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An algorithm and a  computer  program  have  been  pre- 
pared for determining RNA secondary  structures within 
any  prescribed  increment of the computed  global mini- 
mum free energy. The mathematical  problem of deter- 
mining how weU dehed a minimum energy folding is can 
now be solved. AU predicted  base  pairs  that  can  partici- 
pate in subophal strucrures  may  be displayed  and  ana- 
lyzed  graphically.  Representative  suboptimal foldings are 
generated by selecting  these base  pairs one at  a time and 
computing  the best fordings that  contain  them. A distance 
criterion that ensures  that no two structures are ‘(too 
close” is used to avoid  multiple  generation of similar 
structures.  Thermodynamic  parameters,  including fiee- 
energy  increments  for  single-base  stacking  at  the  ends of 
helices and for terminal  mismatched pairs in interior and 
hairpin loops, are incorporated into the  underlying  fold- 
ing model of the above algorithm. 

T HE RNA SECONDARY STRUCTURE MODEL HAS BEEN  IN 
existence since Fresco ef nl.  ( 1 )  first showed that single- 
stranded RNA folds back onto itself in structures stabilized 

by hydrogen bonds becureen complementary bases. This model is 
not concerned with three-dimensional aspects of  strumre, but 
focuses solely on which hydrogen bonds  form. This approach is 
appropriate, because while detailed three-dimensional structure data 
exists only for transfer RNA (Z), three-dimensional modeling is 
premature  for general KNA molecules. 

This folding model is an example of  what mathematicians call a 
discrere model. There  are no continuously varying parameters such 
as bond lengths, angles, or interatomic distances. Instead, either a 
hydrogen bond exists between nvo complementary bases or  it does 
nor. One of the principal advantages of  dealing  with such a 
smctural model is that mathematical tools exist to compute an 
optimal folding based on free-energy minimization. The pitfalls of 
becoming trapped in local energy minima that are encountered in 
models with a large number of continuous parameters can be 
avoided. 

The model, however, has the mathematical properry that there 
can be numerous foldings within 5 or 10 percent of the computed 
minimum free energy. Moreover, these foldings can be topologically 
very different from one another. For example, an alternative folding 
to the computed minimum free-energy folding of  the 5.8s RNA 
from Crypfhecodinium .coohnii has an energy wiyhin 5 percent of the 
global minimum and yet shares not a single base pair with the 
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optimal  folding (3). The uncertainties inherent in the  model and in 
the  thermodynamic  data on which folding is based can be mitigated 
if a means of predicting suboptimal foldings is  available. 

Two types of RNA folding  algorithms have the ability to find a 
minimum energy secondan. strumre.  The “combinatorial” method, 
first introduced by Pipas and McMahon ( 4 ) ,  forms smctures by 
combining all potential helices in all possible ways.  By their nature, 
combinatorial algorithms predict  alternative foldings. The program 
developed by Ninio  and co-workers (5-7) is based on  a time-saving 
tree search method,  but  it does not escape from combinatorial 
reality. The number of possible foldings, and hence the computation 
time, grow exponentially with the size of the sequence (8), and it is 
not surprising that this and similar programs are limited ro folding 
about 150 to 200 bases. 

Minimum energy foldings can also be computed with recursive, 
or dynamic  programming, algorithms. They were first used in the 
RNA folding problem by Nussinov er q / .  (9)  to maximize base 
pairing. This method was subsequently exrknded to energy minimi- 
zation (IO, 11). These  programs work  in two stages. The first part, 
called the fill algorithm, computes and stores  minimum folding 
energies for all fragments of the sequence. The 



n e  fim step toward  this  multiple  folding algorithm came  with 
atcempts to extend the algorithm to fold circular RNA such as 
viroids (15). In a circuIar RNA, the choice of an origin is arbitrary. 
The key observation is that, in a circular molecule composed of 
ribonucleotides rl, r2, . . ., r,, a base pair linking ri and rj divides the 
secondary sFNcture into two parts. There is a folding of the 
“included fragment? from ri to rj, and another  folding of  the 
“excluded fragment“ from 9 through the origin to r;. In a linear 
molecule, t h i s  symmetry is lost since  the “excluded fragment? is 
broken into two linear segments, rl to r; and rj to r,,. The addinviry 
assumption characteristic of recursive algorithms implies that the 
.total folding energy is the s u m  of the energies of the two foldings. 
Stcger el af. (16) extend the algorithm of Zuker and Stiegler (11) by 
computing  additional  numbers V(j,i),  .analogous to V(i,j), but 
referring to the “excluded fragments” instead. These numbers can 
atso be computed recursively. They observe that V(i,j) + V ( j ,  i )  is 
the minimum frcr energy ofa  snucnue containing  the base pair r,-rj, 
and  that the  minimum value of V(i,j) + V(j,i) over all possible 
base pairs is the minimum folding energy, €,in, for the circular 
RNA m o l d c .  A similar extension to folding circular R N A  was 
made subsequently ( 17). 

The above extension provides all that is  necessary for  the realiza- 
tion o f a  multiple folding  algorithm, at least for circular RNA. The 
time-consuming fill algorithm is executed normally, although the 
arcular algorichm requires mice as much time arcula2-consuming alg 5148 t d  c i r c u 0 ,  
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replaced  by U130-A19' and in which UIz9 is single-stranded. The 
distance criterion  introduced earlier was designed to eliminate the 
prediction of  two such close structures. Thirty separate runs were 
madc with the automatic feature to select foldings (Table 1). It  is 
rcmarhblc  that so many trivially different 10-optimal foldings are 
found. When the distance between these foldings is forced to be 
greater than 2, &e number falls dramatically. The 96 10-optimal 
foldings with d = 10 were examined in some detail. All of the 
srmcrual motifs  in the model of Burke et a / .  (26) occur in this 
collcccion, as do the s m m r a l  elements contained in the model of 
Cech et al. (24). The P3 region is found without the two base pairs 
aftcr the U-U mismatch.  This  entire motif appears only when d 5 2. 
The rcason is that  those two base pairs are energetically unfavorable 
cvcn when the rest ofthe motif forms. The entire P3 motifoccurs in 
an 8.2-optimal srsumre (Fig. 5). 
In the 5-  and 10-oprimal cncrgy dot plots for the WS (Fig. 6, B 

and C), the addcd lines create three  niangular regions above the 
diagonal, corresponding to base pairs within the segments from 1 to 
105, 106 to 213, and 214 to 413. In the 5-optimal plot, there are 
vcry few dots outside thesc rriangular regions, which means that, 
within 5 percent of the minimum energy, base pairing between the 
three segments is  uniikcly. Alternative structures most likely occur 
from alternative foldmgs  within these segments. The third  and 
brgcst mangle is thc most  cluncred. implying that  the greatest 
variability is in thc last segment. In the  10-optimal dot plot, the 
number of possible long-range base  pairs  is considerable. However, 
thc rmanglcs above and to the right of the middle mangle contain 
rclaavely few dots, which means that the segment from nucleorides 
lo6 to 213 is  iikely to base pair only with itself in 10-optimal 
foidjngs. The growth of dots in the middle triangle from 0- to 5- to 
lO-optimal suggests a blurring of the  brmched motif formed by 
baxs 106 to 2 13 (Fig. 4). The conclusion is that this branched motif 
is wcl dctermincd and is likely to occur in 10-optimal smctures. 
Ncvercheless, it CM partially disappear even within 5 percent of the 
minimum energy. The 5-oprimd  dot plot (Fig. 6B) contains three 
~~nsccut ivc  helices that intrude on  the rectangle to the right of the 
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middle.mangular region. Selecting a base pair  (such as G'09-U3") in 
the region results in a 4.6-optimal folding that eliminates 13 base 
pairs in the stem region of the branched motif (Fig. 7). Similar 
analyses of the energy dot plots for the IVS show thar motif A (Fig. 
4) is also well detek i ied ,  as is the hairpin on A3' to Us'. In 
contrast, baxs 75 to 105 of the 11's can participate in many 
alternative structures  within 10 percent of the minimum energy. 

This qualitative image analysis can be made more precise by 
introducing a new kind of plot. If r; is the ith ribonucleotide  in a 
sequence, then P-Num(i) can be dcfincd as the  total  number of 
different base pairs in which r; can  participate in  all P-optimal 
foldings. Thus P-Num(i) is the number of points in the ith row and 
column ofthe P-optimal  energy dot plot. In plots o f 5 S u m  and  10- 
Num for the IVS (Fig. 8),-the IO-Num lot forms a troush in the 
region of the branched motif (U106 to A- ), indicating a relarively 
well-defined structure. The average value of 10-Num is 15.9 for this 
segment. However, the P-Q base pairing at the base of this region is 
not well defined, with average 10-Num values of 44.5 and 29.0  for 
P and Q, respectively. At the 10-percent-level of suboptimalin, P 
and Q can take part in numerous alrernative foldings. Thus a study 
of  the  IO-Num plot leads to h e  more conservative prediction that 
only the middle portion  of the branched motif (bases 11 5 to 204) is 
well defined. The average value of 10-Sum for the segment from 75 
to 105 is high (41.1), confirming the earlier obsewation based on a 
visual inspection of  the 10-oprimal dor plot. The best  defined 
regions are the A30 to U" hairpin and the A motif (bases 226 to 
246), with 10-Num averages of 4.8 and 6.2. respectively. At the 5 
percent level, more precise statements can be made. There are 20 
bases that are always single-srranded and 42  base pairs that always 
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Table 1. The number of foldings  computed for the Teerrohynwra IVS ar 
different  percenrages from the minimum folding e n e r p  P for various 
minimum pairwise-distance criteria d .  

0 2 1 I 1 1 1 
1 17 4 2 2 2 1 
2 40 10 5 4 4 2 
5 325 91 36 21 14 4 

10 3140 677 230 96 39 9 
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Fig. 6. (A)  Thc 0-oprimal cncrF 
doc plor for rhc tVS folding. Thc 
minimum computed folding c n c r p  
is -106.1 kcd'rnolc. ( 8 )  The 5- 
oprimal l\'S energy dor plot. (Ci 
The 10-optimal IVS sncrp dot 
plor. Thc horizonral lines in ro\vs 
106 md 213 ~d rhc vcrrical lines In 
columns 106 and 213 (B and C)  
havc been addcd to aid the discus- 
sion. 
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wxur In 5-optimal srructures. In particular, the hairpin G3' to Cs4 
and the A Inorif withour the bottom nvo base pairs must always 
form in 5-0prim.d stnxturcs. 

Suboptimal  foldings versus dot plot analysis. The automatic- 
traceback proccdure is nor inrcnded ro generate all nearly optimal 
foldings. Even \vi& the distance constraint, here  can be too many 
stmcrures to csamine within 10 or even 5 percenr of  the minimum 
cnerg .  For esample, within 5 pcrcenc of the minimum energy, the 
three segments 1 ro 105. 106 to 213, and 214 to 413 ofthe IVS fold 
more or less independently of one another (Fig. 6B). Selecting a 
suboptimal base pair in one ofthe segments produces a suboptimal 
smcrure in that segment. whereas the  folding in the rest of the 
sequence is optimal. If ten suboptimal base pairs are chosen in each 
trianplar region, a total of 30 structures  would be generated bv the 
exisnng  program. Howwer. it is possible ro combine each subopti- 
mal folding in each seepent with every other suboptimal folding 
found in the other rwo segments. This procedure yields 
10 X 10 X 10 = 1000 suboptimal srruc+ures. In general, this sort 

C 
G, 
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U C U  

Fig. 7. Parr of a 5-optimal  folding in Lvhich rhc branched structural motif 
from Fig. 4 (bases U'" to A"') is partly  lost.  This  folding also contains 
long-range base pairs nor found in rhc  optimal  srructurc. 
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Flg. 8. Thc 5- and IO-Nurn plots for the IVS .shown in solid and dashed 
lincs, respectively. The total number of basc pairs in which the ith base can 
rake parr in 5- o r  10-optimal  foldings (ordinate) is plortcd  against I 

(abxisu). Plorrcd ordinates arc the averages over rhrec consecu!ivc bases 
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of combinatorial  argument can be used to increase the output  of the 
program by many orders  of magnitude. Thus  the algorithm was 
designed ro find the besr structures containing single given  base 
pairs, instead of proceeding to compute structures containing two 
or more prescribed base pairs. 

The selection of a single suboptimal base pair usually results in the 
discovery of a novel local foIding motif  including that base pair. The 
rest of the  folding  often  contains base pairs that have been found in 
previous foldings. Occasionally, selecting a base pair  produces a 
folding that is different from previous strucrures not only near the 
selected base pair, but farcher  away  as well. At the very least, the 
procedure of selecting P-optimal base pairs not too close to base 
pairs that have already occurred in a  folding should yield all possible 
local motifs that can take parr  in P-optimal  foldings. Ac the 10- 
optimal level, this procedure predicts 96 percent of phylogenetically 
determined helices in 141 rransfer RNA sequences and 88 percent 
of  the corresponding helices for 67 5s RNA sequences ( 3 1 ) .  

The analysis of the energy dot plot and the derived P-Num 
function is an effective  way of viewing and appreciating the enure 
range of solutions  within  a given percentage of  the minimum 
folding energy. This approach makes it possible to assign a confi- 
dence to a  secondan.  structure, or to decide that it is very unlikely 
that  one segment base pairs with  another. The program already 
allows for the incorporation of nuclease data indicating single- o r  
double-stranded regions, so that only base pairs  compatible  with 
such data would be viewed in the dor plot. An automated procedure 
to compare energy dot plots of two or more homologous sequences 
in the search for a common folding h a t  would combine energy 
minimization and phylogeny remains to be developed. 
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