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On Finding All Suboptimal
Foldings of an RNA Molecule
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An algorithm and a computer program have been pre-
pared for determining RNA secondary structures within
any prescribed increment of the computed global mini-
mum free energy. The mathematical problem of deter-
mining how well defined a minimum energy folding is can
now be solved. All predicted base pairs that can partici-
pate in suboptimal structures may be displayed and ana-
lyzed graphically. Representative suboptimal foldings are
generated by selecting these base pairs one at a time and
computing the best foldings that contain them. A distance
criterion that ensures that no two structures are “too
close” is used to avoid multiple generation of similar
structures. Thermodynamic parameters, including free-
energy increments for single-base stacking at the ends of
helices and for terininal mismatched pairs in interior and
hairpin loops, are incorporated into the underlying fold-
ing model of the above algorithm.

existence since Fresco er al. (1) first showed that single-
stranded RINA folds back onto itself in structures stabilized
by hydrogen bonds berween complementary bases. This model is
not concerned with three-dimensional aspects of structure, but
focuses solely on which hvdrogen bonds form. This approach is
appropriate, becanse while detailed three-dimensional structure data
exists only for transfer RNA (2), three-dimensional modeling is
premature for general RNA molecules.
This folding model is an example of what mathematicians call a
discrere model. There are no continuously varving parameters such
as bond lengths, angles, or interatomic distances. Instead, either a

THE RNA SECONDARY STRUCTURE MODEL HAS BEEN IN

optimal folding (3). The uncertainties inherent in the model and in
the thermodynamic dara on which folding is based can be mitigared
if a means of predicting suboptimal foldings is available.

Two types of RNA folding algorithms have the ability to find a
minimum energy secondary strucrure. The “combinatorial” method,
first introduced by Pipas and McMahon (4), forms structures by
combining all potenrial helices in all possible ways. By their nature,
combinatorial algorithms predict alternative foldings. The program
developed by Ninio and co-workers (5-7) is based on a time-saving
tree search method, but it does not escape from combinatorial
reality. The number of possible foldings, and hence the computation
time, grow exponentially with the size of the sequence (8), and it is
not surprising that this and similar programs are limired to folding
abour 150 to 200 bases.

Minimum energy foldings can also be computed with recursive,
or dvnamic programming, algorithms. They were first used in the
RNA folding problem by Nussinov er 4. (9) to maximize base
pairing. This method was subsequently extended to energy minimi-
zadon (10, 11). These programs work in two stages. The first part,
called the fill algorithm, computes and stores minimum folding
energies for all fragments of the sequence. The process begins with
all pentanucleotides and builds up to larger fragments in a recursive
fashion. The second algorithm, called the traceback, computes a
minimum energy structure by searching systematically through the
matrix of stored energies. The main advantages over combinatorial
algorithms are speed and the ability to fold relarively large mole-
cules. By examining possible base pairs in the context of what
neighboring base pairs might be, the algorithm escapes the tyranny
of an exponentially growing number of structures. If the treatment
of multibranched loops is sufficiently simple {12), a recursive folding
algorithm can execute in time proportional to the cube of the

sequence length. My own algorithm (71) can fold about 2000 bases










replaced by U%-A™' and in which U'® is single-stranded. The
distance criterion introduced catlier was designed to eliminate the
prediction of two such close structures. Thirty separate runs were
made with the automatic feature to select foldings (Table 1). It is
remarkable that so many wivially different 10-oprimal foldings are
found. When the distance berween these foldings is forced to be
greater than 2, the number falls dramatically. The 96 10-optimal
foldings with d = 10 were examined in some derail. All of the
structural motifs in the model of Burke er al. (26) occur in this
collection, as do the structural elements contained in the model of
Cech er al. (24). The P3 region is found withour the two base pairs
after the U-U mismarch. This entire motif appears only when d < 2.
The reason is that those two base pairs are energetically unfavorable
even when the rest of the motif forms. The entire P3 motif occurs in
an 8.2-optimal structure (Fig. 5).

In the 5- and 10-optimal energy dot plots for the IVS (Fig. 6, B
and C), the added lines creare three wiangular regions above the
diagonal, corresponding to base pairs within the segments from 1 to
105, 106 to 213, and 214 1o 413. In the 5-optimal plor, there are
very few dots outside these triangular regions, which means that,
within 5 percent of the minimum energy, base pairing between the
three segments is unlikely. Alternative structures most likelv occur
from alternative foldings within these segments. The third and
largest triangle is the most clumered. implving that the greatest
variability is in the fast segment. In the 10-optimal dot plot, the
number of possible long-range base pairs is considerable. However,
the rectangles above and to the night of the middle triangle contain
relatively few dots, which means that the segment from nucleotides

o 213 is likelv_ro_hase_pair only wirh itself in 10-ontimal

middle triangular region. Selecting a base pair (such as G'®-U**'} in
the region results in a 4.6-optimal folding that eliminates 13 base
pairs in the stem region of the branched motif (Fig. 7). Similar
analyses of the energy dot plots for the IVS show thar motif A (Fig.
4) is also well determined, as is the hairpin on A¥ to U%. In
contrast, bases 75 to 105 of the IVS can participate in many
alternative structures within 10 percent of the minimurm energy.
This qualitative image analysis can be made more precise by
introducing a new kind of plot. If r; is the ith ribonucleotde in a
sequence, then P-Num(i) can be defined as the total number of
different base pairs in which r; can participate in all P-optimal
foldings. Thus P-Num(i) is the number of points in the ith row and
column of the P-optimal energy dot plot. In plots of 5-Numand 10-
Num for the IVS (Fig. 8), the 10-Num plot forms a trough'in the
region of the branched motif (U'% 1o A°'%), indicating a relatively
well-defined structure. The average value of 10-Num is 15.9 for this
segment. However, the P-Q base pairing at the base of this region is
not well defined, with average 10-Num values of 44.5 and 29.0 for
P and Q, respectively. At the 10-percent-level of suboptimality, P
and Q can take part in numerous alternative toldings. Thus a study
of the 10-Num plot leads to the more conservative prediction that
onlv the middle portion of the branched morif (bases 115 to 204) is
well defined. The average value of 10-Num for the segment from 75
to 105 is high (41.1), confirming the earlier observarion based on a
visual inspection of the 10-optimal dot plot. The best defined
regions are the A*® to U™ hairpin and the A motif (bases 226 to
246), with 10-Num averages of 4.8 and 6.2, respectively. At the 5
percent level, more precise statements can be made. There are 20
hases thar ate alwavs single-srranded angd 42 base pairs thar alwavs
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