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lntroduction 

The development  of  energy functions and force fields 
for studying. the behaviour  of  molecular  systems is a 
major  goal in physical  chemistry.  Prediction of native 
structures of proteins fiom amino acid  sequences,  sim- 
ulation of  the folding process,  and calculation of protein 
stabikties  are among che most  ambitious  goals  of con- 
temporary  research in biomolecular theory [l]. 
Research on these topics already  has a respectable  his- 
tory, and the difficulties encountered over the past two 
decades  seemed to indicate that they might  be in- 
tractable  because of our lack  of a suitable theory of 
molecular interactions, and  because of the computa- 
tional complexities  involved. We  now,  however,  have 
computational tools at hand that enable the recogni- 
tion of errors in;experimentally determined and model 
structures. Furthetmore, fold-recognition techniques are 
enabling  molecular architectures of proteins to be  cor- 
rectly predicted, before their experimentally determined 
structures are determinedu1l 420.2 Tmqoe0;4Tj4Td(computa- 2.9806orimentally )Tj0.00999 Tc 6.1enable t 1 3 5 9  0  T  T c   5 . 4 0 7 8 t e r m i n e d u e d i c t e d ,  3 5 4 . 2  T m  ( t o  ) T j  - 0 T d  ( a r c h i t b e f o r  ) T j  - 0 . 0 4 0 0 1  T c   2 d  ( a r e  ) T j  - ( p r i r s  ) T j  0 . 0 1 9 9 9  T c   5 . 1 4 5 t i o n  too928.35.1 0 3.640ore ti067o 
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Scheraga [fl], and many others have reported sub- 
sequent  attempts in  the intervening period  (see  e.g. 
[12-14], and [17-241 for  more recent developments). 

Potentials of mean force 

In the following I focus  on  mean  force  and  related  po- 
tentials. The general definition of  database-derived  mean 
force potentials is I161 

where r is the distance (or some other parameter, like 
dihedral angles)  between two atoms, E(r) is the energy 
at r,Xr)  is the  probabhty density at r, k is Boltzmann's 
constant and T is the absolute  temperature.  Besides r, a 
particular pair interaction depends on  the atom  types a 
and b involved  (e.g.  an interaction between the Cg atom 
of a valine  residue  and the Ca atom  of  a glycine), and 
the separation s of  the respective amino acids  along the 
amino acid  sequence I161 (this parameter is important  for 
small  separations, for example s €10; for ~210, atoms  can 
be considered as  Gee  particles): 

E"bs(r) = -kTln f [ 1. 
flr)abs is approximated  by  relative  frequencies  obtained 
fiom  a data  base of known  structures. 
Mean force kotentials incorporate all forces  (electrostatic, 
van der Waals, etc.) acting between  atoms as well  as the 
influence of  the surrounding  medium on the interaction. 
In  this form individual potentials  contain  more or less the 
same information,  but  we  need the specific  information 
contained in a particular potential that distinguishes it 
fiom an  average interaction in the system  being  stud- 
ied. The redundant  information  can be captured by a 
suitably  defined  reference  state. In the case of protein 
intramolecular interactions a convenient  choice for the 
reference state is [7,16] 

E3(r) = -kTln[fS(r)] where fs(r)  - zfds(r) 
ab 

which is  an  average  over all atom  and  residue  types.  Sub- 
tracting this redundant  information  we obtain the spe- 
cific interaction 

The reference state is a critical feature.  Successful  appli- 
cations of mean force potentials  largely  depend on a suit- 
able reference state. ' 

A characteristic  feature of molecular force fields 

The detailed  features of molecular  energy functions that 
govern the folding and  stability ofproteins are unknown, 
but  some general principles follow from basic  physical 
considerations. Consider a particular protein defined by 
its  amino  acid  sequence. All possible  conformations  have 
associated  energy  values,  and the energy  density N(q 
(i.e. the number of  conformations  per energy interval) 
characterizes the energy distribution for this protein. By 
the law of large  numbers  we  might  guess  that the energy 
density  resembles a Gaussian distribution defined  by the 
average  energy E and  standard  deviation CJ (Fig. 1). In 
fact,  we do  not know the shape of this distribution, 
but  every distribution h a s  an  average  and a standard 
deviation, and  we  can  use these numbers to normal- 
ize energy  values [7,25**,26"], E+(E-E)/o=z (these 
normalized  numbers are called  z-scores).  and CJ are 
sequence-specific values, 612 Tm9029 -1.1E+(E-E)/o=z0.22 Tw 1.48573 0 Td(distribut1.1 Td9029 -1.1lized  numbers )Tj0 Tcers 103.4 593.3 guess  that average w -19.8058 -1.0 T21of t h i s  t h i s  z - s c o a t i y F 3  p a c N ( q  
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Energy density of lysozyme 1123 
4000 

z-score 

Fig. I. Energy density of the  sequence of lysozyme (PDB code 1123) 
derived from a polyprotein.  The  total  number of conformations is 
4 0  000. The arrow marks the position of the  native fold of 1 123. 

Extraction of mean force potentials from a  data 
base 

Mean  force potentials are  compifed by extracting relative 
fiequencies hpm a database of protein structures.  Several 
problems  are  involved in this  process.  Perhaps the most 
serious one arises  &om  low counts. In the case of  po- 
tentials depending on s, the average  number  of  counts 
is ~100. For rare amino acid  pairs  like  methionine  and 
tryptophan this’number is close or equal to zero.  Ap- 
proximation of functions on the basis of  such a small 
number of counts is dificult or impossible in general, 
but methods  have been developed to approximatefhb(r) 
in cases of extremely  low  counts [16]. 

The performance  and  predictive  power of mean  force 
potentials depend on a few critical parameters.  For  ex- 
ample, -for distances r >30 A, fiequencies  are  dominated 
by the large proteins in the data base. What is a use- 
ful cut-off distance at which to truncate potentials? A 
reasonable  value  can be found by  calculating the av- 
erage score 5 as a function of cut-off distance.  For 
C W Q  interactions increases  (in  absolute  value)  up 
to  20A [25**]; in other words, the information  con- 
tent is maximized when potentials are compiled up to 
distances of 20 A. 
The dependence  of on other interesting parameters  can 
also be determined  in this  way  [25**,31*]. How does the 
quality of potentials depend on  the number  of proteins 
in the data  base? I as a function  of  database  size  follows 
an exponential saturation. Increasing the database  from 
50 to 100 proteins yields a 30% increase in ;, whereas 
between 200 and 250 proteins the gain  is only 5% 
[25**]. How are intramolecular  pair interactions related 
to protein-olvent interactions? The scores T obtained 
for the individual terms  are  of  comparable size (-6.8 for 

Cg painvise  .and -6.2  for  proteinsolvent interactions), 
but when  the two  terms  are  combined the scores  increase 
significantly to -9.66 (M Jaritz, MJ Sippl, unpublished 
data). In other words, the information  contained  in 
intramolecular pair interactions is quite different from 
proteinsolvent interactions and both components are 
important.  Another  problem  concerns the information 
contained in pair interactions compiled fiom different 
types of atoms. The score of -5.0 for Ca-Ca potdntials 
is less  significant as compared to -6.76 for Cf&Cg in- 
teractions. Their combination  scores at  an intermediate 
value of  -6.2, in other words, the information  contained 
in these  terms is highly  redundant (M Jaritz, MJ Sippl, 
unpublished data). 

Our current implementation  of  mean force potentials 
consists of pair interactions among all backbone  atoms 
(N, Ca , C, 0) and Cg , and  an explicit term for 
protein-solvent interactions [7,8*]. As discussed  above, 
the polyprotein  technique has  been  extensively  used 
to optimize the performance of this energy function 
[25*-,31*]. 

Applications 

Mean force potentials have been successfully  applied  to 
various  problems  in structural biology,  such  as  recogni- 
tion  of errors in experimentally  determined structures 
or the prediction of protein folds  by sequence/structure 
combination. 

Detection of errors in protein structures 
In several  cases errors have  been detected in experirnen- 
tally  determined structures [32,33]. Some of the faulty 
structures have been  deposited  with the Brookhaven 
data  bank [34] where the faults  remained  undetected 
for years, indicating that  the criteria used to judge the 
quality of experimentally  determined structures failed in 
these cases. With the advent of several new  programs the 
situation has  improved  considerably  [26**,35-371.  Na- 
tive  folds  have  mean force z-scores in a characteristic 
range,  and the energy distribution within, native  folds 
shows a characteristic pattern. Erroneous and deliber- 
ately  misfolded structures are detected by their poor 
scores  and  unusual  energy distributions [26**]. Because 
mean  force  calculations  can be done on reduced sets  of 
atoms it is  possible to analyze structures where only the 
CCI backbone is available. 

Fig. 2 shows the energy  graphs  of two experimen- 
tally  determined structures, photoactive  yellow protein 
and  lysozyme (PDB codes lphy and 21zh, respectively). 
Only the Ca coordinates of these structures were  de- 
posited  with the Brookhaven protein data bank. The 
2-score for 212h of -8.2 is  typical for native structures, 
but the z-score for lphy (-1.6) points to an  erroneous 
fold, and the energy  graph  of lphy shows that the inter- 
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actions in this molecule are  unfavourable. The z-scores 
and  energy  graphs  were  calculated  using the program 
PROSA-I1 [26**] (PROtein Structure Analysis), which 
is available from gun&.came.sbg.ac.at  by  anonymous  file 
transfer  protocol (f?p). 

! 

Residue position 

Fig. 2. 

[26**1. 
1 PhY) 

Energy  graphs for (a) photoadive  yellow  protein (PDB code 
and (b) lysozyme (PDB code 21zh) generated by PROSA-II 
The graph of 21zh is typical for native folds, but that for 1 phy 

is problematic. 

Quality  assessment is  an important tool for the  judge- 
ment of experimental structures and it is a fundamental 
prerequisite for protein structure theory in general.  Pre- 
diction of protein structures  fiom amino acid  sequences 
will  necessarilly fiil if  faulty structures cannot be  distin- 
guished from genuine  native  folds [38]. 

Fold recognition 
Proteins frequently have  similar  three-dimensional  folds 
even in cases where no homology is discernible on 
the sequence  level [39**,40*0]. I t  is expected that in  a 
substantial number of cases the unknown structures of 
protein sequences  resemble  some known fold.  By  com- 
bining  sequences  with structures it should  be  possible to 
identify such  coincidences [41], and there has been  con- 
siderable  progress in the development of fold recognition 
techniques  over the past  few  years [4149,50"]. 

~~~ ~- 

There are three critical components of fold  recogni- 
tion techniques: first, energy functions or parameter 
sets  providing a reasonable description of  proteinsolvent 
systems;  second,  techniques  producing  useful  alignments 
between  sequences  and structures; and finally, criteria for 
identifying native-like  sequence/structure  combinations 
P91. 

The performance  of  fold recoption techniques is doc- 
umented by  several detailed case studies [41-49,50'.] and 
several  methods are able to recognize  distant  relation- 
ships,  such as the similarity between the ADP-ribosy- 
lation factor and Ras p21 [49]. Using a database of 150 
pairs of proteins related in structure, but  unrelated or dis- 
tantly  related in sequence, our implementation based on 
mean force potentials successfilly identifies the related 
fold in roughly one  out of three cases  (MJ  Sippl, un- 
published data). 

The most serious challenge testing our current ability to 
design fold-recognition techniques was the recent  pre- 
diction experiment organized by J Moult and others. 
Sequences  of  several proteins were collected fiom  lab- 
oratories that were  close  to solving the respective struc- 
tures. Predictions for the individual  targets  were  accepted 
until the structure was  solved  and  finally the quakty  of 
the predictions was judged by a team of assessors. The 
folds of several proteins were correctly identified by  var- 
ious groups  employing  fold recognition and/or multiple 
sequence  alignment  techniques ([Sl**] and T Hubbard, 
personal communication; an issue of Proteins dedicated 
to this prediction experiment is scheduled for 1995). 

in some cases the predictions were  close to atomic  res- 
olution. For the replication terminating protein (PDB 
code  rtp),  no homologous  sequence  could  be  found 
by sequence  comparison  techniques.  Fold recognition 
using  mean force potentials suggested the structure of 
histone (PDB code  lhst)  to be a good model for the 
fold of this protein. The prediction was correct: repli- 
cation terminating protein and histone indeed have very 
similar structures. Moreover, the alignment was of ex- 
cellent quality.  Gaps  were inserted correctly and the 
residues  of replication terminating protein were  placed 
a t  the appropriate positions in the histone structure. For 
the propiece of subtilisin, fold  recognition  predicted the 
structure of  ferredoxin  (PDB  code 2lkd). The two struc- 
tures c?n be superimposed to a root  mean  square error 
of 3.5 A. 

A critical point in fold recognition  concerns the qual- 
ity assessment  of a particular model.  Any  sequence  can 
be combined with any structure. But the question is 
whether a particular combination  corresponds to a useful 
model that is to some  degree  similar to the unknown  fold 
of the respective  sequence. An important result  is that 
the energy calculated from a model  can  be  misleading. 
Rather,  the energy of the model has to be compared 
to  the energy distribution in conformation space [7,49]. 
This can  be  achieved by calculating  z-scores as described 
above. 
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Fig. 3. CalculatedMCvalues  plotted against experirtiental data. Ev- 
ery point in the diagrams  corresponds to a panicular  substitution. 
(a) In barnase, Ala32 was replaced by all 19 standard  amino  acids. 
(b) In T4 lysozyme, Ser44 was replaced by all 19 standard  amino 
acids.  The  correlation  between  measured and calculated M C  val- 
ues ir0.91 for barnase and 0.66 for T4 l y s o z y m e .  

Genome sequencing projects produce a large number 
of new sequences. For a p p r o b t e l y  half af  the new 
genes discovered a biological  role or hction can be 
assigned by sequence comparison. The biological  in- 
formation  contained  in  the remaining sequences is not 
accessible. In a recent large-scale  fold recognition  study 
on  the 483 genes found in the central gene cluster 
of Cuenorhabditis elegans chromosome 111, using a data 
base of 263 known structures,  putative models  for  the 
unknown folds of 20 sequences have been obtained 
(M Braxenthaler, MJ Sippl,  unpublished  data). In  light 
of the ~~ccess fd  blind predictions described above, the 
study demonstrates that  fold recognition generates valu- 
able structural and hnctional information for otherwise 
uncharacterizable genes and that  large-scale  applications 
are computationally feasible. 

Protein  stabilities 
A vital requirement for rational protein  engineering 2nd 
design is the ability to predict  the effect of amino acid 
replacements on the stability of proteins.  In some cases 
experimental results are  well documented.  In  the caSe of 
barnase, Alan Feisht's group has collected a large number 
of AAG values for various mutations ([52]; M G  is the 
change in stability between wild-type and mutant  pro- 
tein). As shown in Fig. 3, M G  values  calculated from 
mean force potentials correlate well with measured data 
(M Hendlich, MJ Sippl, unpublished data). 

In  other cases the correspondence is less satisfying.  Pro- 
teins are  represented  by their Ca backbones only and it is 
assumed that the Ca backbone is not changed by amino 
acid replacements. Hence,  the present calculations con- 
tain assumptions  and approximations that may be valid in 
some situations  but may be too crude in others.  The ap- 
plicability of knowledge-based  potentials in the design of 
sequences that  fold into predefined structures, a problem 
closely  related to protein stabilities, has been investigated 
by Jones [53-]. 

Ab initio prediction 
The long-range  goal of force-field development is the 
ab initio prediction of  protein structures solely.hm the 
information contained in amino acid sequences by en- 
ergy minimization and foldirig simulations.  Some  pre- 
liminary studies  on small pgteins have been performed 
(e.g. [8°,54,550,560]). For  example,  calculations on thy- 
mosin f& are in good agreement with models obtained 
h m  NMR studies [54], and computations on the An- 
tennapaedia peptide, a s m a l l  three-helix bundle, come 
close to  the observed structure t8.1. 

Conclusions 
~ ~~ ~~~ ~ ~ 

Knowledge-based  force  fields have matured into use- 
ful tools,  providing the basis for powerful techniques 
in many areas of research into protein  structure. They 
will help to identify the  function of protein sequences 
and aid the  determination of their  structures. In spite 
of  these successes, the development of force fields and 
associated  methods, like fold recognition, is still at the 
beginning and there  are  several problem areas where 
improvements are  possible. 

It is clear  that ab initio prediction, reliable  estimation of 
M G  values, molecular docking and other problems  in 
structural biology require a more detailed  representation 
of molecular structures and  atomic interactions than is 
currently available. The development of such force  fields 
remains a major  challenge. 
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