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ABSTRACT
The sensitivity of the commonly used progressive

multiple sequence alignment method has been greatly

improved for the alignment of divergent protein
secquences. Firstly, individual weights are assigned to
each sequence In a partial alignment in order to down-
weight near-duplicate sequerices and up-weight the
most divergent ones. Secondly, amino acid substitution
matrices are varled at different alignment stages
according to the divergence of the sequences to be
aligned. Thirdly, residue-specific gap penalties and
locally reduced gap penalties in hydrophilic regions
encourage new gaps in potential loop regions rather
than regular secondary structure. Foun‘l:Ly, positions

practical. The new methods are made available in a program
called CLUSTAL W, which is freely available and portable to
a wide variety of computers and operating systems.

In order to align just two sequences, it is standard practice to
usedymmxcpmgmmnnng@) This guarantees a mathematically
optimal alignment, given 2 table of scores for matches and

between all amino acids or nucleotides [e.g. the
PAM250 matrix (3) or BLOSUMG2 matxix-(4)] and penalties
for insertions or deletions of different lengths. Attempts at
generalising dynamic programming to multiple alignments are
limited to small numbers of short sequences (5). For much more
than eight or so proteins of average length, the problem is
uncomputable given current computer power. Therefore, all of
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Figure 1. The basic progressive alignment procedure, illustrated using a set of
7 globias of known tertiary structure. The sequence names are from Swiss Prot

myoglobin; GlbS__Petma: lamprey cyanchasmogiobin; :
leghaemoglobin, In the distance matrix, the mean pumber of differences per residue
is given. The unrootad tree shows all branch lengths drawn to scale. In the rooted
tree, all branch lengths (mean sumber of differences per residue along each beanch)
are given as well as weights for each sequence. In the multiple alignment, the
approximate positions of the 7 a-helices commem to all 7 proteins are shown.
This alignment was derived using CLUSTAL W with default pacameters and
the PAM (3) series of weight matrices.

large numbers of sequences to be aligned, even on a
microcomputer. The scores are calculated as the number of k-
tuple matches (runs of identical residues, typically 1 or 2 long
for proteins or 2—4 long for nucleotide sequences) in the best
alignment betwesn two sequences minus a fixed penalty for every
gap. We now offer a choice between this method and the slower
but more accurate scores from full dynamic programming
alignments using two gap penalties (for opening or extending
.gaps) and a full amino acid weight matrix. These scores are
calculated as the pumber of identities in the best alignment divided
by the number of residues compared (gap positions are excluded).
Both of these scores are initially calculated as pér cent identity
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In Figure 1 we give the 7X7 distance matrix between the 7 globin

sequences calculated using the full dymamic programming
method.

The guide tree

The trees used to guide the final multiple alignment process are
calculated from the distance matrix of step 1 using the Neighbour-
Joining method (21). This producess unrooted trees with branch
lengths proportional to estimated divergence along each branch.
The root is placed by a ‘mid-point’ method (15) at a position
where the means of the branch lengths on either side of the root
are equal. These trees are also used to derive a weight for each
sequence (15). The weights are dependent upon the distance from
the root of the tree but sequences which have a common branch
with other sequences share the weight derived from the shared
branch, In the example in Figure I, the leghaemoglobin
(Lgb2__Luplu) gets a weight of 0.442, which is equal to the
length of the branch from the root to it. The buman B-globin
(Hbb_Human) gets a weight consisting of the length of the
branch leading to it that is not shared with any other sequences
(0.081) plus half the length of the branch shared with the horse
B-globin (0.226/2) plus one quarter the length of the branch
shared by all four haemoglobins (0.061/4) plus one fifth the
branch shared between the haemoglobins and myoglobin
(0.015/5) plus one sixth the branch leading to all the vertebrate
globins (0.062). This sums to a total of 0.221. In contrast, in
the normal progressive alignment algorithm, all sequences would

be equally weighted. The rooted tree with branch lengths and

sequence weights for the 7 globins is given in Figore 1.

Progressive alignment

The basic procedure at this stage is to use a series of pairwise
alignments to align larger and larger groups of scquences,
following the branching order in the guide tree. You proceed
from the tips of the rooted tree towards the root. In the globin
example in Figure 1 you align the sequences in the following
order: human vs. horse 8-globin; human vs. horse c:-globin; the
2 a-globins vs. the 2 B-globins; the myoglobin vs. the
haemoglobins; the cyanohaemoglobin vs. the haemoglobins plus
myoglobin; the leghaemoglobin vs. all the rest. At each stage
a full dynamic programming (26,27) algorithm is used with a
residue weight matrix and penalties for opening and extending
gaps. Bach step consists of aligning two existing alignments or
sequences. Gaps that are present i older alignments remain fixed.
In the basic algorithm, new gaps that are introduced at each stage
get full gap opening and extension penalties, even if they are
introduced inside old gap positions (see the section on gap
penalties below for modifications to this rule). In order to
calculate the score betweea a position from one sequence or
alignmentandoneﬁ'omanother.tbnaverageofallthepai:wise
weightmatﬁxscomﬁ'omd;eaminoacidsinthemosetsof
sequences is used, Le. if you align 2 alignments with 2 and 4
sequences respectively, the score at each position is the average
of 8 (2 X4) comparisons. This is illustrated in Figure 2. If either
set of sequences contains one or more gaps in one of the positions
being considered, each gap versus a residue is scored a3 zcro.
The default amino acid weight matrices we use are rescored to
have only positive values. Therefore, this treatmeat of gaps treats
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Figure 2. The scoring schems for comparing two positions from two alignments.
Two scetions of alignment with 4 and 2 sequences respectively are shown. The
score of the position with amino acids T,L,K,K versus the position with amino
ncidsVnnd!isgivenwithmdwitbmtsequmweigbu.Ma(,Y)thwexgm
matrix cntry for amino acid X wersus amino acid Y. W, is the weight for
sequence n.,

multiplied by the weights from the 2 sequences, as illustrated
- in Figure 2. '

Improvements to progressive alignment
All of the remaining modifications apply only to the final
progressive alignment stage. Sequence weighting is relatively
straightforward and is already widely used in profile searches
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Figure 3, The variation in local gap opening penalty is ploned for a section of
alignment. The inital gsp opening penalty is indicated by a dotted line. Two
hydrophilic stretches i penalties correspond to the ends
of the alignmest, the stretches and the two positions with gaps. The
highest values are within 8 residues of the two gap positions. The rest af the
variation is caused by the residus specific gap penalties (12).

Dependence on the weight matrix. Tt has been shown (16,28) that
varying the gap penalties used with different weight matrices can
improve the accuracy of sequence alignments, Here, we use the.
average score for two mismatched residues (i.e. off-diagonal
values in the matrix) as a scaling factor for the GOP.
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hardware/software combinations: Decstation/Ultrix, Vex or
ALPHA/VMS, Silicon Graphics/IRIX. The source code and
documentation are available by E-mail from the EMBL file server
(send the words HELP and HELP SOFTWARE on two lines
to the internat address: Netserv@EMBL-Heidelberg. DE) or by
anonymous FTP from FTP.EMBL-Heidelberg.DE. Queries may
be addressed by E-mail to Des.Higgins@EBLAC.UK or
Gibson@EMBL-Heidelberg. DE.

RESULTS AND DISCUSSION
Alignment of SH3 domains

The ~60 residue SH3 domain was chosen to illustrate the
performance of CLUSTAL W, as there is a reference manual
alignment (23) and the fold is known (24). SH3 domains, with
a minimum similarity below 12% identity, are poorly aligned
by progressive alignment programs such as CLUSTAL V and
PILEUP: neither program can generate the correct blocks
corresponding to the secondary structure elemens.

Figure 4 shows an alignment generated by CLUSTAL W of
the example set of SH3 domains. The alignment was generated
in two steps. After progressive alignment, five blocks were
produced, corresponding to structural elements, with gaps
inserted exclusively in the known loop regions. The S-strands
in blocks 1, 4 and 5 were all correctly superposed. However,
four sequences in block 2 and ons sequence in block 3 were
misaligned by 1—2 residues (underlined in Figure 4). A second
progressive alignment of the aligned sequences, including the
gaps, improved this alignment: A single misaligned

] sequence,
H__P55, remains in block 2 (boxed in Figure 4), while block

3 is now completely aligned. This alignmeant corrects several
errors (e.g. P8SA, P8SB and FUSI) in the manual alignment (23).

The SH3 alignment illustrates several features of CLUSTAL
W usage. Firstly, in a practical application involving divergent
sequences, the initial progressive alignment is likely to be a good
but not perfect approximation to the correct alignment. The
alignment quality can be improved in a number of ways. If the
block structure of the alignment appears to be correct, realignment
of the alignment will usually improve most of the misaligned
blacks: the existing gaps allow the blocks to ‘float’ cheaply to
a locally optimal position without disturbing the vest of the
alignment. Remaining sequences which are doubtfully aligned
can then be individually tested by profile alignment to the
remainder: the misaligned H__P55 SH3 domain can be correctly
aligned by profile (with GOP <8). The indel regions in the final

alignment can then be manually cleaned up: usually the exact -

alignment in the loop regions is not determinable, and may have
no meaning in structural terms. It is then desirable to have a single
gap per structural loop. CLUSTAL W achieved this for two of
the four SH3 loop regions (Figure 4).

If the block structure of the 2lignment appears suspect, greater
intervention by the user may be required. The most divergent
sequences, especially if they have large insertions (which can
be discerned with the aid of dot matrix plots), should be left out
of the progressive alignmert, If there are sets of closely related
sequences that are deeply diverged from other sets, these can
_ be separately aligned and then merged by profile alignment.
Incorrectly determined sequences, containing frameshifts, can
also confound regions of an alignment: these can be hard to detect
but sometimes they have been grouped within the excluded
divergent sequences: then they may be revealed when they are

Table 1. Pascarella and Argos residue specific gap modification factors

A 1.13 M 1.29
C 1.13 N 0.63
D 0.96 P 0.74
E 1.31 Q 1.07
F 1.20 R 0.72
G 0.61 S 0.76
H 1.00 T 0.89
I 1.32 v 1.25
K 0.56 Y 1.00
L 121 w jWx]

The values are normalised around & mean value of 1.0 for H. The lower the
value, the greater the chance of having an adjacent gap. These are derived from
the original table of relative frequencies of gaps adjacent to each residue (12)
by subtraction from 2.0.

individually compared to the alignment as having appareatly
nonsense segments with respect to the other sequences.

Finding the best alignment

In cases where all of the sequences in a data set are very similar
(e.g. no pair less than 35% identical), CLUSTAL W will find
an alignment which is difficult to improve by eye. In this sense,
the alignment is optimal with regard to the alternative of manual
alignment. Mathematically, this is vague and can only be put on
a 'more systematic footing by finding an objective function (a
measure of multiple alignment quality) that exactly mirrors the
information used by an ‘expert’ to evaluate an alignment.
Nonetheless, if an alignment is impossible to improve by eye,
then the program has achieved a very useful result.

In more difficult cases, as mors divergent sequences are
included, it becomes increasingly difficult to find good alignments
and to evaluate them. What we find with CLUSTAL W is that
the basic block-like structure of the alignment (corresponding to
the major secondary structure elements) is usually recovered, with
some of the most divergent sequences misaligned in small regions.
This is a very useful starting point for manual refinement, as
it helps define the major blocks of similarity. The problem
sequences can be removed from the analysis and realigned to
the rest of the sequences automaticaliy or with different parameter
settings. An examination of the tree used to guide the alignment
will usually show which sequences will be most unrelisbly placed
(those that branch off closest to the root and/or those that align
to other single sequences at a very low level of sequence identity
rather than align to a group of prealigned sequences). Finally,
one can simply iterats the multiple alignment process by feeding
an output alignment back into CLUSTAL W and repeating the
multiple alignment process (using the same or different
parameters). The SH3 domain alignment in Figure 4 was derived
in this way by 2 passes using default parameters. In the second
pass, the local gap penalties are dominated by the placement of
the initial major gap positions. The alignment will either remain
unchanged or will converge rapidly (after 1 or 2 extra passes)
on a better solution. If the placement of the initial gaps is
approximately correct but some of the sequences are locally
misaligned, this works well.

Comparison with other methods
Recently, several papers have addressed the problem of position-

specific parameters for multiple alignment. In one case (35), local
gap penalties are increased in a-helical and S-strand regions when
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sensitivity of the progressive multiple alignment approach. This
is achieved with almost no sacrifice in speed and efficiency.

There are several areas where further improvements in
sensitivity and accuracy can be made. Firstly, the residue weight
matrices and gap semngsmbemademo:eaccumeasmom
and more data eccumulane, while matrices for specxﬁc sequence
types can be derived {e.g. for transmembrane regions (37)].
Secondly, stochastic or jterative optimisation methods can be used
to refine initial alignments (7,9,10). CLUSTAL W could be run
with several sets of starting parameters and in each case, the
aligaments refined according to an objective fanction. The search
for a good objective flmcuonlhattakcsmtoaccountﬂmsequence-
and position-specific information used in CLUSTAL W is a key
area of research. Finally, the average number of examples of
eachprotemdommnorfamﬂy:sgmwmgsmdﬂy Itis not only
important that programs can cope with the large volumes of data
that are being generated, they should be able to exploit the new
information to make the alignments more and more accurate,
Globally optimal alignments (according to an objective function)
may not always be possible, but the problem may be avoided
if sufficiently large volumes of date becoms availsble. CLUSTAL
W is a step in this direction.
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