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1 Experiment on network with different modular sizes

To illustrate the framework can uncover hierarchical community structures with different
modular sizes, we apply the framework to a synthetic hierarchical network. The network
contains 9 cliques of different sizes and we consider a line of cliques from size 3 to 11, joined
only by a common node between each other. The clique network is shown in Fig.1(a)
and the common nodes are presented in red color. One can consider a specific clique is
an overlapping part between the neighbor ones. So 2-8 are also reasonable numbers of
modules which reveal fuzzy levels of the hierarchical structure.

The significance of such levels can be quantified by their corresponding persistent
time length. The longer the time persists, the more robust the configuration is. In the
upper subgraph of Fig.1(b), one can observe that 9 modules and 2 modules are the most
significant community structure. However, 3-8 are also reasonable although they don’t
have very long persistent timescales. This is in perfect consistence with the generation
mechanisms if we consider the overlapping parts of the network. Furthermore, in the lower
subgraph of Fig.1(b), we plot the curve of ©. One can observe that the curve of © is a
approximate parabolic shape for a specific A. It can be used to estimate the modularity
property of complex networks, and larger © indicates stronger community structure. We
explore the trend of stability © and find the largest value of © is corresponding to 9
communities with I'(9)=0.187, much larger than 0.145 corresponding to 2 communities.

The significance of community structure indicated by stability © favors finer but obvious



40
= 9
< 7

20 5,

umimuﬂ./ e

0.4

Zo2 I|||
% 10 20 30 40

time(t)

(b)

Figure 1: (a) Structure of network contains a line of nine cliques with 3-11 nodes. The
overlapping nodes are highlighted in red color. (b) The value of A(7) and O(7) versus
time 7.

modules. This is in keeping with the network formation and reasonable for many real

networks.

2 Experiment on real networks

We tested our framework on the largest connected component of a scientific collaboration
network, collected by Girvan and Newman [1]. The network illustrates the research
collaborations among physicists in terms of their coauthored papers posted on the Physics
E-print Archive at arxiv.org which is shown in Fig.2(a). Totally, this network contains
379 nodes which are divided into 21 and 5 communities obtained by maximizing the
modularity or markov endurance measure [2]. The partitions of two different scales are
corresponding to fine and coarse physical classifications. From Fig.2(b), we observe 21
and 5 communities are indeed the most significant partitions corresponding to the largest
stability ©(7). The result is reasonable and exactly the same as [1] and [2].

Then, we apply the framework to an important biological application,i.e. finding the



Figure 2: (a) The largest connected component of scientific collaboration network. The
nodes corresponding to 379 researchers which color coded into 21 and 5 communities
obtained by maximizing the markov endurance measure [2] at 7 = 1 (or equivalently,
modularity). The researcher are grouped mainly based on the physical classifications.
(b) The value of A(7) and ©(7) versus time 7.

communities of S.cerevisiae proteins based on their interactions [3]. In Fig.3(a), proteins
in 10 communities are shown in different colors and annotated. These communities can
be associated with either protein complexes or certain functions, which can be looked
up by using the GO-Term Finder package [4] and the online tools of the Saccharomyces
Genome Database (SGD) [5]. Fig.3(b) shows that 10 is indeed the optimal number of
communities revealed by the corresponding largest stability ©(7) in our framework. This

result demonstrates that our framework can provide the real functional classifications of

biological networks, which has broad applications in the future studies.

3 The comparison between modularity and our frame-
work

Finally, we emphasize the difference between the stability measure proposed and the mod-
ularity @ proposed by Newman [6]. @ is a well-known criterion for evaluating a specific
partition scheme of a network. It is defined as “the fraction of edges that fall within

communities, minus the expected value of the same quantity if edges fall at random re-
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Figure 3: (a) The protein—protein interactions network of S.cerevisiae containing 10
communities [3]. Different communities are described by different colors and the biological
functions are annotated beside correspondingly. (b) The value of A(7) and O(7) versus
time 7.

gardless of the community structure”. Different partition schemes will get different @)
values for the same network, and larger ones mean better partitions. A and I' try to
directly characterize and evaluate the structure property which is based on network’s
spectra, rather than a specific network partition. Therefore, a network only has exactly
self-deterministic A and I" values regardless of how many partition schemes it would have,
and the larger the I' is, the stronger the network community structure is. In addition,
Fortunato et al [7] pointed out the resolution limit problem of the modularity ), that
is, there exists an intrinsic scale beyond which small qualified communities cannot be
detected by maximizing the modularity. As shown in Fig.4, when a clique ring contains
cliques with different scales (i.e.,the heterogeneous community size), the intrinsic com-
munity structure can be exactly revealed by A. With A and I', we can quantitatively

compare the modularity structure of different types of complex networks.
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Figure 4: (a) Ring of clique network as a schematic example. Each circle corresponds to
a clique, whose size is marked by its label C20 (contains 20 nodes) or C10 (contains 10
nodes). (b) The value of A(7) and ©(7) versus time 7.

4 The relationships between our work and some fa-
mous concepts

In [8], the authors proposed a heuristic fuzzy community detection method by minimiz-
ing an efficient Hamiltonian function. Then, a simulated annealing algorithm is used to
execute the optimization procedure. This work mainly focus on the extraction of commu-
nity structure based on the objective function optimization and doesn’t reveal the detail
of dynamical process. Moreover, the optimal number of communities revealed by our
framework can be directly used to [8] because it can’t be find explicitly.

In [2] written by Delvenne et al, the authors have shown that random walk process
enable one to introduce a general quality function, expressing the persistence of clusters
in time. A cluster is persistent with respect to a random walk after ¢ time steps if the
probability that the walker escapes the cluster before ¢ steps is low. Then, Delvenne et al
defined the stability of the clustering aiming at, for a given time ¢, finding the partition
with the largest value. This stability measure is a general quality function which is similar
to Modularity @ [1] to some extent. It can be used to extract the optimal community
partition. Compared with it, our framework tries to unveil the dynamical details of the

community structure without using any particular partition. A lot of useful information,



such as the optimal number of communities and dynamical changes of robustness, can be
revealed directly. Thus, the objective and analytical methods between these two works

are mainly different.
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