
turc;  instcad, thcy arc rcitcratcd in hierarchic tashion ranging  from thc 
whole  protein  monomer  through  supcrscconditty s(ructurcs down to indi- 
vidual helices and  slrmds. 

The  concept of a  domain is subject to reinterpretation when consid- 
ered in the broader  context of its molecular  hierarchy. The conventional , .._ 
large domains  cited in the  literature  (near  the  top of the  hierarchy) are 
seen to be structural  composites, with subparts that are  domains in their 
own right. Thus, the large, spatially distinct chain  segments that can be 
resolved  within  a protein may  no1 represent strictly autonomous units. 
but may arise  instead in consequence of a concluding step in thc scqucn- 
tial folding process. 
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1301 Calculation of Molecular Volumes and Areas for 
Structures of Known Geometry 

By FREDERIC  M. RICHARDS 

Introduction 

At the  macroscopic level the concepts of  area and volume are quite 
clear,  and  the  methods of  measurement  straightforward in principle. At 
the level of individual molecules the definitions become less obvious, 
When different  methods of measurement are  used, i t  is not clcar that area 
and  volume are single valued  characteristics.  For a one-component sys- 
tem of known  molecular  weight, the mass  density is sufficient to unambig- 
uously  define  the  mean  volume  per  molecule.  For  a  system of two or more 
components,  thermodynamic  parameters.  the partial molar  volumes,  can 
be defined  uniquely, but these  values bear no necessary  simple relation to 
the  actual  physical  volumes of the individual components  which, in  turn, 
may not be uniform  throughout the mixture.  The  conccpts of total rnolec- 
ular area  are  even more elusive (see  below). 

I 

_ _  ~~ ~~ - 

For the purpose of this discussion we shall conccntrntc on thc dcfini- 
tion  and calculation of  certain  geometrical volumes and  areas that can bc 
derived  from  high-resolution  structural  data. No attempt will be  made to 
give a critical discussion of the use (or potential misuse) of these values. 

The following  basic input data  are required: 

1 .  The list of  Cartesian  coordinates of the atom centers. 
2. One or more lists of attributes for each  atom: 

a. Assigned van der  Waals radii for  each atom (required i n  most 

b. Assigned  covalent radius Tor each atom (usc  depends on thc 

c.  Covalent  connectivity  (needed if b is used, and also lo assemble 

procedures). 

volume  algorithm  selected). 

atoms into reasonable  packing  groups) 
3. Choice of radius for a spherical probe. 

In the presently  used  procedures  no  allowance is  made for  errors or 
fluctuations in the coordinates.  The  structure is simply a colleclion of 
points in three-dimensional space, Sensitivity to error, if required. is esli- 
mated by repeating the calculation with appropriately  altered  coordinate 
lists and comparing the results.  None of the algorithms  place  any restric- 
tions on the position of the atom  cenlers. 

The van der Wttuls Envelope 

Because  of the diffuse radial distribution of the electron density sur- 
rounding  any  atomic center, the apparent position of the surface of a 
molecule will depend  on  the  technique used to examine it. For chemically 
bonded atoms  the  distribution is not spherically symmetric  nor are the 
properties of such  atoms  isotropic. In spite of  all this the use of the hard 
sphere model has  a  venerable history and  an enviable  record in explaining 
a variety of  different  observable properties. As applied specifically to 
proteins, the work of G. N.  Ramachandran and colleagues  has provided 
much of  our  present  thinking  about  permissible  peptide  chain  conforma- 
tion.' Different approaches using more realistic models,  complex mathc- 
matics,  and even quantum  mechanical  approximations  have  improved the 
details but have not altered the basic outline provided by the hard sphere 
approximation. The  steepness of the repulsive term in the potential func- 

..,-.x tion for nonbonded  interactions is responsible for the  success  of  "hard" 
in the hard sphere. 

In spite of the general  success of the hard sphere  approximation, the 
van der  Waals  envelope ot'a molecule is not unique and  is  defined differ- 

' G. N. Ramach;rndran and U. Sasisckharan. A h .  ProrCJijr C h m .  23, 2R4 ( I W ) .  

hlETHODS IN ENZYMOL.OCY. VOL. I 1 5  All righis of reprwluclion in rny rorm rcrcrvcd. 
Copyrighi 0 19115 by Academic I'rcu. Inc. 
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SOME LISTS OF VAN DER WAALS  RADII FOR SELECTED GROUPS OF ATOMS 
\ 

DunfieId 
('I ClI.l, 

Richmond  Gelin  and 
Lee  and  Shrake  and  and  and  Nemelhy 

Symbol  Designation  Bondi'  Richardsh  Rupley' Richard9  Chothia"  Richards' Karplus' PI  d.' 

-CHI Aliphatic.  methyl 2.0 I .x0 2.0 2.0 I .87 1.9 1.95 2.13 
- C H r  Aliphatic.  methyl 1.0 I .80 2.0 1.0 I .87 1.9 1 . 9 0  2.23 
X H -  Aliphatic. CH - I .70 2.0 2.0 I .87 1.9 1.8.5 2 . x  

>C= Trigonal or  aromatic I .74 I .80 1.5i1.85 I .7 1.76 I .7 1.80 1.85 

-NH; Amino,  protonated - I .x0 I .5 2.0 1 .so .7 1.75 

-NH2 Amino or amide I .75 I .80 I .5 - I .65 I .7  1.70 

X (OM) Amide (N or  0 unknown) 1.75 I .5L 1.5 I .6 I .65 I .7 
>NH Peptide. NH or N I .6S I .E I .4 I .7 I .6S I .7 1.65 1.75 (N) 

-OH Alcoholic  hydroxyl - I .80 I .4 I .6 I .40 I .4 1.70 
-OM Carboxyl  oxygen - I .x0 I .89 I .5 I .40 I .4 1 . 6 0  1.62 
-SH Sulfhydryl - I .x0 1.85 - I .85 I .x  1 .w 
-S-  Thioether or -S-S- I .80 I .x I .85 1.8 1 . 9 0  2.08 

2 CH Aromatic. CH - I .no I .85 j I .76 1.7 1 . 9 0  2.10 

- 

=O Carbonyl  oxygen I .5 I .80 1.4 I .4 I .40 I .4 1 - 6 0  1.56 

A. Bondi.  "Molecular  Crystals.  Liquids  and  Glasses."  Wiley, New York. 1968. Radii assigned on the basis of observed  Packing in 
condensed  phases. 

* Lee and Richards.??  Values  adapled  from A. Bondi. J.  flr.vs. Chem. 68, 4 4 1  (19641. 
I. Shrake  and Rupley.:h Values  taken  from L. C. Pauling.  "The  Nature of the  Chemical Bond." 3rd d. Cornell  Univ. Press. 1Ih;tc;l. New 

York. 1 9 6 0 .  
Richards.h  Minor  modification  and  extension  of  Bondi (1968) set (see  footnote  a.  ;Ibove).  Rationale not given. 
' Chothia.1' From packing in amino acid  cryslal  slruclurcs.  Personal  comrnunicalion  from T. Koelzle quOted. 
' Richmond and Richards.!' No rationale  given  for  values used. 

'3 Dunfield ('1 u/, '  &tailed  description of deconvolution  of  molecular  crystal  energies. V;llues represen1  rmc-half  of Ihe heav!--:htom W'i'r;'. 

' G. Ncmclhy. M. S .  Pottle. and H. A .  Shrraga. J .  f h y s .  C/rcwr. 8'7. 18x5 (19831. 
I See original  paper. 

Gelin  and Karplus.4 Origin of values not specified. 

tion at the  minimum of [he Lennard-Jones 6-12 po1enli;d function>  for  symmelric;d in1cr;lclionh. 
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The Limiting Polyhedron 

Consider  a collection of point atoms  where the specific atom. i ,  is 
strrroundcd by il group of' ncighbors j .  X., 1. .... Thc limiting pc~lyhcdron  
will consist of;\ sct ol'intcrsccting  planes  pcrpcndicular to thc inlcr;tlomic 
vcclors  drawn  from i to.i. k. I. .... Each  plane  containing a facc of thc 
polyhedron may be identified by a single index, j ,  k .  etc.  The edges of the 
polyhedron are identified by pairs of indices from the planes whose inter- 
section produces  the  edge j k ,  kl, etc.  The vertices of the polyhcdron 
require  three  indices, j l  k. I, which  can  be takcn  eithcr from thc lhrec 
planes  whose  intersection  gives  the  vertex  or alternately from the unique 
set  of indices embedded in  the index pairs which represent the threc lines 
which also  intersect to define the same  vertex (see  Fig. 2). 

There  are  at least two somewhat different approaches to sclccting thc 
limiting polyhedron. In the first, possible vertices are both  generated and 
selected iteratively on the basis of their position with respect to a  develop- 
ing  set  of planes which ultimately represents the faces of the final  poly- 
hedron.  The  intersections  of the planes  represenling the faces yields  thc 
final  list  of vertices. In the second,  an  array of possible vertices. one for 
each set of  four  atom  centers, which include i. is generated on  the basis of 
defined distance  criteria.  This list  is then  checked to eliminate all vertices 

P \ 

FIG. I .  An example of the Voronoi  construction in two dimensions. The heavy lines 
outline the limiting polygons. The middle weigh1 lines are infer;ktomic vectors between the 
atom centers represented by dots. The fine lines are the perpendicular bisectors of the 
vectors. The  circled  points hbeled A ;md U we intcricir  points surrounclud hy unique closcd 
polygons. The  point labeled C is on the surface of the set of points and ;I closed polygon 
cannot be defined, (Adapted  from  Richards.9 

discussed in this  chapter  are very  sensitive  to the values of the van der 
Waals radii cho\sen, and especially to  their ratios. When reporting area  or 
volume  calculations, the assumed radii should be carefully listed. 

Volume 

For  an infinite set of arbitrary points in space, a geometrical  procedure 
was  introduced by Voroni in 1908.' which divides  up  space with a  unique 
volume  assigned to each point. A n  example of the construction in two 
dimensions is shown in Fig. I .  Perpendicular biscclors are drawn for each 
interatomic  vector.  The intersections of these bisectors provide the verti- 
ces of a  polygon  surrounding  each point (SCC A and I3 in  Fig. I). The 
polygons share  common edges and collectively account for the total area. 
In three  dimensions  the  edges  are  replaced by planes  and the resulting 
polyhedra  account  for the total volume. There is an  unambiguously  de- 
fined limiting polyhedron  surrounding  each point. (See below for the 
problems of points  at the surface of a finite set.)  The main computational 
problem  for all volume calculations of this type is to establish this limiting 
p ~ l y h e d r o n . ~ ~  

C.  F. Voronoi, J .  Reine Angea. Marh. 134, 198 (1908). 
F. M. Richards, 1. Mol. Bid.  82, I (1974). 
' J .  L. Finney, 1. Mol. Biol. 96,721 (1975). 

J. L. Finney, 1. Cornptrr. Pltys. 32, 137 (1979). 
N. Brostow, J. P. Dussault, and 8. Fox, J .  Cotr~prrr. Phys .  29, 81 (1978). 

\ mn n l  no I 

\ 
FIG. 2. Top view of a portion of the limiting  polyhedron around the cenfnl atom i. The 

neighboringatoms are labeled j ,  k. 1. It!, n, 0. as are  the  faces drawn perpendicular IO Ihc i ,  j .  
... vcctors. The lines represenling the inlcrscclion of IWO of thcsc plants ;we I:lhcled with 
the corresponding index pairs. The vertices, as points representing the intersection or three 
planes, are idenlified by index triples. The lines and vertices surrounding a given face all 
share a common  index.  (Adapted from Finney.O) 
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that are  closer to any  other  atom  center than they aye to i .  The reduced list 
provides  the  vertices of the limiting polyhedron from which, in turn,  the 
faces  and  edges  can be derived. 

Approach Based otf I h p  C O ~ I V P X  N ~ I I J W  of IIW Polyl1~drot1. Since  the 
limiting polyhedron surrounding  atom center i is convex, all vertices  are 
either in a given face plane or  on the same  side of that plane as i.h Any 
potential  vertex on the  opposite  side of any of the  faces is not a member of 
the final set of vertices. In  an iterative  procedure  vertices are then re- 
tained or rejected  on  the  basis of position with I'espcct to  each plane in the 
current  set of faces. 

The algorithm for implementing this procedure  starts by setting up the 
equations  for all planes in the set { A }  of atoms  around i .  (See below for the 
selection of { A }  and for the v;wious equations tha t  may  bc used to define 
these  planes.) An arbitrary but very large tetrahedron  (i.e.,  four  vertices 
and four  face  planes) is sef up around i. The position of each of the four 
vertices with respect to the planes in ( A }  is then examined.  A  vertex 
(vertices) not on  the  same  side as i of a given plane is (are) eliminated and 
replaced by new vertices  produced by the  selecting plane and  the  planes 
contributing to the eliminated vertex or vertices. The index designation 
for  planes,  lines, and vertices  discussed  above make i t  easy to do the 
bookkeeping  at this stage. The original file of planes for { A }  is arranged 
and searched in order of increasing  distance from i to the plane. After 
each plane is checked, the vertex list  is changed as  required.  One  pass 
through the list of planes is then sufficient to yield the limiting polyhe- 
dron.  The file now contains  the position of each vertex and the  equation 
for  each  face, This procedure is general and is independent of the formula 
by which the equations  for  the  planes  are  developed. While the limiting 
polyhedrons are uniquely defined, the full set of polyhedrons may or may 
not accurately  account for all space  depending on the definition used for 
the planes associated with { A } .  

Approach Based ot1 DisfotrcP  Selection. For thc Voronoi and Radical 
Plane procedures  (see below) each potential vertex can be located at a 
defined distance from each of four  atom centers, onc of  which  is i.7.x.10 All 
potential  vertices from the atom  set { A }  arc calculatcd.  For a vertex to bc 
part of the limiting polyhedron, i t  must be no closer  to any other  atom 
center that it is to i .  The distance of each  vertex to all atoms in { A } ,  other 
than the four defining atoms, is tested against the distance to i, and is 
accepted or rejected on this basis.  From  the indices identifying each 
vertex in the final list the  faces of the polyhedron can be egtablished by 
searching the list for all sets of triplets having a common index. Thus a 
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final list is obtainefl giving each facc.  the number of vertices in each face. 
and the total number of faces and vertices as i n  the first procedure. This 
approach  requires that the distance relations be specified a s  equalities, 
but the final set of Voronoi or radical plane polyhedrons do account 
accurately  for all space. 

The Atom Set { A } .  For either  procedure  the efficiency of the calcula- 
tion depends on making the set of atoms, { A } ,  as small as possible. For a 
completely  arbitrary  set of points, the total list  would have to be sur- 
veyed, in principle,  since  lhere would be no way in advance of  knowing 
how asymmetric  any limiting polyhedron might be. In  practice with mac- 
romolecules  this is  not a problem since the points are reasonably uni -  
formly distributed and the resulting polyhedra are  quite  compact. In the 
program used by Richards" i t  was found by trial that all necessary posi- 
tions  were included with a comfortable margin of safety if only atoms less 
that 6.5 8, from i were  selected  for { A } .  The time for atom selection from 
the  coordinate list is minimized if the list is loaded into a coarse cubic 
lattice  permitting a grid search. 

A more  systematic and less arbitrary procedure' for the set selection 
was given by Brostow ef  afS9 The algorithm used for the construction of 
the limiting polyhedron is comparable  to  the  convex polyhedron ap- 
proach, but somewhat different criteria are used in selecting and limiting 
the  atom list. The  authors suggest that their algorithm is more efficient 
than that used by Richards or  Finney, although no one  seems to have 
made  benchmark  runs with all three programs on the same data  set. 

MOLECULAR V O L U M E S  t\ND AREAS 

Volume of fire Polyhedron 

Once the vertex list is complete,  the volume of the resulting limiting 
polyhedron is readily computed.  The  area of each  face can be calculated 
from the  component triangles. The length of the  face normal to the center 
i is already  known.  The  cone volumes associated with each f+ 
summed. The individual atom volumes can be examined or more com- 
monly combined  into packing units such as side  chains or whole residues. 

Although the principal USC of this procedure  lo  date has been to assign 
individual atom  volumes, Finney" has pointed out that the polyhedrons 
represent a wealth of information about  the  surroundings of each  atom, 
The extent of interactions with each neighbor is reflected in a clearly 
defined way by the area of the shared  face.  The directlon of the interac- 
tion is defined by the normal to the  face. The neighbors may be other 
protein  atoms or potential solvent molecules. 

< K C  arc 

.# 
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Selectiorl of Position of the P l ~ l r e  h t ; g  tlrt. lrr!~rcr~omic- V w t o r  

The Vorottoi Constnrcfion. In  the original Voronoi procedure  the 
planes are drawn as bisectors of the lines between the points, as in Fig. 3 , . 
(see  Finney7 and Richards,6 method A). The points are  considered intrin- 
sically equal and no special  characteristics  are assigned. If  do is the inter- 
atomic  distance and pij the  distance from atom i to the intersection of the 
plane and the  vector, then 

The procedure gives a single unique face between each atom pair. This 
face is part of the limiting polyhedrons  about both atoms. The method is 
exact in that all of the  space is precisely accounted for without error.  The 
appropriate  distance  relations  are 

I 

W 
+ d i i 4  

FIG. 3.  Definitions of the  plenes dividing the inleralomic vcclws in the dirrcrenl perlilion. 
ing procedures: (A) Voronoi; (B)  Richards' method D; (C) radical plane. 
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where (x ;y;z ; )  a  d (xyz.) arc  the  coordinates of the  four atoms and corrc- 
sponding vertej, and LC is the common vertex to atom center  distance. 

Richards' Cpnstrucrion B: While mathematically rigorous. the Voro- 
noi procedure  does not make much physical sense  since different atoms 
do have different intrinsic sizes and clearly are not equal. In  an attempt to 
overcome  this difficulty, Richards2s  (method B) suggested a modified pro- 
cedure in which the planes defining the polyhedron do not bisect the 
interatomic  vector but cut i t  in a ratio which depends on the van  der 
Wads or covalent radii of the  two  atoms involvcd (pig. 2): 

Covalent  interaction: 

Noncovalent  interaction: 

This  procedure assigns more space to those  atoms which arc inlrinsi- 
cally larger and less to the smaller  atoms. While physically rcasonnhlc. 
the method has lost Ihc rnathcmatical rigor of the strict Voronoi procc- 
dure. All of the spacc is  not accounted  for. A shared f x e  bctwcen two 
adjacent  atoms will  not necessarily contain the same vertices for the  two 
polyhedrons  surrounding the atoms.  thereby leading to the verlcx crror 
problem. The little error  polyhedrons  are variable in size and position. but 
may. in aggregate, represent considerable volume. A careful comparison 
has  recently been made by Gellatly and Finney"' who conclude thal for 
ribonuclease S the modified procedure  underestimates the total volume of 
the molecule by about 4%. The use of the  procedure will thus depend very 
much on the  purpose for which the  numbers  are  to be used. While i t  is 
capable of including both covalent and noncovalent characteristics. the 
absolute volume errors  are variable and may  be substantial. Caution is 
indicated. 

The Radicd Plune Consfrrrcriotr. A different space partitioning 
method has been developed by Fischer and KochiZ and applied by Gel- 
latly and  Finneyl" to the protein volume problem. The procedure is math- 
ematically accurate and provides a rational basis for handling unequal 
spheres  (Fig. 3). The radical plane is the locus of points from which the 

I .  . tangent lengths L, to the two spheres  are  equal.  The  distance  equations 
are now 

I* W. Fischer and E. Koch, Z. Krisrrrllugr. 150, 245 (1979). 
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the vertex errors are individually calculaled and corrected for  (including sub-;llloc;tlmg 
the surface-involved error tetrahedra between protein and solvent1 we wgue in favour 
o f  the use of the radical method. 

When considering volume calculations  over atom groups. however. the choicc i s  
less clear: absolute volumes are of less interest than dcviAons  of occupied volumes 
from the mean, and therefore as long as the vertex error i s  reasonably uniformly  distrih- 
uted  this  problem is  less significant. Again we would reject the  use of Voronoi's  melhod 
because of the non-physical  partitioning of non-bonded interactions. even lhough  in 
some  cases the consequent volume spread is masked by the local  packing v;lri:ltions. 
Provided groups are chosen. with constant covalent environments (e.g. main chain 
;Itolns cxcepl glycine. whole .;itlc-ch;lins) Ihc  tliffcrcncc\  in cov:IIcnI Ire:IImcnI IwIwucn 
f i d i cd  and Hich;trds' ( : ~ n t l  itlstr Vwtrnoi's mcl l~ods)  arc c t ~ ~ ~ ~ p l c t c l y  cilnccllcJ, i t l l l l  ; I \  

bolh  Hichilrds' itnd r;ldical methods pilrtition non-bonded inteructions re;lson;lbly. there 
is  little tu choose bctween them. 

For calculations of occupied volumes and volume distributions  for single atonis (or 
atom groups such as CH2). we would argue that no procedure i s  satisfactory unless [he 
atoms are grouped together with  a constant covalent environment, in which c;~se the 
same considerations apply as for the larger groups such as main  chain and side-chains. 
For  a variable covalent environment, the spread of the resulting volume distributions 
will be significantly influenced by the placing of the covalent partitioning planes. The 
effect will be present for  both Richards' and radical methods, though the form o f  the 
equation i s  such that the effect will be greatest for radical. 

Clearly, i t  is impossible to devise a volume partitioning procedure that is both 
rigorous and consistent with the diflerent chemical constraints in proteins. We ciln 
handle a system o f  interacting van der Waals' aloms rigorously, using radical planes. 
but as soon as  we have to deal with covalent interactions, we must rifhw use van der 
Waals' criteria to partition  a covalent bond or abandon geometrical rigour. 

We  argue that a discussion of the preferability o f  using radical  or Richards' method 
for examining packing efficiency o f  an atom  or group of atoms with variable covalent 
environment  would  be  largely academic and of  little value. I f  we ask questions about 
packing efficiency, then covalent-bond  partitioning i s  physically irrelevanl, Ihe identity 
o f  the repulsive electron shell between the two atoms having been lost in the covalent 
interaction. Therefore. any discussion of packing efficiency and variations for atoms or 
groups with a variable covalenl  environmenl must necessarily consider d m  th:lt :,re 
perturbed by volume variations that are t t o f  due IO the packing constrainls heing invchti- 
gated. The per1urb;ltions will be smaller for Hich:lrds' Ihan for the r;dicitl method. s o  i l  
such comparisons are required, then Ilichards' method U i s  to be prclerrcd over the 
radical planes method. 

Other discussions and applications of the volume calculations itre 
given by Richardst4 and Chothia.ls 

.' Addendum on Cmiries 

Large Grid Approximation. In the above discussion all of the space 
inside the hypothetical solvent shell is assigned to the  protein atoms. If 

I 4 T .  1. Richmond and F. M. Richards. J .  Mol. No/ .  119, S37 (1978). 
13 C. Chothia, Nnfurc ( L o t ~ d o ! ~ )  254, 304 (1975). 
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there i s  a hole in the structure, the volume that i] represents i s  assigned to 
the surrounding atoms as specified by their limiting polyhedrons. Such a 
hole only appears as a lowering  in the packing density for  this  group of 
atoms. If  the hole i s  modest in  size  and  the numbcr of protcin atoms Iargc. 
the variation from the  mean of the packing d.ensity  may not be obvious , . 
and location of the hole not easy to derive. There is no unique and mathe- 
matically satisfactory solution to this  problem so far, but several approxi- 
mate procedures have been suggested. 

I n  an attempt to focus on the cavity structure Richardsih made  use of 
the large grid that he had set up in defining the solvent shell (see abovc). 
The grid positions outside of the van der Waals envelope o f  the protein 
but inside the solvent shell were used to define  the cavities. The centers of 
these empty cubes  were uscd 11s pseudoatoms in ;I modificd  Voronoi 
calculation (Fig. 5 ) .  The limiting polyhedrons wcre dcfincd by neighboring 
grid positions and the  van der Wsals cnvelope of neighboring protein 
atoms (see Fig. Ib). Each empty  grid  position thus  had a volume associ- 
ated with  it. Thc connectivity of these positions could be evaluated to get 
an idea of the volume and  shape of the cavities. The procedure is crude 
and unlikely  to give more than a very rough idea of the cavity distribution. 
Nonetheless, the  volumes  assigned to the protein atoms  are lowered a little 
and  the  standard deviation of their volume distributions  markedly re- 
duced. The general cavity distribution can be visuelizcd easily. The pur- 
pose of defining and examining the cavities wits to considcr volumc fluctu- 
ations in the dynamics of proteins. Such fluctuations must rcflcct changes 
in  cavity volume, sincc  the van der WiMls envelope i s  essentially incom- 
pressible under norma! conditions. 

The large grid (2.8 A) used in the  above calculation missed many of the 
smaller cavities which did not happen to include a grid  position. If com- 
pletely empty, a single grid cube is  almost big enough to hold an cntirc 
water molecule. 

Smull.Grid Approxitnclrion. A. Perlo and I;. M. Richiuds (unpublished) 
tried to improv: on the estimate of total  cavity volume by using a much 
finer grid (0.5 A). The algorithm does not use  the Voronoi procedure at 
all. When the  van der Waals envelope of the protein is inserted into the 
lattice of this small grid, a single atom may cover 100 or more positions. 
The lattice is checked sequentially in each of the  three principal  lattice 
directions. Each empty position is given  a number representing its  mini- 
mum distance in  grid units to the  van  der  Waals  envelope (Fig. 6 4 .  The 
problem  now i s  to decide which of these positions are truly external, and 
thus bulk solvent, and which are cavities either internal or non-solvent- 

1 

l6 F. M .  Richards, Corlsberg Res.  Cnmmrm. 44, 47 (1979). 
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FIG. 5. Volume construction for cavities using  the coarse grid (edge = 2.8 A I  and 
Richards  Method B. The van der  Waals envelopes of a few  atoms  are shown. Grid positions 
whose centers are  inside  the van  der  Waals envelope of the  protein  are  labeled a. [hose 
outside b. The b locations are  used as pseudontom  positions in the  volume calcul;~tion (see 
text for discussion). (Reproduced with permission from Richards.I6) 

accessible on the surface. The probe is a string of digits against which the 
lattice  positions are checked. With a 0.5 %r grid a water moleculc is  a 
sphere with a diameter of about  seven grid positions. The closcst grid 
approximation of a sphere would be represented :IS I ,  3, 3, 4, 3. 3.  I .  For 
ease in  subscript manipulation the actual approximation used i s  I ,  2 , 3 , 4 ,  
3, 2. I. 

Starting from the edge of the lattice box, known  to be “outside” the 
protein, each group of seven consecutive lattice positions is tested  against 
_the probe. If each lattice  position is not a protein  position and is charac- 

these positions could be part of a solvent molecule and  are so designated, 
Otherwise they are classed as botential cavity positions (Fig, 6b). As the 

_,” terized by a number equal lo or greater than that of the probe, then al l  of 

probe moves along an axial lirection the number o f  protein surfaces 
passed i s  counted in  order to ssign cavities as external or internal. The 



456 ANALYSIS OF STRUCTIJIIE [301 

A b 

FIG. 6 .  Cavity  definition  by the snlall  grid procedure of Perlo and Richards. Grid spacing 
i s  0.5 A. A small section of a single plane through pancrc;rtic trypsin  inhibitor i s  shown. The 
asterisks identify those grid  positions  which are inside the van der We;~ls envelope ol'the 
protein. The numbers in the asterisk area are the serial numbers from the coordinste list of 
atoms whose centers happen to l ie in  or close to this plane. I n  (;I) each grid  position outside 
of the asterisk area contains  a number which represents the distance in grid  units to \he 
nearest part of the van der Waals envelope in any o f  the three axid directions. Distances 
equal to or gre;lter  th;m 4 ;Ire also listed ;w4. The ICSI ol' this filled liltl ice liw polenli;~l  cavily 
positions is described in the text. Such cavity positions located by the algorithm itre shown 
as clear areas in (b). The "W"s are part of the vim der  Wnals envelope of one of the four 
interior water molecules identified in this structure. 

initial cavity list  is  lacge. This is reduced as the  probe  check is carried out 
in the other two axial directions. From the final list the sum of the number 
of cavity positions  gives  directly  the total cavity volume.  The total protein 
volume is given by the  sum of this volume and the volume (number of grid 
positions) inside the van der Waals envelope. A cavity as small as a single 
grid position (0.125 As) will be recognized as will internal cavitics large 
enough to  hold a  solvent  molecule. A very similar procedure has bcen 
used by Kos~iakoff.".~~ 

A complete  test of the  approximations in this algorithm h:ls not bcen 
made, but i t  has bcen used for cstimating the volurnc flttctuations during ;I 
molecular dynamics  simulation of pancreatic trypsin inhibitor (A .  Perlo, 
F. M. Richards, N. Swaminathan. and M. Karplus. unpublishcd). I t  has 
also been used by Pickover and EngelmantY i n  their  study of the  extended 
low angle X-ray scattering  curves of solutions of several  proteins. 

The procedures of ConnollyZo  for depicting protein surfaces  (referred 
to below) can also be used  to identify cavities and lo estimate their vol- 

I' A. Kossiakoff, Norctrc (Lnndor~) 296, 713 (1982). 
I" A .  Kossiakoff. Llrnoklrctucv1 Syrtlp. Diol. 32, 281 (lYX3). 
Iq C .  A. Pickover and D. M. Engelman, Bioprdyrttt'rs 21, 817 (1982). 
!'I M. Connolly, Ph.D. Dissertation. University o f  Cidikwnia.  Ucrkelcy ( I Y X l ) .  

D O 1  MOLECULAR VOLUMES AND AREAS 457 
- 

FIG. 7. Schematic representation o f  possible molecular surface definitions. A section 
through part o f  the van der Waals envelope o fa  hypothetical  protein is shown with the  aton) 
centers numbered. The accessible surfaces generated by two probes of difference size. R ,  
and R ? .  and the geometrical delinition ol'conli~cl and reentrilnt surfaces are shown. (Repro- 
duced with permission from I<ich;lrds.'?) 

ume. In this procedure  cavities  appear only if they are large enough to 
contain  at least one water  molecule. In  his survey of a number of proteins 
with this  algorithm, Connolly found that the total cavity volume was of 
the order of 3% or less of the total volume of the protein. 

A different  approach  developed  for glass structures but not yet applied 
to proteins  has been described by Finney and  Wallace.zt 

Area 

DeJinitiotu 

On the molecular scale any  conceivable probe has dimensions cornpa- 
rable to the  features of the surface being examined.  Consider  the  cross 
section of part of the  surface of the  hypothetical macromolecule shown in 
Fig.,?. The trace of the van der Waals envelope of some of the atoms of 
the-structure i s  shown. A spherical probe of radius XI is allowed to roll on 
the  outside while maintaining contact with the van der Waals sut-face. I t  
will never  contact  atoms 3,  9, or I I .  Such  atoms  are considered not to be 
part of the  surface of the molecule and are referred to as interior  atoms. 

J .  L. Finney and J .  Wallace. J .  Non-Crysr. Solids 43, 167 (1981). 
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The question of how to define and quantitate  the  surface is a matter of 
convenience.  One  straightforward  procedure is simply to use the continu- 
ous sheet defined by the locus of the centcr of the  probc,  the "accessible 
surface."  Another  alternative would  bc lo considcr thc "contact sur- 
face," those  parts of the molecular van der Waals surface  that  can  actu- 
ally be in contact with the surface of the probe. This would provide a 
series of disconnected  patches.  The  "reentrant  surface" is also  a  series of 
patches  defined by the interior-facing park of the  probe when it  is simulta- 
neously in contact with more than one  atom.  Considered  togethcr the 
contact  and  reentrant  surfaces  represent a continuous  sheet, which might 
be called the "molecular s~r-face."~? 

By the  nature of the geometrical construction  there  arc no rccntrant 
sections of  the accessibility  surface,  i.e.. vicwcd from the molcculc each 
spherical  segment is convex. This does  entail 21 possible loss of informa- 
tion as  the  ratio of contact-to-reentrant  surface may be a useful measure 
of molecular  surface  roughness. This can be seen qualitatively by inspect- 
ing Fig. 7. The molecular surface also has  the  advantage that the area 
approaches a finite limiting value as the size of the probe increases.  To 
date most reports have calculated and discussed the accessible area. 

With any of the surface definitions the  actual numbers derived will 
depend on the radius  chosen for the probe. An example of the change that 
is produced by probe  size is shown in Fig. 7. In going from R t  to N ?  the 
number of noncontact  or interior  atoms  increases from three  to eight. The 
accessible  surface  becomes much smoother (as does the nlolecular sur- 
face, not shown);  there is only a slight dimple replacing the deep crevice 
revealed by the XI  probe. The  appearance of deeply convoluted features 
or actual  holes in the  interior of the protein becomes very sensitive to the 
choice of probe  radius. The smaller the  probe  the larger the number of 
feature  that will  be revealed. About the  smallest physically reasonable 
probe is a water molecule considered as a sphere of radius of I .4 or I .5 A. 
The ratio of this number to the van der Waals radii assumed for the 
individual atom  or atom  groups will markedly affect thc calculated areas 
for individual atoms. 

The  accurate calculation of the surfacc  area is a complcx geometrical 
problem.  This problem has in fact been solved rigorously and a closed 
form analytical  expression has been de r i~ed .~ ' . ?~  Various approximate 
methods,  whose  accuracy v;rrics  but  is i\dequiltc for nwny puI'poscs. hnvc 
been  more widely used. 

22 F. M. Richards. Awntr. Reu. Biophys, Oioeng. 6, IS1 (1977). 

!' M. Connolly, J .  Appl.  Cr.vsrcr/ltJ,qr. 16, S4H (19831. 
T. J. Richmond, J .  Mol. D i o l .  1711, 63 (1984). 
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FIG. 8. Superposition ol'seclions through the van der W ~ l s  cnvelopc and the ;tccsa\ihlc 
surface of ribonuclease S. The  arrow indicales a  cavity inside the molecule large cno~~gh t o  
accommodate a solvent molecule with a radius of 1.4 A, dthough il appears to be llnlillctl in 
the electron density map. In  places the accessible surface is controlled by atoms ;hove or 
below the section shown. The dashed outline  is the s u ~ f x e  of N or 0 iltoms. the  solid outline 
C or S atoms. (Reprinted  with permission from Lee rind ltichiwds.2') 

Procedure of Lee  m d  Richurcls 

The  procedure  reported by Lee and Richardsz5 developed from a pro- 
gram used to graphically portray the van der Waals surface of a protein. 
For the  area  calculation the radius  chosen for each  atom in the  structure 
was the van der Waals radius  for that particular atom plus the radius of 
the hypothetical probe, most often set at 1.4 A. The  structure was then 
sectioned by a  series of planes perpendicular to one of the principal axes. 
The intersections of the enlarged atom spheres with this plane gave a set 
of circles of varying size. The outer  arcs defined by the  intersections of 
these  circles  represented the trace of the accessible surface of the protein 
on that plane (Fig. 8) .  Some internal surface  appeared on occasion, and 

, , represented  cavities in the  structure  that were large enough to hold one or 
more probe  spheres.  Such  cavities were recognized by  hand inspection of 
the  lists of surface  arcs. The total length of the trace of the accessible 
surface multiplied by the  spacing of the planes gave an approximation to 
the  area of the  surface  associated with that plane. The sum of such  surface 

B. Lee and F. M. Richards, J .  Mol.  Bid. 55, 379 (1971). 
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Procedure of SkrcrkP m d  l l t p l s y  

A different algorithm for calculating the solvent-exposed  areas of at- 
oms  was  developed intlcpendcntly by Shrake and Ruplcy.?' Again .  a 
sphere of expanded radius equal to the van der Waals radius plus thc 
probe  radius  (taken as 1.4 A) is set up around  each  atom.  The  central 
atom,  whose area is to be calculated, is represented by a set of 92 points 
distributed  nearly uniformly over the surface of the sphere. Each point is 
then checked against surrounding  atoms l o  find oul if i t  is within any of 
the spheres. Points  outside  the  sphcres of all surrounding  atoms lic on thc 
accessible  surface  and their number is a direct measure of the  accessible 
area of the  central  atom. For lhc occluded points of the ccnlr;d atom. the 
test  atom  closest to any particular point  is credited with occluding thc 
point. Thus  the neighboring atoms collectively provide the environment 
of the  central  atom and can be scored  quantitatively for their influence on 
the  central  atom. 

These programs provided actual  areas in AI. and  these  are thc values 
frequently  reported. In the original paper  Lee  and  Richards25  also defined 
the  term accessibilify which is a  dimensionless  quantity varying between 
0 and 1. It  represents  the  ratio of the  accessible  area in a particular 
structure  to the  accessible  area of the  same  group in a reference com- 
pound. The  latter is normally taken as gly-X-gly. where the  group of 
interest is in the  residue X. Accessibility. so defined, is being used  at this 
time, particularly in electrostatic  calculations  where  interactions  are mod- 
ified by these  dimensional  factor^.^' 

Procedure of W o d d  and Janirl 

Wodak and  JaninZR  have  proposed an approximate analytical expres- 
sion for the accessible  area  rather than the numerical calculation de- 
scribed above.  The  equations  are differentiable and can be used directly 
as a factor to incorporatc solvent influcnccs i n  cncrgy minimization proce- 
dures.  The derivation ;tssumes a random distribution ofsphercs surround- 
ing the target atom and includes a correction for excluded volumes. Al- 
though the  expression is  not accuratc for a specific atom, ;rvcragcs taken 
over all, or large parts, of a structure  become very good approximations 
of total surface  area. The original paper should be consulted for  the  deri- 
vation of the following equations.  where r,, = van der Waals radius of the 

, 

Ib A. Shrake and J .  A. Rupley, J .  MOL B i d .  79. 351 (1973). 
I' J .  )3. Matthew. G. I .  H .  Hanania. and F. R. N. Curd. Oioclwtitrrv 18. 1919 (19791. 
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target atom; ri = van der Waals radius of a neighboring atom; rn. = radius 
of the spherical  probe; di = interatomic  distance between atoms o and i ;  
hf = maximum area of target atom covered by atom i; hi = minimum area 
of target atom covered by atom i; n = number of atoms which occlude a n y  
area  surrounding the target atom; S = area of expandcd target atom = 
4~(r,, -!- rM.)*; A = approximate value of accessible  area of target atom. 

~~~ . ~ 

h = T ( J ; ~  + rtd.)(~~ + ri + 2r,,. - (/;)I 1 + ( r i  - r,t)ldil (7 )  
h' = d r , ,  + r,,,)(ro + ri - d;)lI -I- ( r ;  - r,, - 2r,,.)/di1 (8) 

Define 

Then 

where 

The original paper and references therein should be consulted for possible 
further  approximations using single spheres  for  entire  residues and for use 
of these  functions in defining domain structures. 

(Note that a mathematically accurate  description of accessible arcas 
for any collection of spheres  has been developed by T. J. and 
M. Conn~l ly .?~)  

Sur fkc  RPpreserl(uliotl.\ 

The  computer  presentation of van der Waals surfaces i n  thc form of 
packing models has  been highly developed by R.  Feldman at the National 

.-.*Institutes of Health.  However, the algorithms have not been reporled to 
generate  numbers  related to the area  or volume of  these figures. 

A particularly  effective  presentation of the  continuous molecular sur- 
face of molecules, includinrr both the  contact and reentrant  sections. has 

S. J .  Wodak and J .  Janin. Proc. hrd. Accrd. S d .  U.S.A. 77, 1736 ( 1980). 
I .  . .  

been developed by M. L. Connolly. Interior cavities can be recognized 
~~ .~ - 

i 
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and enumerated, A brief overview of the computer  presentations has  been 
given by Langridge et al.2y and Bash et n/.-"l Both areas and volumes are 
provided in newer pr0grams.2~J~ Unfortunately, no details of any of these 
algorithms are available in published form. The latter  are particularly 
important in providing analytical expressions  for  the  area whichpn be 
differentiated and built into  energy minimization procedures, as described 
in detail by Richmond.23 


