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Abstract

The complexity of many community detection algorithms is usually an exponential function

with the scale which hard to uncover community structure with high speed. Inspired by ideas of

famous Modularity optimization, in this paper, we proposed a proper weighting scheme utilizing a

novel k-strength relationship which naturally represents the coupling distance between two nodes.

Community structure detection using a generalized weighted Modularity measure is refined based

on the weighted k-strength matrix. We apply our algorithm on both famous benchmark network

and real networks. Theoretical analysis and experiments show that the weighted algorithm can

uncover communities fast and accurately and able to be easily extended to large scale real networks.
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I. INTRODUCTION

Community structure[1–3] refers to a group of nodes in the network that are more densely

connected internally than with the rest of the network. The studies for community detection

are potentially useful in real social networks because nodes in a community are more likely

to have same properties and all these communities may be functional groups. The methods

for detecting community in networks are similar to the graph partitioning in graph theory

[4, 5]. For example, in parallel computing, the pattern of required communications can

be represented as a graph or network in which the nodes represent processes and edges

join process pairs that need to communicate. The problem is to allocate the processes to

processors in such a way as roughly to balance the load on each processor, while at the

same time minimizing the number of edges that run between processors so that the amount

of inter processor communication is maximized. In general, finding an exact solution to a

partitioning task of this kind is an NP-complete problem, so it is prohibitively difficult to

be solved accurately for large graphs. Inspired of this, a variety of heuristic algorithms have

been developed that give acceptably good solutions in many cases, the best known being

perhaps the Kernighan-Lin algorithm which runs in time O(n3) on sparse graphs[11].

Many algorithms on community detection had been proposed recently [6–8] and some of

them are designed by the parameters of the networks, for example, eigenvectors of graph

matrix, maximal modularity Q, clustering coefficient etc. Some algorithms are designed by

dynamical characters of networks, such as random walk and spreading mechanism etc, how-

ever, those methods only deal with the binary form, i.e. unweighted network. In real world,

the correlation(edge) between two nodes owns different strength, for example, as shown in

Fig.1(a), the bottleneck edges between two communities usually own larger influence or be-

tweenness. Furthermore, a network can be cut into several communities by the maximum

modularity [9]. Unfortunately, computing the maximum modularity Q is proved to be NP-

complete [10]. It means not all the communities are detected by computing the values of

Q even though there are many heuristic algorithms. In weighted networks, if the bottle-

neck edges are not own largest weight, the NP-complete problem appears, just as shown

in Fig.1(b). The random walk [12, 13], each node to be a walker and the walker will ran-

domly choose a neighbor and currently stands on to localize in each time, has a probability

to reach any other nodes, a dendrogram is got and the communities can be detected with
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FIG. 1: (a) The bottleneck edges between two communities usually own larger weight(influence

or betweenness), and the value of weight are illustrated by thickness. (b) The edges with the

largest weight are highlighted by enclosed circle, if they are not bottleneck edges(left subgraph),

the NP-complete problem appears. Here, different color represents different communities.

the help of modularity Q. But it is difficult to specify the optimum random-walking time.

Signal sending [14] is to transfer the topological relationship of nodes into the geometrical

structure in n-dimensional Euclidean spaces, how to choose a proper p and partite all nodes

into p-cluster is the weakness even it is empirical by the aid of F -statistics. Other methods

depend on the probability of the communities in dynamic social networks such as [15, 16],

and the values of modularity to find the proper communities such as [7, 8].

Since there are seldom polynomial time algorithms to detect the communities precisely,

some valuable researches are focus on how to obtain much lower computing complexity for

the detection algorithm compare with much more accuracy. In this paper, in order to design

fast and accurate algorithm to detect communities, we proposed a new weighting scheme to

enhance the community detection performance based on a novel correlation, i.e. k-strength

relationship, which naturally represents the coupling distance between two nodes. Com-

munity structure detection algorithm is presented using a generalized Modularity measure

based on the k-strength relationship weighted in various types of networks. Finally, we ap-

ply our algorithm on both benchmark network and real networks to evaluate its efficiency.

Theoretical analysis and experiments show that the algorithm can uncover communities fast

and accurately, which able to be easily extended to large scale real networks.

The outline of the paper is as follows. In Section II we introduce the fundamental defini-

tions, such as k-strength relationship and its generalized Modularity measure. In Section III,

we present the details of our weighting framework, including the procedures of algorithm
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and the analysis of computational complexity. Then we give some representative experi-

ments on both benchmark and real networks to validate the effectiveness and efficiency of

the algorithm in Section IV . Finally, Section V concludes this paper.

II. DEFINITIONS

In many real world relationships, such as the economic systems, the agents in system

influence one another directly: a rush to buy or sell a particular asset can promote the

other to do the same. In most cases, the agents are influenced only by their neighbors who

joint by direct relationships. All the buyer and seller formed an inseparable structure and

have very little interactions outside the structure. Such structure is known as communities

in social networks.

The agents by nodes in network and the influence between each other are denoted by a

weight between two nodes. In the following, a network is denoted by G with N -node set

V , m-link set E and G also is an undirected without loop or multi-edges. The adjacency

matrix A of G is a N × N zero-one matrix denoted by A = (aij)n×n, where aij=1 if there

is a link between i and j, and aij=0 otherwise. The adjacency matrix in an undirected

graph is symmetric. If the network is weighted, we denote the weight of each link by wij

and the weight matrix is W = (wij)N×N . For a given positive integer k, denote a path

from node i to j by a k-path if it is a walk with k + 1 nodes and without cycle on it.

Ak = (akij)n×n, a
k
ij =

∑N
l=1 a

k−1
il × alj is the number of k-paths from node i to j (i ̸= j), if

i = j, set akij=0. We denote Sk = (skij)N×N be a matrix of G for a given positive integer k.

Sk is defined as a kth-strength matrix of G. It was recursively defined as following:

If k = 0,

S0 = A, (1)

If k = 1,

S1 = (wij)N×N , (2)

For all k ≥ 2, let display
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Sk = (ski,j)N×N , s
k
i,j =

aki,j∑
s=1

1

k

k∑
l=1

wisl−1i
s
l
, (3)

where i = is0, i
s
1, · · · , isk−1, i

s
k = j are k-path fors = 1, 2, · · · , aki,j. To compute the values of

ski,j, S
0 = A is fixed as the network determined. All the k-path between each pair of nodes

can be obtained by Ak, Si,j is an additive polynomial. Therefore, we can compute the value

of Sk
i,j precisely.

Each k-strength matrix induces a k-strength relationship: Rk = {(i, j, si,j)|si,j =∑k
l=1 s

l
i,j}. That is, si,j in Rk are the elements of S = S1 + S2 + · · · + Sk = (

∑k
l=1 s

l
i,j =

si,j)N×N . We denote S a k-strength matrix of G and the networks induced by S is a

k-strength relationship networks. It is involved with a global idea of the mean-field the-

ory on the definition of k-strength relationship networks. Each node knows all the other-

s’information (the weights of nodes). It might be quite reasonable in many real systems.

For example, the traders on Shanghai Stock Exchange are influenced by others on the same

floor, but they can also be reminded by the trading patterns occurring on London or Paris.

Therefore, some mature trading behavior patterns will be formed in economic systems. It

is also very common in social networks to express the strength of friendship among people.

For instance, in acquaintance network, the relationship is the tightness of acquaintance and

higher the value is, more often the communication occurs. Another useful definition in our

framework is minimal q-cut of a graph, which denotes the cut edges own the smallest sum

of weight.

Here, q is a positive integer, {C1, C2, · · · , Cq} with |Ci| = ki and ∪q
i=1 Ci ⊆ V (G) be a

vertex subset such that the remaining of G after deleting all Ci is a disconnected and the

sum of link weights among the remaining is the minimum. It was found that a minimum

cut is a partition of G when ∪q
i=1Ci ⊆ V (G).

Guttmann had designed an algorithm to detect minimum cut in complete graphs[17]

and inspired of his idea, we will detect the communities using the strength relationships.

Our framework is also based on maximizing Modularity which firstly proposed by Newman,

and we generalized it on strength relationship matrix of G. Suppose there are q(q ≤ N/2)

communities inG, C = {C1, C2, · · · , Cq}. The generalized weighted ModularityQ in strength

relationship matrix is defined by
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Q = max
q

q∑
i=1

(ci,i − c2i ) (4)

where ci,i =
∑

i,j
si,j
∆
δi,j,ci =

∑
j si,j and ∆ =

∑
i,j si,j. δi,j = 1,if the nodes i and j are in the

same community, δi,j = 0, otherwise. ci,i denotes the fraction of strength with both ends in

the same partition Ci, ci is the proportion of strength with one end in Ci and the other not.

If the network is unweighted (binary network), the Q is just Newman’s modularity. Based

on this form, the new measure can capture the properties of the real social systems. One

can find that both direct and undirect information between two nodes can be used within

our framework. When two nodes are exchanging their information in social networks, the

chains will formed within the same community. Thus, it might be more reasonable to

describe relationship between nodes using the strength relationship, such as same ideas in a

society are more likely be connected closely and transmitted one by one. It means a tightly

connected community implies a faster rate of information transmission or rumor spreading

rate than a sparsely connected one, because more paths there are, faster transmissions rate

there is.

III. THE FRAMEWORK

A. The weighted k-strength relationship matrix

In this part, we analyze the property of the weighting scheme in detail. As describe

above, the k-strength relationship matrix is fundamental to the whole framework. Here,

we focus on determining the k-strength relationship matrix. The following theorem not

only provides the process of computing all the elements, but also reveal the important time

complexity information.

Theorem 1: The k-strength relationship matrix W k can be obtained in polynomial time.

Proof : Suppose adjacent matrix of network G is A, the number of all k-length paths

from i to j is aki,j, and Ak = Ak−1 × A = (aki,j) in [16]. A path is called k-path if its length

is k. Denote the k-path by {i0, i1, · · · , ik−1, ik} with k + 1 nodes and is ̸= ij for all s and j,

that is, there is no cycle in the path.

6



In order to get the elements in k-strength relationship matrix, we define an operation

⊕ on weight matrix of G. ⊕ : W k = W k−1 ⊕ W = (wk
i,j)N×N , where wk

i,j is defined as:

If
∑N

l=1 (w
k−1
i,l × wl,j ̸= 0), it means there are k links connect node i and j. Equivalent,

there are at least one term in
∑N

l=1 (w
k−1
i,l × wl,j ̸= 0). Without of generally, we suppose,

there are h terms not zeros,wk−1
i,l1 × wl1,j ̸= 0, wk−1

i,ls × wls,j ̸= 0, wk−1
i,lh

× wlh,j ̸= 0. Then

wk
i,j =

∑h
s=1 (w

k−1
i,ls + wls,j); Otherwise, wk

i,j = 0 (that is, there is no link joint i and j).

The value of wk
i,j is the sum of all weights in each k-path from i to j. We can take not so

much effort to obtain ski,j = wk
i,j/k. That is s

k
i,j =

∑aki,j
s=1

1
k

∑k
l=1wisl−1,i

s
l
= wk

i,j/k.

All the k-path can be lay out when
∑N

l=1 (w
k−1
i,l × wl,j) is determined. If wk−1

i,l1 × wl1,j ̸=

0, wk−1
i,ls × wls,j ̸= 0, wk−1

i,lh
× wlh,j ̸= 0 for each positive integer k ≥ 2; Denote a k-path

connect nodes i and j by P k
i,j, it is easily to find there are aki,j k-paths joint node i and j and

hence,P k
i,j = {P k−1

i,l1 ∨ (l1, j), P k−1
i,l2 ∨ (l2, j), · · · , P k−1

i,lh
∨ (lh, j)}, where P k−1

i,l ∨ (l, j) means the

all k-path formed by the (k − 1)-paths in set P k−1
i,l join the link (i, j).

Finally, we can lay out all the k-paths inductively. That is, ⊕ is a polynomial time algo-

rithm. Totally, the strength matrix is got by computing the weight matrix with computing

complexity time O(n2m) since the multiplication of each pairs of N-rank matrixes costs at

most N ×N and at most m links. Output Sk = (ski,j)N ×N for a fixed k. Outline all the

paths from i to j with length k, i = is0, i
s
1, · · · , isk−1, i

s
k = j for s = 1, 2, · · · , aki,j.

The proof is end.

B. Community detection algorithm

A minimal q-cut Ẽ of G is an edge set with minimal sum of weight that the remain-

ing graph of deleting the edges set, G − Ẽ, is an isolated graph. A directly method

to determine the partitions is investigating all the components of the remaining graph

C = {C1, C2, · · · , Cc} . We need chose the components such that
∑

i<j w(Ci, Cj) is minimum

or
∑c

i=1w(Ci, Ci) is maximum by maximum flow and minimum cut theorem [18]. However,

the minimal q-cut problem is NP-complete and it is difficult to find a polynomial algorith-

m. Fortunately, Guttmann-Beck and Hassin designed an algorithm in complete graphs and

proved the approximate solution is less than three times the optimal [19]. Inspired by this

nice idea, we obtain the detailed procedures in Algorithm 1.
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C. Computational complexity

For a given positive number q, we can solve the transport problem[21][24] in time O(N)

since it is a 0-1 transportation problem. There are Cq
NO(qN) subsets of V . Altogether the

time complexity is O((q + 1)N). Here, two important claims are proposed which useful to

the analysis:

Claim 1: If {C1, C2, · · · , Cq} is a partition of G̃, if and only if it is a partition of G.

Proof : It is easy to verify that the claim holds, since G̃ and G has the same vertex set.

Claim 2: Suppose {C1, C2, · · · , Cq} are q partition of G̃ such that
∑q

i<j,Ci,Cj⊂G̃
w(Ci, Cj) is

a minimum. Then there is a minimum partition of G̃ , say {C1, · · · , Cq}, is also a minimum

partition G such that
∑q

i<j,Ci,Cj⊂G
w(Ci, Cj) is a minimum.

Proof : By the definition of G̃,∆ =
∑q

i<j,Ci,Cj⊂G̃
w(Ci, Cj). Since w(Ci, Cj) =∑

i∈Ci,j∈Cj
s1ij+

∑
i∈Ci,j∈Cj

∑
k=2 s

k
ij and the value of ∆ is fixed because {C1, C2, · · · , Cq} is the

minimum partition of G̃. We know that
∑

i∈Ci⊂G̃,j∈Cj⊂G̃ s1ij =
∑

i∈Ci⊂G,j∈Cj⊂G s1ij by the defi-

nition of k-strength relationship. Therefore, we construct a minimum partition {C1, · · · , Cq}

in G̃ by Algorithm 1 such that
∑

i∈Ci⊂G̃,j∈Cj⊂G̃ s1i,j is a minimum, then,{C1, · · · , Cq} is the

minimum q partition of G.

The proof is end.

IV. EXPERIMENTS AND RESULTS

In order to verify the effectiveness of our weighting method, we apply it on two famous

benchmarks. First, an artificial random network generated by Girvan and Newman, GN

network, is used[20][25]. This benchmark was used by many methods for comparing the effi-

ciency of partition result. The establish mechanism is as follows: a 128 nodes network is par-

tition into four communities, and each community owns 32 nodes. Every inner-community

edge is linked independently with probability pin and every inter-community edges is linked

with probability pout. For each node, the expected inner-community degree is zin = 31pin

and the expected inter-community degree is zout = 31pout. As Zout increases, the community

structures becomes more and more ambiguous, and correspondingly fraction of correctly

classified nodes decreases.

To illustrate the efficiency our refinement algorithm, we comparing the percentage of
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FIG. 2: Computational results by five algorithms including our method as function of Zout in GN

network. Each point shows the average and variance over 50 times.

nodes that are classified correctly for different methods including, original minimum q-cut

algorithm, refined minimum q-cut algorithm, two famous modularity optimization methods:

Louvain method[23] and Danon method[22], and SA heuristic method[27]. As can be ob-

served in Fig.2, the refinement process enhance the performance of community detection a

lot. Our algorithm performs the best even Zout increases to 8. Furthermore, we analyze the

performance of variance of community partition. As sensitivity to the initial condition, the

original minimum q-cut algorithm method shows the largest variation, while the Louvain

method and Danon method have less variation comparing to GA heuristic method, and as

it was expected, the variance of refined minimum q-cut algorithm is the best among the

mentioned approaches.

Next, we test whether the communities are identified completely correct. Different with

the GN network, if such a group is not entirely contained in the same community, then all

vertices of the group are assumed incorrectly identified. We test our framework in a famous

real-world network, i.e. Karate club network [26]. It is a standard network which used

to compare the precision between different community detection algorithms. Here, we use

Newman Fast method(NF) on weighted network, which need not specify the number of com-

munities. In Fig.3, the dendrogram obtained by using our weighting scheme is represented.

We report the modularity measure obtained from original NF method and weighted NF as

0.397 and 0.432. From these results, one can conclude that the weighting scheme improves

NF considerably.

9



FIG. 3: Using the weighting scheme, we apply our framework on Zachary Karate network identified

by Newman Fast Algorithm. Dendrogram of communities are shown and different colors correspond

to four community structures

V. DISCUSSION

In this paper, we have designed an efficient algorithm to detect community in social

network using a new definition, i.e. k-strength relationship, which naturally represent the

coupling degree between two nodes. Theoretical analysis shows this algorithm is polynomial

time which much better than most existing ones. Finally, we apply our algorithm on both

benchmark network and real networks to evaluate its efficiency. Theoretical analysis and

experiments show that the algorithm can uncover the communities fast and accurately, which

able to be easily extended to large scale real networks.
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Algorithm 1 Community detection algorithm based on weighting scheme
Input: a network G = (V,E);

Output: a minimum q-partition with maximal modularity value.;

1: Step 1: Shrinking each one degree node to its neighbor until there is no one degree node in G.

This operation does not affect the community detection, because the one degree node has no

other choice but to its unique neighbor, so the one degree node will be in the same community

with its neighbor. We still write the network as G.

2: Step 2: Set the number of communities q.

3: Step 3: For a fixed q , the minimum q-cut problem is polynomial time solvable in O(|V |q2)

[17].

4: Therefore, we suppose we had a partition C = {C1, C2, · · · , Cq} in G̃ = (V, Ẽ), and |Ci| =

ki,
∑q

i=1 ki = N,Ci ∩Cj = ∅. We will detect he minimum q-cut in G̃, and then prove it is also

is the minimum q-cut in G. Let vi ∈ Ci for i = 1, 2, · · · , q. xi,j =

 1 , uj ∈ Ci

0 , otherwise

Begin

For {v1, v2, · · · , vq} ⊂ V, vi ∈ Ci.

For uj ∈ V − {v1, v2, · · · , vq},the following transport problem is optimal.

min :

q∑
i=1

N−q∑
j=1

w(Ci, uj)(1− xi,j)

subject to


∑N−q

j=1 xi,j = ki − 1 , i = 1, 2, · · · , q∑q
i=1 xi,j = 1 , j = 1, 2, · · · , N − q

xi,j ∈ {0, 1} , i = 1, 2, · · · , q and j = 1, 2, · · · , N − q

End

Ci = Ci ∪ {uj |x∗i,j = 1, 1 ≤ j ≤ N − q} for 1 ≤ i ≤ q.

End

Back to begin

5: Step 4: Output:{C1, C2, · · · , Cq} with vi ∈ Ci is a minimum q-cut on G̃.

13


