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Genetic  algorithms methods utilize the  same  optimization procedures as natural genetic 
evolution, in  which a population is gradually improved  by  selection.  We have developed a 
genetic  algorithm search procedure suitable  for use in  protein folding simulations. 
A population of conformations of the  polypeptide chain  is maintained,  and conformations 
are changed bx mutation, in the form of conventional  Monte  Carlo steps,  and crossovers in 
which parts of the polypeptide chain are  interchanged between conformations. For folding 
on a simple two-dimensional lattice it is found that  the  genetic  algorithm is dramatically 
superior to conventional Monte Carlo methods. 
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folding pathways 

I. Introduction 
Computing the functional conformation of a  pro- 

tein molecule from the amino acid sequence is diffi- 
cult for two reasons: the contributions to free energy 
that stabilize  the folded conformation are poorly 
underst.ood (see review bx Dill. 1990), and  the  space 
of possible conformations is very large  and complex 
(Levinthal, 1968). making it difficult to search for 
the  appropriate free energy minimum.  While 
analyzing the first problem requires detailed models 
of protein structure,  the second problem can be 
investigated on much simplified  models. In  this 
paper we address  the search problem, and  investi- 
gate  the  potential usefulness of a  recently estab- 
lished search  technique, genetic algorithms,  for 
finding the functional conformation of proteins. 

Genetic. algorithm methods (GAS?) are so called 
because they utilize the same  optimization pro- 
cedures as natural genetic  evolution:  mutation, 
~ ~ o s s o v e r  and replication operating on strings 
(Holland. 1975; Goldberg, 1989). In  the last few 
years these methods have begun to gain recognition 
as a raluable search  technique  (Goldberg, 1969; 
Uavidor. 1990). In CA4s a population of current 
solutions is maintained.  The solutions evolve by 

mutations  and crossovers. The  latter process is the 
heart of the  method. Technically, the operation 
consists of exchanging  parts of strings between pairs 
of solutions, so as t o  yield new solutions. This has  a 
large  impact  on  the effectiveness of the  search, since 
it allows exploration of regions of the search space 
not accessible to  either of the two “parent” solu- 
tions.  Through such interactions, good features 
from one solution can be transferred  to  the  others 
and  further  explored.  The population size is  main- 
tained by pruning, using criteria of fitness for each 
solution in such a way that. (1) better solutions  have 
a higher chance of reproducing; and (‘I) the  diver- 
sity of the  population is maintained  to allow  for a 
large  sampling of individual  solutions so that many 
combined features  may emerge.  Experience with 
other  “co-operative” problem solving methods 
(Clearwater et al., 1991; Huberman, 1990) has shown 
that this  feature of exchange of information 
between solutions is often a powerful way of 
extending  the effectiveness of a search. 

Our application of GAS to  the protein folding 
problem may be regarded as  an extension of the 
more  familiar  Monte Carlo (JIC]  methods  to include 
information exchange between a set of parallel 
simulations. .4 population of evolving conforma- . .  
tions is maintained.  Each conformation changes 

i Plbbreviations usrd: G.4, genetir algorithm: MC. independently  for some t,ime by the Metropolis 
onte (‘ark). Monte Carlo procedure (Metropolis et a/.. 1953) in - -  

I ?  
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the  usual  manner, in a process equivalent to  the 
accumulation of point  mutations.  Then selected 
polypeptide  chains  are  cut  and  each  rejoined to  
another chain cut  at  the same point  (crossovers). 
Metropolis-type  criteria  are used to see if each  newly 
generated  conformation  should be accepted.  Those 
that  are accepted enter  the MC phase again,  and <he 
process is iterated.  Here, we describe the  details of 
the procedure  and compare its effectiveness with 
Monte CarIo alone. We find that a simple GA can 
dramatically  improve search effectiveness in a 
model of  protein folding. 

2. T h e  Model 

\I'e  wish to  develop an  implementation of a GA 
suitable for protein  folding and  compare i t  with  the 
MC method. Thus,  we seek  to use the  simplest model 
that  still  captures  the essence of the  important 
components of protein folding (Lau & Dill, 1990). 
The linear  sequence is  composed of "amino-acids" 
of only tw-o types:  hydrophobic  (black)  and  hydro- 
philic (white).  This sequence is "folded" on a  two- 
dimensional  square  lattice on  which a t  each point 
the  chain can turn 90" left or right., or continue 
ahead.  The  energy  function is simple: - 1 for each 
direct  contact (occupying  neighboring  non-diagonal 
Iattice  points) of non-bonded  hydrophobic- 
hydrophobic amino acids.  Figure 1 shows  possible 
conformations of the 20 amino acid molecule B-W- 
B-W-W-B-B-W-B-W-W-B-~-B-B-~-~-B-W-B. 

Under  this. energy  function, low energy  con- 

since  hydrophobic-hydrophobic interactions  are 
rewarded,  the  hydrophobic  (black) residues tend  to 
be on the inside of a low energy structure, while the 
hydrophilic  (white)  residues  are  forced to  the 
surface.  Because  each  residue  can  participate in 
only two  contacts a t  most (3 for the  terminal 
residues), the solvation of hydrophobic  residues and 
the desolvation of hydrophilic  residues are 
implicitly  unfavorable  without  being  directly 
penalized. 

Lattice-based  Monte Carlo simulations  using  a 
simplified description of the  atomic  structure  have 
been the most successful folding methods so far 
(Cove11 & Jernigan, 1990: Skolnick 8: Kolinsky, 
1990). We  use additional simplifying assumptions 
here: a two-dimensional model is used, residues  are 
represented by a single atom.  internal  electrostatic 
interactions  are not considered, and  the  energies  are 
very short  range. Nevertheless,  such  simple  models 
do  exhibit  many of the  features of real folding (Lau 
8: Dill, 1990; Crippen,  1991) and also permit a 
rigorous  analysis of the search efficiency, as seen 
below. 

The  number of possible valid (i.e. self-avoiding) 
conformations for a L-long  sequence on a two- 
dimensional  square  lattice  approaches: 

ApLLY. 

where p 21 2-63, y c= 0.333 (Gutt.man et al., 1968; 
f3arber & Kinham,  1970).  Thus.  the  number of 

. . ., . ..  .. . .- , formations are..,cornpact with  a  hydrophobic core: 

-4 

-9 
Figux 1. The Monte  Carlo algorithm. The proreas 

starts with  the  struct.ure in a fully estended conforma- 
tion. Then, a n  amino acid is chosen at random and the  
C-terminal  portion of the chain is rot.ated around that 
amino  acid.  In  this  example residue number 11 was 
chosen randomly as the pivot for a move. A 180" rotation 
brings the structure in ( A )  with an energv of - 4  t.o the 
compact. structure with lower energy - 9  (B). The move is 
always  accepted if it leads t o  a lower energy conforma- 
tion. or non-determinist.icalI?. acrepted. according to the 
energy increase with t.he m n w .  
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e . . . .  <elf-avoiding confirmations possible far the sequence BWBW- 
.A full enumeration was performed to evaluate the energy of all 

.B\~B\r~~'lJ\~1313~~~~'lJ~~B. For each energy le\-el we list the 
,lumber of conformations with that energy. Note  that the largest 
fractional decrease is between the number of conformations 
found in energy level -8 and the number of conformations with 
the lowest energy level -9. 

possibilities is exponential in the length of the 
sequence. Our goal is to devise  a  search  algorithm 
that can find a conformation with the lowest free 

--gg value. For the sequence given  above,  the 
rwrgies of all the 83,779,155 possible valid con- 
formations were calculated  (see Table 1 ) .  The 
number of conformations in each  energy level 
decreases rapidly.  with  the  largest  fractional 
decrease in the final transition  to  the lowest energy 
level: there  are  four conformations  with  energy - 9  
verms 96 conformations  with - 8. (Similar  behavior 
was observed for 24 residue long sequences.)  Note 
*!.::t even for this very simple lattice model the 
!.. . . h e  arrangement of an  optimal  conformation is 
very rare  and difficult to achieve. The infinitesi- 
mally small size of the optimal  subset  relative to  the 
size of the conformational  space (only ~ 0 5 ~  lo-' 
of the conformations!)  highlights the problem of 
designing an efficient search. 

3. Monte Carlo Methods 
.''le Monte earlo (SIC) method (Jletropolis et d., 

i . d :  Kirkpatrick et aE., 1953: Xarts & Korst, 1989) 
for protein folding can be described in the following 
general algorithm. (1 )  Start from a random coil 
conformation. (2) From a conformation S, with 
energy E,,  make  a single random  change of the 
conformation to conformation S I  and  evaluate  its 
energy E,.  (3) If E ,  I E,, then  accept the change t o  
"Information S2,  otherwise  decide,  non- 
'!"+Prministitally,  whether to  accept  the  change 

d i n g  to  the energy increase with  the change. 
usually the criterion is of the  form:  accept if: 

accepted,  then retain t h r  former (*onfornution S , .  
(4) If the  stop criterion is n o t  met, then repeat s t e p  
(2)  to (4). 

Theoretically. with the  appropriate cooling 
scheme  this  algorithm is guaranteed  to converge to 
the global minimum.  but i t  must be remembered 
that  the number of steps in such an "appropriate" 
scheme is strikingly  large. It is actually  larger thwn 
the exponential  number of steps needed to 
enumerate  the whole space!  (The  theoretical  aspects 
of MC methods  are discussed in Xarts QL Korst 
(1989), chapter 3.) Practically,  the selection of the 
cooling scheme is crucial for the success of the 
process. Usually, ck is  cooled linearly (Le. ck+ = zr,. 
where z is a constant smaller than  but close to 1 ) .  -4s 
the minimum energy value is not known in advance 
and  as  the algorithm does not always converge to 
the lowest energy level it has encountered,  the usual 
procedure is to run the algorithm as long as the 
computer resources permit. while decreasing r, 
gradually  and keeping track of the lowest energy 
solution  found. 

In .  our model the initial conformation is fully 
extended  (i.e. a straight line). The random  change is 
performed  by  randomly selecting an  amino acid and 
rotating  the C-terminal portion of the chain around 
that amino  acid (see Fig. 1). For the 20 amino acid 
example  above,  the algorithm was run for 
50,000.000 steps,  about one half of rvhich yielded 
valid  (self-avoiding)  conformations. Lyhen a valid 
conformation was encountered its energy was 
evaluated. The ck was reduced very slowly from P to  
0.15 (c, was decreased by a = 0.99 every 200.000 
steps), reducing the chance of accepting  a move 
with  a  cost of + 1 from 0 6  to lo-'. The  simulation 
was  run five times. I n  these runs,  an  optimal con- 
formation  with  energy -9  was found after 
3,199,813,  8,823,199,  469,984,  292,443 and 
7,367,375 energy  evaluations, respectively. 

4. Genetic Algorithms 
In  implementing a genetic algorithm,  one has to 

choose the  appropriate method of encoding the 
data,  the size of the population, the specific manner 
of applying the genetic  operators,  and the  popula- 
tion  pruning scheme. Our implementation of the 
genetic  algorithm is unique in that  the solutions  are 
not encoded as  binary strings but  rather  are  the 
conformations themselves which are treated  directly 
in the spirit of genetic operators.  The process starts 
with ..V extended  structures.  In each generation 
each  structure is subject to a number of mutation 
steps.  Each  mutation is the  same as a single MC step 
described above  and is subject to similar acceptance 
criteria  as  in a >IC process. A t  the end of this >IC 
stage  the crossover operation is  performed. The 
chance p(S , )  of a structure being selected for cross- 
over is proportional to its energy value E i ,  i.e.: 

E .  p(S,)  = +. 
C Ej 

j =  1 
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Figure 2. The  genetic  algorithm.  The process starts with a population of fully extended  structures.  Each  structure 
undergoes a MC stage  followed by a crossover  stage.  In  the  crossover  stage. pairs of structures  are  randomly  (based on 
their  energies)  cut and pasted. In  this  example  the  cutpoint  was  randomly  chosen  to be after residue 14. Joining  the first 
14 residues of (A) with  the last 6 residues of (B) and applying a randomly  chosen 2?OC rotation at the  joint  achieves  the 
compact  structure in (C). In  this case, the  energy  value  of  the  hybrid (C) is -9, lower  than  the  energies -5 and - 2  of its 
"parents".  The hybrid is always accepted if i t s  energy is lower than  the  averaged energies of its  parents. or non- 
deterministically  accepted  according to its energy  increase. 

Thus,  the lower  energy  conformations have a higher 
chance of being selected. For a pair of selected 
structures a random  point is  chosen along the 
sequence  and  the  X-terminal  portion of the first 
structure is connected to  the C-terminal  portion of 
the second stFcture (see Fig. 2). As there  are  three 
ways to join  the  parts  together  (connecting  the 
chains  with  angles of 0", 90" or 270"), these poss- 
ibilities are  tested in a  random  order to find one that 
is valid [i.e, where  no residue  from  one structure 
occupies  a lattice  point used by  a  residue  from the 
other). If none of the  three ways lead to a self- 
avoiding  structure,  then  another  pair of structures 
is selected. Once  a valid structure Sk is created,  its 
energy E,  is evaluated  and  compared to  the 
averaged  energy Eij = (E i+  Ej)/2 of its "parents". 
The  structure is accepted if Ek 5 E , ,  or if the 
energy will be increased based on the decision: 

This crossover  operation is repeated  until N - 1 new 
accepted  hybrid  structures have been constructed to 
constitute  the  population of the  next  generation.  In 
addition,  the lowest energy  conformation in each 
generation is directly replicated to  the  next  genera- 
tion. We allow a  higher  acceptance  rate  for  bad 
moves that increase the energy for mutation  steps 
than for crossovers. This st.rategy maintains  the 
diversity of the population and  prevents  premature 
convergence to a few low energy  conformations. 

For the  case of the 20-residue long molecule 
described  above, we performed  a  simulation  with a 
population of 200 structures with 20 steps of indivi- 
dual  mutations per structure between  crossover 

stages.  Five of the  structures  after  the fifth and  the 
tenth  generations  are shown in Figure 3. Each 
application of a genetic operator is counted as a 
step.  Thus, a generation  takes 20 X 200=4OOO 
mutation steps plus  the number of crossover trials  it 
takes to  get 200 new valid structures,  typically 
around 900 steps. When a valid  conformation is 
encountered. its energy is evaluated.  The simulation 
was run for five times.  The  optimal  conformation 
was  found after 40,521,  32,708,  30,492, 36,026  and 
68,868 energy evaluations, respectively. Kote that 
for this  example  the GA runs  found  the solution 
much faster  t,han  the M C  runs  described  above. 

-8 -5 -5 -7 -6 

-9 -7 -6 -6  -6 

Figure 3. A snapshot during a G A  run. (A) Five  struc- 
tures from the 5th  generation of the  run, and (B) 5 
st.ructures  from  the 10th generation. Xote that.  the  early 
structures  are less compact and less organized  than  the 
ones  achieved  later in  the  run. This is reflected in lower 
energies for t h e  later  structures.  including  one  with  the 
lowest.  possible energy for this  sequence: -9. 
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Table 2 
Comparison of genetic algorithm (GA) and Nonte Carlo ( M C )  folding  simulations 

Length' Optimal energyb G A C  >ICd Long JlC' Ilultipte MC' 

20 - 9  - 9  (30.492) - 8  - 9  (292.443) -9  14100) 
24 - 9  - 9  (30.491) -8  - 9  (2.492.221) -9 (190,) 
25 - 8  - 8  ('0.400) - 1  -8  (2,691.5i2) -i ( I 0 0 O b )  

4s - 22 -22 ( 1 2 6 , w )  -I8 -20  (9,2Ol.i55) -19   (393  
50 -21 -21 (592,387) - 19 -21  (15,151.203) -20 (106) 

64 - 42 -37  (18i.393) -31 -35  (7,348,952) -32 ( 2 0 6 )  

- 
36 - 14 - 14 (301,339) -1" - 13 (6.55i.189) -13 (sob) 

60 - 34 -34 (208.781) -31 -33  (8,262.338)  -32 (io;) 

Eight sequences  were tested. For each, the GA method  is compared with several MC variants. We  check  a MC that uses as many 
energy evaluations as the GA, a much longer MC and a  multiple MC running 100 different  simulations.  The G.1 results  are very superior 
to those  from the comparable NC which  failed to find the  optimal  solution in  all  cases, and  are also  better  than  the longer MC runs.  In 
the 36.48 and 60-residue  long  sequences, the lowest  energy conformation was found by the GA and was not found in  any of the "cs .  All 
- - -  methods  failed to find the lowest energy  conformation  for the longest  sequence. 

- The following sequences were tested: 
(200) BWBWWBBWBWWBWBBWWBWB: 
(24) BBWWBWWBWWBWWBWWBWWBWWBB; 
(25) W~~'BWWBBW~~EVBBWWWWBBWWWWBBVVVBB: 
(36) ~ ~ ' I ' U 7 V B B ~ ~ B B W W ~ ~ W B B B B B B B W W B B W W ~ V B B I . V I V B \ ~ 7 ~ :  
(48) W ~ ~ B W ~ V B B W W B B ~ V \ T ' W W B B B B B B B B B B ~ V W ~ V ~ V ~ V B B ~ ~ 7 V B ~ W W B ~ ~ ~ V B B B B B ;  
(a) B B W B W B W B W B B B B W B W W W B W W ~ ~ B ~ V ~ V ~ ~ ~ V B ~ V ~ ~ ~ V B ~ ~ ~ ~ ~ B ~ V B B B B ~ ~ B W B ~ V B ~ V ~ ~ ;  
( 6 0 )  ~.'mI.'mBBBWBBBBBBBB~~I'WWBBBBBBBBBBWBWWWBBBBBBBBBBBBB~~~~~~~VBBBBBB~rBB~~B~V: 
(64) BBBBBBBBBBBBWB~liB~~~~BBWWBBWWBWWBBWWB~WWBBW~~BWWB~~V~VBB~V~.'mB~VB~V~B~BB~BBBBBB. 
The optimal energies were determined from the designed structures. For  the first 2 sequences  these  energies  were validated by full 

+numeration of the energies of all valid  conformations. 
' The GA was run with 200 structures for 300 generations. For  the  mutation  stage  the cooling  scheme starts with ck = 2 and is cooled 

try c, = 09 iq  every 5 generations.  The crossover stage starts with e,  = 0 3  and is cooled  by ck = 0 . 9 9 ~ ~  every 5 generations. For each 
sequence the  simulation was run 5 times.  For  the most  efficient run we report the lowest energy value achieved together  with  the 
number of conformations scanned before that value  was found. \. 

The NC was run to scan the number of conformations given  in the GA column. e, starts as 2 and decreases as  c, = d'95ck every 1/50 
of the number of conformations. The simulation was repeated 5 times, and  the lowest energy value found during  these simulations is 
listed. 

The long XC run performed 5O.ooO,ooO steps ( e ,  = '2; ck = C-99ck every 200.000 steps).  The  simulation  was run 5 times. The lowest 
energy  found during the best run with the number of conformations that were scanned to find this value are reported. ' Each multiple MC simulation consisted of 100 parallel runs of 5 0 0 , O O O  steps, starting with e ,  = 2 and cooling by cI = 0 . 9 5 ~ ~  every 
1O.OOO steps.  The  best  result  found by any of the  runs is reported together with the percentage of the  runs that achieved this  value. 

5. A Comparison  between the Methods 

The  simple model enables us to compare the 
performances  of the  two  methods.  The main factors 
to be compared are  the  number of energy  evalua- 
tions needed to  find one of the lowest energy  con- 
formations,  and  the lowest  energy  found for a  given 
!.:mber of energy  evaluations.  The  genetic algo- 
::!m is not  significantly  more costly per step  than 

the regular Nonte Carlo  method:  most  of  the  genetic 
algorithm  steps are  mutations which are  the same as 
the  regular MC steps,  and a crossover is not  much 
more expensive. The overhead  involved  with the 
population  book-keeping is not high and, in any 
case, the  dominant  factor is the energy calculation, 
identical for both  methods  and performed once for 
each valid conformation in each  method. 

The  two  methods  were  compared for a  set of 
sequences which were  designed to have particular 
low energy folds. Each  genetic  algorithm run  had  a 
Population of 200 conformations for 300 genera- 
tions. Each  generation  consisted of L mutation 
steps per structure  (where L residues is the length of 
the sequence)  followed  by  a  crossover  stage. The 
results are given in Table 2. In order to make  a &, thorough  comparison  between the GA and MC 

methods,  three  variants of the  latter were  used. In 
the first variant,  the  number of energy  evaluations 
was  set to  the minimum  required to find the  optimal 
solution  with  the GA. In  the second variant, a much 
longer (50,000,000 steps) MC simulation was  used. 
Third,  in  order to encourage the &IC procedure to 
explore  more of the  conformational  space,  multiple 
MC runs were  performed. For this  purpose, 100 runs 
of 500,000 steps each (i.e. equivalent  computer 
resources to  the single long run) were carried  out. 

Table 2 summarizes  the  results  obtained  on  eight 
different sequences  ranging  from 20 to 64 residues in 
length. The GA finds one of the lowest energy level 
conformations  rapidly for all  but  the longest 
sequence,  where i t  does not succeed with  the allo- 
cated  computing resoures. Single MC runs using the 
same  number of energy  evaluations in no  case  found 
a correct solution,  and for the longer  sequences, 
found  only  solutions  with  relatively  high energies. 
The much  longer single MC runs  did find a  con- 
formation  with  the lowest energy level for four of 
the sequences (mostly  the  shorter  ones),  with  the 
use of ten  to 100 times  as  many  steps. For four of 
the longer  sequences  the MC runs 
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Figure 4. The  lowest  energy structure for a 36-residue 

long sequence. This structure was produced by our GA 
algorithm after 301.339 energy evaluations. The structure 
contains a hydrophobic core formed by a helical trace of 
the chain. Much longer MC (50.000,OOO steps) runs were 
unable to  find such a low energy conformation. 

does not, is shown in Figure 4. The  multiple  short 
H C  runs succeeded with  only the two short 
sequences and failed for all  others.  Thus, at  least  for 
this  type of model of the folding  process, the GA 
method  is  very  superior to  the more  traditional MC 
approach. 

6 .  Discussion 
Other workers have  also  noted  severe  limitations 

with the convergence of Xonte Carlo simulations  on 
a lattice.  In a similar  three-dimensional  model 
(Shakhnovich et ai., 1991), i t  has been recently 
reported that  a  Monte  Carlo algorithm,  using a 
variant allowing very local single step changes  in 
the  structure, failed to  find the global minimum in 
all but one of the 30 sequences  (of  length 27 
residues) investigated.  The  failure of these  Monte 
Carlo searches  was attributed  to  the lack of specific 
folding pathways encoded  in the sequences. 

In choosing a general  search  technique we have 
tacitly  assumed  that we wish to find the  lowest 
energy  conformations  available  to  the  sequence. In  
fact, i t  is not known whether  the  functional  con- 
formation o f a  globular  soluble  protein is necessarily 
at the global free  energy  minimum. It has been 
reasoned that  the  number of possible conformations 
is so large that proteins  must fold by following a 
sequence-encoded pathway from the unfolded to  the 
folded state which,  in  some  sense,  guides them  to 
the  appropriate  functional  minimum  (Levinthal, 
1968). We have  shown that protein  folding, at least 

o n  a lattice, is a mrrnher of the class.of SP-cornpltsI I 
problems,  and  therefore  there probably esists t \ i1  

general  search  algorithm that can be paran teed  tcl 
find the global free energy minimum for real pro. 
teins  (Unger & Yoult, 1993). The real folding 
process may  thus end up in  a functional conforma. 
tion that is not  the global minimum of free energy. 
As the model becomes more computationally 
demanding,  the general search algorithms  are more 
likely to fail. While genetic  algorithms  can be use(] 
as general  search  procedures,  they  have special 
properties  that  are  compatible with the folding 
pathways hypothesis. As we will discuss below, 
genetic  algorithms may be able to mimic the folding 
pathway  rather than  conducting a hopeless brute 
force  search for the global minimum. 

The  pathway hypothesis  implies that search algo- 
rithms  may  only be successful if they in some way 
mimic  pathway behavior. Real  protein folding path- 
ways  have  usually been supposed to depend on local 
regions of the chain folding first (early folding units) 
and  the rest of the  structure  forming  around these 
by a combination of diffusionlcollision or propaga- 
tion processes (Wetlaufer, 1953; Karplus & Weaver, 
1976; Moult & Unger, 1991). If this i s  the case. GAS 
may  be  particularly  suited for  reproducing  pathway 
behavior, since they have the  property of tending  to 
preserve local favorable  conformational  features 
through successive generations. This  property is 
based  on the Schema  concept tyolland, 1955). 
A schema is a pattern used to  describe a feature 
common to  many  current solutions.  Holland has 
pointed  out  that  short  patterns  that  have above 
average performance will receive increasing  atten: 
tion  during a GA procedure,  while below average 
patterns will  be rapidly abandoned. In  protein 
structure applications GAS may be able  to produce a 
large  number of local substructures,  concentrate on 
the favorable  ones.  and  then find the  exact way in 
which these local substructures  should be assembled 
to  form the full structure.  In  this  sense, genetic 
algorithms  may be considered not as  conducting  a 
search  on a population of structures,  but  as 
sampling  points in the  conformational  space of a 
single molecule along the folding pathway. Lye will 
next  apply  the methods  developed here to more 
realistic  protein models to see if this is true. 

This work was supported in part by SIH grant 41034 
to J.M. We thank Hue  Sun Chan for providing us  Kith his 
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