  indepen- 
dent folding units. The free energies  are  calculated for 
the structure shown in Table 1. Many of the  simulated 
structures have sidechain conformations which  are 
unfavorable  with the secondary structure of the 
backbone. 

Applying this potential to the 28 simulated inde- 
pendent folding units given in Table 1 and calm- 
lating the AGzl for the simulated  and experimental 
conformations shows (Figure 9) that unfavorable 
side-chain configurations are seen in most of the 
simulated structures. 

This analysis highlights a weakness of the cur- 
rent potential in selecting correct side-chain confor- 
mations.  The  deficiency probably originates from 
the use of a generous clash check (0.5 A allowed 
overlap),  instead of a full van der Waals radius. 

Discussion 
There are three questions to be  addressed. How 

effective is the genetic algorithm as a search tech- 
nique for peptides and  proteins? How well does 
the free energy  function perform? What are the im- 
plications of the results for early events in protein 
folding? 

Effectiveness of the  search 

Even for the relatively small peptides considered 
in the present study, finding the global minimum 
of the free energy  surface is an unsolved  problem 
(see, for  example, scheraga, 1996). A minimum cri- 
terion for success of the search is finding a confor- 
mation with a free energy at least as low as that of 
the corresponding experimental structure. In earlier 
work using a torsion space MC search with the 
same force  field  (Avbelj & Moult,  1995a),  confor- 
mations with a low RMS deviation to the corre- 
sponding experimentaI structures were found, but 
the free energies  were  not as low. This was attribu- 
ted  to the difficulty of finding accepted  moves, 
once a structure has become semicompact. The 
same difficulty has also  been  observed  by  Hao & 
Sheraga (1994). The  genetic algorithm protocol was 
developed to address this problem. It is successful 
in finding a lower free energy than the correspond- 
ing minimized structure in 26 out of the 28 cases 
examined  (Figure 3 and Table 1). Although much 
more  effective at finding a low free energy confor- 
mation, the GA is substantially more  expensive 
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than a previousiy  expIored MC method  (Avbelj & 
Moult,  1995a),  by a factor of about lo2. The  major 
reason  for this is the difficulty  of finding  acceptable 
crossover  conformations. We have  not  compared 
its performance to that of more  sophisticated MC 
move  schemes  such as that  of  Eloffson et ai. (1995), 
where more  extensive local  move  searches are 
used. 

We have established GA simulation  parameters 
suitable for small peptide fragments (up to 14 resi- 
dues). It is clear that for  longer  fragments a larger 
conformational  ensemble is required to provide 
adequate  confomational diversity. In simulations 
of a 22 residue sequence, e.g. the  membrane  bind- 
ing domain of blood  coagulation  factor VIII 
(Gilbert & Baleja, 1995), a running population of at 
Ieast 400 conformations  was  required for the GA to 
consistently find a low  free  energy  conformation 
similar to that observed  experimentally  (Pedersen 
& Moult, 1995). 

For short peptides, within a given GA simu- 
lation, the members of the population consistently 
converge to similar conformations (see, for 
example, Figure 2). For some  peptides,  multiple 
GA runs under the same conditions,  using  differ- 
ent random number seeds, converge  to  different 
structures (Figure 5). More  work is needed to im- 
prove this consistency of convergence, and to de- 
vise strategies for longer  sequences.  Preliminary 
trails suggest that the use of MC moves 
(mutations) on each  generation of the GA may be 
effective. 

Fidelity of the free  energy  function 

A major issue in computational studies of pep- 
tide  and protein conformation is the extent to 
which contemporary free energy functions are  able 

tures. One approach to answering this question is 
the use of sets of "decoys",  i.e. structures differing 
from some experimental structure to varying de- 
grees (Huang et al., 1996; Park & Levitt, 1996; 
BraxenthaIer et al., 19%). The ideal free  energy 
function will always  return a lower value  for a 
more accurate structure. There have been  few 
evaluations of this sort. In Cartesian space  molecu- 
lar dynamics of solvated protein molecules, the ex- 
tent of drift away from an initial starting structure 
has also been used as a criterion for  the  quality of 
an energy function (Kitson et al., 1993; Brunne et nl., 
1995; Lee et ul., 1995). While  progress  by this 
measure has been reassuring, these studies are 
complicated by other factors that may effect per- 
formance,  e.g.  changes  in  cutoff.  Attempts to use 
this type of dynamics to  refine an approximate 
structure towards the experimental one have so far 
onIy shown limited  success (Alonso & Daggett, 
1995). This may reflect the  quality  of  the  energy 
function used, but also the  difficulty of obtaining 
the necessary  conformational  changes.  More  ag- 
gressive searches of the free energy  surface,  such 
as those performed in this work,  have  not  pre- 

to distinguish between correct and incorrect S~IUC- 

viously  been  used to assess  the quality of poten- 
tials. This test is probably the most demanding. 
Regions  of serious error in the potential surface 
may be quite limited so that decoys sparseIy 
sampling the confornational space are unlikely to 
encounter them.  In  contrast, a thorough search is 
likely to follow such wormholes to  false  minima. 

Performance of the  potential 

As discussed  above, the GA is generally  effective 
at finding conformations with free  energies at least 
as low as the corresponding minimized  experimen- 
tal structures. Thus, it is possible to use the RMS 
deviation between the lowest free energy confor- 
mations  from  the GA to the experimental struc- 
tures as a criterion for assessing the quality of the 
force  field. If there is good agreement between the 
simulated and experimental structures, the poten- 
tial is considered  effective. where there is disagree 
ment, there are  two possible  explanations: the free 
energy function has found a false minimum in the 
surface, or the lowest free energy conformation of 
the  peptide  is  not similar to that found in the con- 
text of the whole protein molecule. In spite of this 
ambiguity, it has been possible to make a useful 
analysis of the properties of the potential. 

RMS deviations on C" atoms range front a low 
of 0.21 8, to a high of 5.61 8, (Table 1). The very 
low  values are for  helical  fragments. Variations in 
detailed geometry tend to make the best RMS 
deviations for p hairpins higher. Theoretical  con- 
siderations (Maiorov & Crippen, 1995) and 
inspection of the differences  between simulated 
and experimental structures suggest that any RMS 
deviation below 3 8, be considered approximately 
correct (see, for  example, 2I1B (69-82) or lFKF (27- 
38) in Figure 3). By this criterion, the free energy 
function is reasonably effective, 18 out of the 28 
structures are acceptable. In the following  sections, 
we focus on analysis of the ten which have higher 
RMS deviations. As always, disentangling the root 
cause of the  deviations is not straightforward. 

The role of the hydrophobic effect 

The force  field incorporates the hydrophobic 
effect in terms of the  amount of exposed non-polar 
area (Avbelj, 1992). Figure 6 shows that in general 
the free energy of the structures generated by  the 
GA  tend  to have a larger contribution from  the 
burial of non-polar sidechains than the corre- 
sponding minimized experimental ones.  However 
the differences are  usually  small except in one case 
(3SNS 16-29) where a large RMS deviation is 
associated with a large difference  in hydrophobic 
free  energy. In some other cases  (Pedersen & 
Moult, 1995) we  have observed the formation of 
non-native hydrophobic cores. 

Some of these  differences from experiment may 
really reflect behavior of the fragments. Generally 
the experimental structural data on protein frag- 
ments are not detailed enough to distinguish be- 
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tween such  possibilities.  Recently, one clear  case  of 
distortion of a helical  fragment relative to the full 
context structure, optimizing hydrophobic inter- 
actions  has  been  identified (F. Poulsen, personal 
communication). Interplay with other factors in the 
force  field  may also play a role, as discussed in the 
next  section. 

The importance of side-chain packing 
Figure 9 shows that the majority of the gener- 

ated structures have average x1 angles sigzuficantly 
distorted from the values found in experimental 
structures. Angle  choices in the simulation are pri- 
marily  based on the distribution of values found 
for particular residue types in experimental protein 
structures, without regard to  local backbone con- 
formation. Sidechain conformational  preferences 
do vary as a function of residue conformation 
(Dunbrad & Karplus, 1994). Further, it has been 
proposed that the steric restraints of side-chain 
packing are key  to the selection of a secondary 
structure (Creamer & Rose, 1992; Sriniyasan & 
Rose, 1995). In the present simulations, a generous 
amount of hard sphere overlap is allowed when 
deciding whether to accept a move (0.5 A). Such a 
loose  criterion may allow  otherwise overcrowded 
conformations to be  accepted. This does not have a 
large impact on the accu%cy of the secondary 
structure generated (overall Q3 is 60%). 

Sensitivity to covalent geometry 

We have  observed that use of the  crystal struc- 
ture geometry (that is bond lengths, bond angles 
and deviations from planarity of unsaturated tor- 
sion angles) tends to produce struchres closer to 
the experimental ones than those obtained  with  the 
GROMOS covalent  geometry.  The investigation of 
the folding of the BFTI hairpin (Figure 8) using the 
crystal structure covalent  geometry, the GROMOS 
geometry, and an alternative geometry from Dis- 
cover shows this surprising dependency on the 
choice of geometry. It is as if there is a memory of 
the experimental structure in the covalent geome- 
try that helps generate accurate structures. Table 2 
shows that there are significant  differences  in the 
bond angles between the two force fields and  the 
experimental structure of this hairpin, and between 
the averages for a and structures in a set of  ex- 
perimental protein structures. For the experimental 
structures, a sigruficant  difference in the N-C"-C 
angle is observed between a and fl regions of pro- 
teins. The GROMOS geometry is significantly 
different from both  the Discover and the average 
geometry  found in the crystallographic database. 
In this case,  the better result  with  Discover  geome- 
try is consistent  with the fact that this covalent 
geometry is more similar to the average values in 
the crystallographic structure of the  peptide.  It is 
not clear  how general this result is. 

The  likely explanation of the sensitivity to  co- 
valent geomehy is the effect  of bond angles on 

hydrogen-bond strength. Tests using an ideal helix 
(+/$ = - 65, - 40) show that a difference in the 
N-C"-C bond angle of 5" results in a 0.4 kcal/mol 
per  residue difference in hydrogen-bond free en- 
ergy. This is a s iphcant  difference. 

Implications for protein folding 

For 18 out of the 28 cases  examined, the lowest 
free energy structure resulting from the GA simu- 
lation is less than 3 A RMS deviation on C" atoms 
from the experimental structure of the  fragment in 
the  full protein  environment.  That is, for these 
cases, the preferred structure of the fragment in 
isolation is found to be similar  to that it adopts in 
the complete structure. Fragments  were chosen on 
the  basis of experimental  evidence supporting a 
sigruficant native like population, and the  large 
amount of non-polar burial  that occurs on folding. 
Thus, both the simulation and  the experimental 
data  support the idea that  the conformation  of 
these fragments is largely context independent: the 
preferred conformation is not significantly  altered 
by the larger environment of the protein.  Note that 
this does  not mean that  the fragments will have a 
native like  conformation a large fraction  of the 
time. Indeed, the experimental data suggest the 
upper limit is about 20 to 30% (Matouschek et al., 
1992; Blanc0 & Serrano, 1995), and considerably 
lower in many cases.  Rather,  the  most populated 
conformation may be nativelike. 

In the ten cases where a native-like  conformation 
was  not found, there are three possible  expla- 
nations: the search did converge to the  global  free 
energy minimum, the force  field contains signifi- 
cant false minima  for these fragments, or  the pre- 
ferred structures are not context independent. We 
have investigated the first possibility by running 
multiple GAS on these fragments.  Table 3 shows 
that  in only one  case (the fragment  from 3SNS) is a 
lowest free energy structure with Rh4S deviation 
lower than 3 A found, and this has a slightly  high- 
er free  energy than the higher RMS deviation struc- 
ture reported in Table 1. So convergence of the 
search does not appear  to be  the  explanation.  At , 

present it is not  possible to distinguish between 
false minima and real  context  dependency. We are 
currently investigating the behavior of these frag- 
ments with a different  force field. 

What  are the  implications of these results for 
protein folding? We have established that for the 
majority of these ( m a y  selected)  fragments, the 
preferred conformation is context independent. 
That implies that early in folding,  they will be 
flickering in out of a native like structure at a sig- 
nificant rate, and so can guide the subsequent 
course of events. Such a model is far  from  new, as 
it was first  suggested by Wetlaufer (1973). Never- 
theless, the combination of experimental  evidence 
and the simulation results supporting context inde- 
pendence lends new  force to this view of folding. 
As these fragments were carelidly  selected, we do 
not know at this point what fraction of those  con- 
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stituting a complete protein would exhibit  context 
independence. For the cases  where a large set of 
fragments  from a single protein have been  exam- 
ined  experimentally (Dyson ef al., 1992a,b), it ap- 
pears 

been  exam- Dysonbeen  eritm- 

would would 
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