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1. The simulation study 

We compared the performance of MarkRank and NetRank in simulated datasets. The goal of the 

simulation study was to test whether MarkRank can discriminate the pre-set target genes (positive genes) 

from the remaining genes (negative genes); i.e., these target genes are expected to be on the top posi-

tions of the ranking list. The expression patterns of these pre-set target genes were well controlled and 

can partially mimic the potential mechanisms of disease pathogenesis in different ways. In our study, we 

simulated three types of expression patterns. The whole workflow of the simulation study was introduced 

in the main text. 

For each simulation, a network 𝐺 with 100 nodes and 274 edges was randomly extracted from the 

Human Protein Reference Database (HPRD) PPI network, which contains 9453 genes with 36874 in-

teractions. The expression data of 50 samples were simulated, and labeled as two groups of equal size. 

The size of pre-set target nodes in subnetwork 𝑆# was 10 for the first and the second scenarios. In the 

third scenario, each of the two disjoint subnetworks that exhibited complementary information had 5 

nodes. The expression profile for a sample was drawn from a multivariate Gaussian distribution whose 

mean vector followed a univariate Gaussian distribution, and the covariances for adjacent gene pairs in 

𝐺  were relatively higher than those of non-adjacent pairs. Specifically, the mean vector was 𝜇 =

𝜇&, 𝜇(,⋯ , 𝜇&**  where 𝜇#~𝑁(5,1) independently. The covariance matrix	𝛴 was set as 𝜎#,4	~	𝑁(4,1) if 

node pair 𝑣#, 𝑣4  was connected in 𝐺  and 𝜎#,4	~	𝑁(2,1) otherwise. The variances of variables were 

gradually increased until 𝛴 became a positive definite matrix. Finally, the sample expression profiles 

were drawn from the multivariate Gaussian distribution	𝑁&**(𝜇, Σ). 

In the simulation, a parameter 𝜌 was set to control the degree of differential expression. The 

fold-change of up-regulated gene expression levels followed 𝑁(𝜌, 0.1) in all three types of expression 

patterns. Each simulation test was repeated 100 times for each 𝜌 to obtain a comparable result. 

The performance was measured by the area under the curve (AUC). The pre-set target genes were 

the positive class, and all the remaining genes were the negative class. The AUC was computed using 

the prioritization score of each gene and the ground truth label (positive or negative). The averaged AUC 

plus/minus one-fold standard deviation as a function of differential expression degree	𝜌 was used to 

compare the performance of MarkRank and NetRank. 
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2. Data description and pre-processing 

In our study, we integrated two types of data, gene expression profiles and PPI networks to prioritize 

network biomarkers via MarkRank. 

In our work, four microarray expression datasets were downloaded from the Gene Expression Om-

nibus (GEO) repository http://www.ncbi.nlm.nih.gov/geo/ (accession numbers GSE4115, GSE11223, 

GSE9750, GSE36895, respectively) for real dataset analysis. 

The gene expression profiles for lung cancer (GSE4115) were collected from histologically normal 

bronchial epithelium of smokers during clinical bronchoscopy (Spira, et al., 2007) using the Affymetrix 

HGU133a GeneChips platform. We combined the original primary and prospective datasets, which gave 

a total of 97 and 90 smokers with and without lung cancer, respectively. For ulcerative colitis (GSE11223), 

Noble et al. (Noble, et al., 2008) performed transcriptional profiling of colon epithelial paired endoscopic 

biopsies, which were taken from 5 specific anatomical locations for RNA extraction and histology. We 

used the uninflamed samples in each cohort to obtain a balanced classification with 66 ulcerative colitis 

patients and 69 healthy control donors. The cervical cancer (GSE9750) dataset contains 24 normal cer-

vixes versus 33 cervical cancer samples, and the detailed information can be found in Ref. (Scotto, et al., 

2008). For renal cell carcinoma (RCC, GSE36895), the RNA of clear-cell renal cell carcinoma primary 

tumors, tumors growing in immunodeficient mice (tumor grafts), and normal kidney cortices were labeled 

and hybridized to Affymetrix Human Genome U133 Plus 2.0 arrays (Pena-Llopis, et al., 2012). We used 

the paired expression profiles of 23 clear-cell RCC patients and their related normal cortex for further 

analysis. For all expression datasets, we averaged the expression values of the probes mapping on the 

same gene. The summaries of the detailed processed datasets are shown in Table 1 in the main text. 

Protein-protein interaction (PPI) data were extracted from the Human Protein Reference Database 

(HPRD, http://www.hprd.org). The HPRD database provides considerable resources and integrated in-

formation for the human proteome, such as post-translational modifications, interaction networks and 

disease associations (Keshava Prasad, et al., 2009). The original PPI network contained 9453 genes 

with 36874 interactions. After mapping the common genes present in both PPI data and each of the four 

expression profiles as described above, we further restricted our study to the largest connected compo-

nent of the refined network. 

Two other popular biological molecular network databases, BioGRID (Chatr-Aryamontri, et al., 2015; 

Stark, et al., 2006) and STRING (Szklarczyk, et al., 2015; von Mering, et al., 2003), were also used to test 

the robustness of the MarkRank algorithm in cross-validation. As for the PPI extracted from the BioGRID 

(Homo_sapiens, version 3.4.141, https://thebiogrid.org), we only retained the protein associations de-

tected in the low-throughput experimental system. The processed interaction network contains 12791 

genes with 79660 interactions. For the PPI maintained in the STRING database (http://string-db.org/), we 

used the R package 'STRINGdb' compiled in the Bioconductor 

(http://bioconductor.org/packages/STRINGdb/), which provided an R interface to the STRING pro-

tein-protein interactions database. The threshold of the interaction score was set to 900 (under version: 

STRING v10, Homo sapiens). The processed interaction network contains 20457 genes with 216960 

interactions. Similar to the former procedure, we restricted our study to the largest connected component 

of the network derived from the common genes in the expression dataset and the biological molecular 

network dataset (red number in Table S1). The summaries of the detailed overlapped genes are shown 

in Table S1. (Here, we show the detailed information for the lung cancer and ulcerative colitis dataset, for 

we only executed the following Monte Carlo cross-validation procedure on these two datasets. The rea-

son is explained in the next section.) 



4	
	

Table S1: The summaries of the detailed overlapped genes in the lung cancer and ulcerative colitis datasets. 

Dataset 
Original 

genes 
HPRD HPRD* BioGRID BioGRID* STRING STRING* 

Lung Cancer 12493 7608 7244 8157 7713 12459 7963 

Ulcerative Colitis 10506 5055 4244 5178 4360 9680 5295 

Notes: The columns HPRD, BioGRID, and STRING show the number of common genes in the expression data and 
the respective network. The columns HPRD*, BioGRID* and STRING* are the number of genes in the largest con-
nected component (LCC) of the respective refined network, which are same as the LCC genes in the main text. 

 
For one expression dataset, the relationship of the research genes across three published biological 

molecular networks is shown in Fig. S1. The common genes in the three biological networks were 4294 

(53.9%~59.3%) and 2247 (42.4%~52.9%) in the lung cancer and ulcerative colitis datasets, respectively, 

which indicated the difference in these networks. 

 

Fig. S1: The overlapped genes in three published biological molecular networks for the (A) lung cancer and (B) ulcer-

ative colitis datasets. 
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3. The Monte Carlo cross-validation procedure 

To compare MarkRank with other related ranking methods, we followed the multiple random validation 

procedure as described in Ref. (Michiels, et al., 2005). We wanted to test the classification capacity of our 

identified MarkRank genes to discriminate the disease and normal samples. In our study, the averaged 

area under the curve (AUC) in validation sets as a function of the corresponding percentage of the 

training set was used as an evaluation measurement. Note that the AUC derived from the Monte Carlo 

cross-validation here reflects the performance of classifying the disease and control samples for each 

ranking method, whereas the AUC measured in the simulation study reflects the performance of identi-

fying the pre-set target genes from the remaining genes. 

The workflow of the Monte Carlo cross-validation procedure was as follows: 

1) The whole mapped expression dataset was randomly split into training and testing sets ac-

cording to a fixed percentage. The training set was used for gene ranking, feature selection 

and classifier training, whereas the testing set was used for validation without information 

leakage. 

2) Different methods for ranking genes (see below) were performed on the training set. According 

to the related gene scores computed by one method, the top 10 ranked genes were selected 

as the biomarkers. 

3) A classifier based on the identified biomarkers was trained using the training dataset. 

4) A probabilistic score was assigned to each sample in the testing dataset by the trained classi-

fier based on the identified biomarkers. Together with the ground truth information (the true 

sample labels on the testing dataset), the AUC was computed to evaluate different methods. 

The above steps were repeated 200 times for each partition percentage. For MarkRank, the gene 

cooperation network 𝐺( and the prior information was constructed using only the training set, guaran-

teeing fair comparison in the Monte Carlo cross-validation procedure and preventing information leakage. 

Random forest is a powerful ensemble learning method for supervised classification (Breiman, 2001) 

and has had many applications to biological problems in the past decades (Diaz-Uriarte and Alvarez de 

Andres, 2006). It corrects overfitting, an undesired property of single decision trees, by constructing a 

multitude of decision trees. In our study, we used the randomForest function provided in the R package 

randomForest (Version: 4.6-12 from https://cran.r-project.org/web/packages/randomForest/) to train the 

classifier. In our setting, the number of trees (parameter ntree) was set to 1000, and the default values 

were used for other parameters. 

In this study, we used the following ranking methods to compare their performance: (i) Mutual 

Information (MI), the mutual information of single gene was computed using the R package mpmi as 

described above; (ii) The Student’s t-test, the features were ranked using the p-values of t-test; (iii) The 

Pearson correlation coefficient (PCC) of gene expression with the sample label; (iv) The Spearman 

correlation coefficient (SCC) of gene expression with the sample label; (v) Fold change (FC), as defined 

by the ratio of average expression values in normal over disease samples; (vi) NetRank algorithm (Winter, 

et al., 2012); and (vii) MarkRank algorithm. The prior information for NetRank was the same as for 

MarkRank as mentioned above. Notably, NetRank itself needs an additional inner cross-validation loop to 

learn the model parameter 𝛼, as described in (Winter, et al., 2012), which is very time-consuming. In-

stead, we recorded the related performance using different values of 𝛼 and 𝜆 ranging from 0 to 1 in 

steps of 0.1. The results of parametric sensitivity analysis on the performance of different 𝛼, 𝜆 selection 

can be found in Fig. S2. In addition, we also computed the related results using 𝛼 equal to 0.2 and 0.8 in 

the NetRank algorithm to obtain a more unambiguous comparison. The random selection of genes was 



6	
	

also taken into consideration, which was repeated 5000 times in each percentage of the Monte Carlo 

cross-validation. 

Our Monte Carlo cross-validation procedure was executed on the lung cancer and ulcerative colitis 

datasets, which have a moderate classification difficulty. Because the classes in cervical cancer and 

renal cell carcinoma datasets are easy to classify by all methods (see Fig. S5, S9 and S10), we did not 

use these two datasets to test MarkRank performance via the Monte Carlo cross-validation procedure. 
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4. MarkRank performance with different parameters 

MarkRank has two model parameters, 𝛼 and	𝜆. In our work, we set 𝛼 = 0.8 and 𝜆 = 0.2 as default 

parameter settings according to the results of a sufficient quantity of pilot simulation tests. To make a 

reasonable comparison with NetRank, which needs an additional inner cross-validation loop to train the 

model parameter	𝛼, we recorded the related performance using different values of 𝛼 and 𝜆 ranging 

from 0 to 1 in steps of 0.1 in the above Monte Carlo cross-validation procedure on the lung cancer and 

ulcerative colitis datasets. The results are shown in Fig. S2. 

	
Fig. S2: The performance of different parameter selections in the Monte Carlo cross-validation procedure. (A) The 

performance of parameter 𝛼 selection on the lung cancer (left) and the ulcerative colitis datasets (right). (B) The 

performance of parameter 𝜆 selection on the lung cancer (left) and the ulcerative colitis datasets (right). 

In each panel, we focused on the tendency of the averaged AUC as the related parameter increasing 

in a fixed percentage of the training dataset partition (50% to 90%). The classifier and the top gene 

number were the same as in the Monte Carlo cross-validation. 

In random walk-based models, parameter 𝛼 balances the effect of prior information and the influ-

ence of networks. A smaller 𝛼 lays more emphasis on the prior information provided by the user. In the 

lung cancer and ulcerative colitis datasets, the tendency of the averaged AUC computed via NetRank 

was different (Fig. S2A). The tendency reached a peak with 𝛼 = 0.3 to 0.4 on the lung cancer dataset for 

each partition. On the ulcerative colitis dataset, the averaged AUC first decreased when 𝛼 ≤ 0.4 and 

then started to level off, which was consistent with the fact that the performance of NetRank was inferior 
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to PCC in the Monte Carlo cross-validation procedure, since we used PCC as the prior information in the 

random walk model. In comparison to NetRank, MarkRank showed an increasing trend as a whole and 

had a higher averaged AUC in each partition. 

𝜆 is a specific model parameter in MarkRank that balances the relative importance of two networks. 

Larger 𝜆 inclines to lay more emphasis on	𝐺&; e.g., the PPI network structure. From the results, we can 

clearly see that the performance of MarkRank asymptotically approached that of NetRank as 𝜆 in-

creased, and a peak was reached when 𝜆 = 0.2 to 0.3 for both datasets, which was in accordance with 

our parameter selection. 
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5. Performance of the Monte Carlo cross-validation trained using the top 30 ranked 
features 

To exclude the dependency on the number of training features in the Monte Carlo cross-validation pro-

cedure, we used the top 30 ranked genes as a signature to train the classifier. Other parts of the Monte 

Carlo cross-validation procedure remained unchanged. The related performance is shown in Fig. S3. 

	
Fig. S3: The performance of the Monte Carlo cross-validation using the top 30 ranked features on the (A) lung cancer 

and the (B) ulcerative colitis datasets. The abbreviations for each method are the same as in Fig. 4. 

From the results, we can see that MarkRank, which still outperformed traditional methods on both the 

lung cancer and the ulcerative colitis datasets, had little dependency on the trained feature number. The 

gap between MarkRank and the suboptimal method was narrowed when the top 30 ranked genes were 

used as a signature. In addition, the averaged AUC dropped approximately 5% using MarkRank, 

whereas it increased to different extents in the traditional methods, which means that the key genes with 

strong discriminative power identified by traditional methods were lower-ranking. Generally speaking, 

biomarkers with unlimited feature number are inconvenient for the analysis of their biological function and 

the underlying etiology mechanism. An excessive number of biomarker genes is also inapplicable for 

clinical prediction in practice. Therefore, MarkRank being able to identify the key genes that ranked at the 

top of the list has a considerable practical value. The biomarkers identified via MarkRank can further 

contribute to the understanding of disease mechanisms, diagnosis and therapy.	
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6. Performance of the Monte Carlo cross-validation trained by other classifiers 

To exclude the effect of the classifier in the Monte Carlo cross-validation procedure and compare 

MarkRank with other related ranking methods in a broader perspective, we used the following alternative 

classifiers to replace the random forest classifier in the Monte Carlo cross-validation procedure: 

(1) Support Vector Machine (SVM). 

(2) Naïve Bayes. 

Other parts of the Monte Carlo cross-validation procedure remained unchanged. 

In our study, we used the svm and naiveBayes functions provided in the R package e1071 (version 

1.6-7, https://cran.r-project.org/web/packages/e1071/) to obtain the corresponding classifiers. For the 

SVM classifier, we used linear and radial basis function (RBF) kernels. We set the parameter 𝐶 = 1000 

for the linear kernel and	𝐶 = 100, 𝛾 = 0.01 for the RBF kernel. The results of randomly selected genes 

were also taken into consideration, which was repeated 5000 times in each percentage of the Monte 

Carlo cross-validation. The related results are shown in Fig. S4.	
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Fig. S4: The performance of other trained classifiers. (A) The performance of the SVM classifier (linear kernel). (B) 

The performance of the SVM classifier (RBF kernel). (C) The performance of the Naïve Bayes classifier. The corre-

sponding Monte Carlo cross-validation was executed on the lung cancer (left) and the ulcerative colitis datasets (right). 

The abbreviations for each method are the same as in Fig. 4. 

The results show that MarkRank, which ranked first or second place, had little dependency on the 

selection of classifier and model parameter. 

Compared to the randomForest classifier, the performance of random feature selection decreased 

when trained using either the SVM or Naïve Bayes classifier on both datasets, which was related to the 

attributes of the classifier itself. The performance of the SVM classifier was relative to the selection of 

kernel functions and model parameters. For lung cancer, the highest averaged AUC of MarkRank was 

nearly 0.75, which was a little lower than that of the randomForest classifier. However, there was a 
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measurable increase for other traditional methods. For the ulcerative colitis datasets, MarkRank and 

Student’s t-test were still the two top-ranked methods when compared to other methods whose average 

AUC decreased when compared to the randomForest classifier. The performance of the Naïve Bayes 

classifier was inferior to other classifiers whose average AUC decreased 5% in both datasets. In conclu-

sion, these results suggest that the MarkRank method was little affected by the selection of classifier or 

model parameter and showed a consistent dominance over other traditional methods.	
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7. Results of the Monte Carlo cross-validation in the cervical cancer and the renal cell 
carcinoma datasets 

In our work, we aimed at comparing our method with other related methods via the Monte Carlo 

cross-validation procedure on datasets that have a moderate classification difficulty. This comparison is 

meaningless when the related dataset is relatively easier to classify. To this end, we first examined the 

averaged AUC of traditional methods on each dataset to allow a preliminary filtration. The performance of 

the Monte Carlo cross-validation on the cervical cancer and renal cell carcinoma datasets is shown in Fig. 

S5. 

	
Fig. S5. The performance of five ranking methods in the Monte Carlo cross-validation on the (A) cervical cancer and (B) 

renal cell carcinoma datasets. The abbreviations for each method are the same as in Fig. 4. 

From the results we can clearly see that the averaged AUC can reach 0.96 and 0.99 in the cervical 

cancer and renal cell carcinoma datasets, respectively, when using randomly selected features. Each 

traditional ranking method can perfectly classify each class when the percentage of training set was large 

enough. Therefore, we only executed the Monte Carlo cross-validation procedure on the lung cancer and 

ulcerative colitis datasets. 
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8. The performance of MarkRank on BioGRID and STRING networks 

To exclude the effect of the network information and to test the robustness of the MarkRank algorithm, 

we also used two published biological molecular networks (BioGRID and STRING) to compare 

MarkRank with other state-of-the-art methods. The detailed information about these networks can be 

found in the Data description and pre-processing section. 

 In this section, we used a cross-validation procedure to compare each ranking method. First, we 

randomly selected 90% samples as the training set and the remaining 10% samples as the testing set. 

Second, for each ranking method, all genes were scored only using the information of the training set. 

Finally, a random forest classifier was trained using the top 10 genes and then used to predict the testing 

samples (disease or normal), which obtained an AUC score. The above cross-validation procedure was 

repeated 200 times to achieve a robust result, and the averaged AUC was used to evaluate each method. 

Note that the index in each randomly split was identical to each method, which can receive a more 

comparable result.  

 In addition, to show the robustness of our method across different sources, we also plotted the 

overlap of the top 100 MarkRank genes identified from all samples (training set + testing set) using three 

network databases. 

 The results are shown in Fig. S6. 

 

Fig. S6: The performance of MarkRank on other published network databases. The averaged AUC of MarkRank in 

cross-validation compared with other ranking methods in three published networks (HPRD, BioGRID, STRING) on the 

(A) lung cancer and (B) ulcerative colitis datasets. (C) The number of the overlapped genes in the top 100 MarkRank 

genes. (D) The number of the overlapped genes in the top 100 NetRank genes. The abbreviations for each method 

are the same as in Fig. 4. 

 The results show that the performance of MarkRank was consistently superior to other ranking 

methods in each biological network. The network has very little influence on the cross validation perfor-

mance of MarkRank in both datasets. It is noteworthy that the second-best method, SCC for lung cancer 

and Student’s t-test for ulcerative colitis, was only related to the expression dataset itself. These methods 

did not have a consistent result across different datasets. On the other hand, NetRank suffered a 

prominent influence from the selection of the network, and the number of overlapped genes identified via 

NetRank was only 2 and 3, respectively, which showed that NetRank had a much greater dependence on 

the network in contrast to MarkRank (overlapped gene: 41 and 42, respectively). In conclusion, 
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MarkRank was less affected by the selection of biological network, and the consistently prominent results 

indicated the robustness of MarkRank across either expression dataset or biological molecular network. 
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9. Principal component analysis of identified genes on four real datasets 

Principal component analysis (PCA) is a statistical procedure that uses an orthogonal transformation to 

map observations of possibly correlated variables from an original space to a new space, in which the 

variables are linearly uncorrelated over the dataset. In this study, we used PCA to execute the dimen-

sionality reduction for visualizing. For each ranking method, we selected the top 10 genes as original 

gene signatures to reduce the dimension and kept the top two principal components to visualize the 

distribution of samples. Moreover, PCA on the original dataset (all genes) was also performed for com-

parison. The results are shown in Figs. S7-S10. 

	
Fig. S7: Principal component analysis of each ranking method on the lung cancer dataset. The blue solid squares 

represent the normal samples, and the orange triangles represent the disease samples. The numbers in parentheses 

show the percentages of the contributions of the first and the second principal components. 
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Fig. S8: Principal component analysis of each ranking method on the ulcerative colitis dataset. The annotations are 

the same as in Fig. S7. 

	
Fig. S9: Principal component analysis of each ranking method on the cervical cancer dataset. The annotations are the 

same as in Fig. S7. 
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Fig. S10: Principal component analysis of each ranking method on the renal cell carcinoma dataset. The annotations 

are the same as in Fig. S7. 

The boundary between the normal and disease samples using MarkRank genes as the signature was 

displayed more clearly than that of the original dataset for lung cancer and ulcerative colitis, which both 

exhibited a chaotic distribution. On the contrary, a well-defined boundary can be found for the cervical 

cancer and renal cell carcinoma datasets even when using all genes to execute the PCA dimensionality 

reduction, which was consistent with their high classification accuracy (Fig. S5) and can validate the 

classification capacity of each method from another perspective. 
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10. Statistical significance of gene connectivity 

To plot the network view of a selected node set S, we first obtained the distance matrix of selected nodes 

in the PPI network, after which a minimum spanning tree (MST) was computed to construct a connected 

graph. Then, we linked the node pairs whose distance was less than or equal to 2. In this way, edges 

were grouped into three categories as described in Fig. 5.  

Since MarkRank takes both the network structure and the discriminative power of cooperative gene 

combinations into consideration, we hope that the genes identified via MarkRank have relatively tighter 

connection structures when compared with the genes identified via the traditional methods. To test the 

statistical significance of the identified genes connectivity, we defined the gene connectivity statistics as 

𝐿 𝑘 = 𝐼 𝑑(𝑣#, 𝑣4) ≤ 𝑘
&F#G4FH

. 

That is, the number of node pairs whose distance was shorter than a preset threshold 𝑘. Here, 𝑛 = |𝑆| 

was the size of selected node set (in our work, we used 𝑛 = 30, the same number of nodes in the net-

work topological graphs (Fig. 5B-E)). 𝑑(𝑣#, 𝑣4) was the shortest distance between nodes 𝑣# and 𝑣4 in 

the PPI network and the following condition was valid: 𝑣#, 𝑣4 ∈ 𝑆. To compare the connectivity signifi-

cance of our identified gene set with the gene sets identified by other ranking methods, random sampling 

was performed to obtain a null distribution. For each 𝑘=1,2,3,4,5, we random sampled node sets 𝑆M with 

the same node size 100,000 times and computed the related statistics. Finally, the p-value was reported 

as the statistical significance of network derived from 𝑆. The null distribution of 𝐿(𝑘) for each 𝑘 and the 

summaries of statistical p-values for each ranking method are shown in Fig. S11 and Tables S2- S5. 

	
Fig. S11: The null distribution of 𝐿(𝑘) for each 𝑘 on each dataset. For each selection, random sampling was per-

formed 100,000 times to simulate the related distribution. The red bar in each histogram is corresponding	𝐿(𝑘) to the 

top 30 MarkRank genes. UC and RCC indicate ulcerative colitis and renal cell carcinoma, respectively.  
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Table S2: The statistical p-values of gene connectivity significance for each ranking method on the lung cancer da-

taset. The number in brackets after the statistical p-values are the 𝐿(𝑘) for corresponding methods. The red elements 

show the significant p-values. The abbreviations for each method are the same as in Fig. 4. 

Methods K=1 K=2 K=3 K=4 K=5 

MI 0.09544 (2) 0.16766 (18) 0.42935 (106) 0.42418 (301) 0.10109 (427) 

t-Test 1.00000 (0) 0.97248 (3) 0.94826 (57) 0.66657 (276) 0.64714 (396) 

PCC 1.00000 (0) 0.97248 (3) 0.93296 (60) 0.55409 (288) 0.63150 (397) 

SCC 0.36320 (1) 0.89588 (5) 0.77040 (79) 0.78087 (262) 0.93776 (365) 

FC 0.36320 (1) 0.19955 (17) 0.63960 (90) 0.89891 (241) 0.94211 (364) 

NetRank 0.00000 (100) 0.00000 (418) 0.00000 (435) 0.00000 (435) 0.00760 (435) 

MarkRank 0.00000 (11) 0.00000 (70) 0.00006 (243) 0.03130 (363) 0.36164 (412) 

Table S3: The statistical p-values of gene connectivity significance for each ranking method on the ulcerative colitis 

dataset. The number in brackets after the statistical p-values are the 𝐿(𝑘) for corresponding methods. The red ele-

ments show the significant p-values. The abbreviations for each method are the same as in Fig. 4. 

Methods K=1 K=2 K=3 K=4 K=5 

MI 1.00000 (0) 0.33635 (12) 0.27164 (92) 0.35666 (258) 0.47900 (378) 

t-Test 1.00000 (0) 0.12880 (17) 0.14451 (105) 0.11164 (293) 0.12379 (406) 

PCC 1.00000 (0) 0.15701 (16) 0.18635 (100) 0.19620 (278) 0.15305 (403) 

SCC 1.00000 (0) 0.33635 (12) 0.40542 (82) 0.40271 (253) 0.31217 (390) 

FC 0.42468 (1) 0.46647 (10) 0.12271 (108) 0.13089 (289) 0.20816 (398) 

NetRank 0.00000 (87) 0.00000 (381) 0.00000 (435) 0.00000 (435) 0.00032 (435) 

MarkRank 0.00894 (4)    0.00000 (82) 0.00002 (223) 0.00331 (351) 0.05009 (416) 

Table S4: The statistical p-values of gene connectivity significance for each ranking method on the cervical cancer 

dataset. The number in brackets after the statistical p-values are the 𝐿(𝑘) for corresponding methods. The red ele-

ments show the significant p-values. The abbreviations for each method are the same as in Fig. 4. 

Methods K=1 K=2 K=3 K=4 K=5 

MI 0.09530 (2) 0.08031 (22) 0.36559 (111) 0.63059 (280) 0.50905 (404) 

t-Test 0.00485 (4) 0.01674 (30) 0.09715 (143) 0.13545 (336) 0.59809 (399) 

PCC 1.00000 (0) 0.11583 (20) 0.22916 (124) 0.24793 (320) 0.36039 (412) 

SCC 0.09530 (2) 0.02492 (28) 0.14278 (135) 0.29163 (315) 0.32292 (414) 

FC 1.00000 (0) 0.23163 (16) 0.66470 (88) 0.64021 (279) 0.58095 (400) 

NetRank 0.00000 (99) 0.00000 (417) 0.00000 (435) 0.00000 (435) 0.00733 (435) 

MarkRank 0.00485 (4) 0.00162 (41) 0.03673 (161) 0.37496 (306) 0.54512 (402) 

Table S5: The statistical p-values of gene connectivity significance for each ranking method on the renal cell carci-

noma dataset. The number in brackets after the statistical p-values are the 𝐿(𝑘) for corresponding methods. The red 

elements show the significant p-values. The abbreviations for each method are the same as in Fig. 4. 

Methods K=1 K=2 K=3 K=4 K=5 

MI 0.07045 (2) 0.39170 (11) 0.21404 (116) 0.39854 (295) 0.64238 (394) 

t-Test 0.31123 (1) 0.61245 (8) 0.62213 (83) 0.76380 (255) 0.78769 (383) 
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PCC 0.31123 (1) 0.69227 (7) 0.49667 (92) 0.80002 (250) 0.77659 (384) 

SCC 0.07045 (2) 0.01971 (26) 0.04113 (148) 0.07944 (339) 0.54407 (400) 

FC 1.00000 (0) 0.95401 (3) 0.95696 (49) 0.92194 (226) 0.71363 (389) 

NetRank 0.00000 (104) 0.00000 (420) 0.00000 (435) 0.00000 (435) 0.00480 (435) 

MarkRank 0.00062 (5) 0.00791 (30) 0.13589 (126) 0.66756 (267) 0.78769 (383) 

The results showed that the MarkRank genes had significant gene connectivity in the lung cancer, 

ulcerative colitis and cervical cancer datasets when compared with random sampling (largest p-value 

0.03673) for the preset threshold distance of node pair parameter 𝑘 ≤ 3. A similar result was obtained for 

the renal cell carcinoma dataset for 𝑘 ≤ 2 (largest p-value 0.00791). However, the genes identified by 

traditional methods did not show a consistent significant performance in all datasets, whereas the genes 

identified via NetRank were prone to gather together on the network. These methods lay emphasis on 

either the discriminative power of genes or the network structure; hence, the results are consistent with 

our expectations. Contrasted with these methods, the genes identified via MarkRank, taking both aspects 

into consideration using an effective method, not only had a strong topological relationship in the PPI 

network but also had a superior classification accuracy than the other methods. 
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11. Topological properties of the genes identified by each method 

MarkRank balances the network structure and the discriminative power of cooperative gene combina-

tions. To compare MarkRank with other ranking methods from another perspective, we analyzed the 

topological properties of the corresponding identified genes. In this section, two main categories, node 

importance indexes (node degree, betweenness centrality) and module importance indexes (clustering 

coefficient, the number of connected components), were selected as the measurements of each identi-

fied gene set. All these indexes were computed in the original connected PPI network. The results are 

shown in Fig. S12-S15. 

	
Fig. S12: The boxplot of node degrees for each gene on four datasets. The log2 transform was performed for clarity. 

The abbreviations for each method are the same as in Fig. 4. 

	
Fig. S13: The boxplot of betweenness centralities for each gene on four datasets. The log2 transform was performed 

for clarity. The abbreviations for each method are the same as in Fig. 4. 
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Fig. S14: The boxplot of clustering coefficients for each gene on four datasets. The abbreviations for each method are 

the same as in Fig. 4. 

	
Fig. S15: The bar plot of the number of connected components formed by the identified gene set on four datasets. The 

abbreviations for each method are the same as in Fig. 4. 

The results showed that the network-based methods had relatively higher node degree and be-

tweenness centrality for the node importance indexes. Specifically, the performance of NetRank was 

significantly better than other methods, since it was prone to identify the hub nodes in PPI network. As for 

the module importance indexes, MarkRank, balancing the network structure and the discriminative power 

of cooperative gene combinations, had a moderate number of connected components, which is con-

sistent with our initial motivation. There is no significant difference in clustering coefficients except that 

NetRank had a much smaller variance, which may also be because there were more hub nodes in the 

genes identified by NetRank since it is well-known that the hub nodes in PPI network have low clustering 

coefficients.  
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12. Enrichment analysis of gene set identified via MarkRank  

In this study, we used two different enrichment approaches to evaluate the genes identified by MarkRank: 

one based on the hypergeometric test and another based on the Kolmogorov-Smirnov test. 

The hypergeometric test - equivalent to a one-tailed Fisher's exact test (Fisher, 1922) - is an 

over-representation analysis using a 2×2 table. With the test, we would like to answer if the observed 

overlap between the genes of interest (here, the top 100 MarkRank genes were used) and if the degree 

that genes are related to a Gene Ontology category is any better than that obtained by chance alone. In 

our work, we used the Cytoscape plugin BiNGO (Maere, et al., 2005) to perform the enrichment analysis 

of Gene Ontology categories, which interactively uses molecular interaction networks visualized in Cy-

toscape. The Benjamini & Hochberg False Discovery Rate (FDR) correction was performed in multiple 

testing corrections, where we set the significance level at 0.05. 

The hypergeometric test requires a strict cut-off in the list of MarkRank genes; therefore, the results 

are dependent on the chosen threshold. On the other hand, the Kolmogorov-Smirnov test (Massey, 

1951), which is also widely used for gene set enrichment analyses, does not need the arbitrary threshold. 

The K-S test is a functional class scoring approach that first scores genes according to their order (e.g., 

MarkRank) and then transforms gene level scores into database entry level scores. The K-S test is very 

suitable for testing whether a given gene set (e.g., disease pathway) is significantly prioritized in a ranked 

full gene list. We applied the GSEAPreranked tool of the GSEA software (Subramanian, et al., 2005) with 

a correlation-weighted K-S test. 

Notably, by applying the K-S test, we used specific gene sets that are the most relevant to related 

diseases to validate the capability of gene ranking methods for prioritizing known important dis-

ease-specific genes. Four of these gene sets were downloaded from the Kyoto Encyclopedia of Genes 

and Genomes (KEGG) (Kanehisa and Goto, 2000) pathway database and one from the Molecular 

Signatures Database of Broad Institute (MSigDB) curated gene sets (c2, CGP: chemical and genetic 

perturbations) (Liberzon, et al., 2011). Specifically, enrichments were tested in the following gene sets: (1) 

lung cancer was tested in KEGG hsa05223 (non-small cell lung cancer) and KEGG hsa05222 (small cell 

lung cancer); (2) ulcerative colitis was tested in KEGG hsa05321 (inflammatory bowel disease, IBD); (3) 

cervical cancer was tested in MSigDB c2 (cervical cancer proliferation cluster); and (4) renal cell 

carcinoma was tested in KEGG hsa05211 (renal cell carcinoma). Here we used MSigDB for cervical 

cancer as KEGG does not contain a gene set specific for this disease. As for lung cancer, we executed 

the enrichment test on both non-small and small cell lung cancer gene sets since we do not know the 

exact proportion of subtypes in the lung cancer dataset GSE4115. The results of major subtype 

(non-small cell lung cancer), which accounts for approximately 85% of lung cancer, are shown in Fig. 6, 

while the related results of minor subtype (small cell lung cancer), which accounts for approximately 15% 

of lung cancer, can be found in Fig. S16. Detailed descriptions of these gene sets can be found in the 

Additional Materials. 
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13. The enriched biological processes of MarkRank genes using BiNGO 

The top 100 genes identified by MarkRank for each dataset were employed to perform the enrich-

ment analysis of Gene Ontology categories on the biological processes (BP) domain using the Cyto-

scape plugin BiNGO. The top 10 enriched GO terms for each dataset are shown in Tables S6-S9 (the full 

list can be found in Additional Materials). 

Table S6. The top 10 enriched GO categories (Biological Process domain) for the lung cancer dataset using Cyto-

scape plugin BiNGO 

GO ID Description p-value FDR 

0051246 regulation of protein metabolic process 4.10E-10 6.66E-7 

0032268 regulation of cellular protein metabolic process 2.11E-09 1.71E-6 

0051789 response to protein stimulus 5.94E-08 1.83E-5 

0042981 regulation of apoptosis 7.53E-08 1.83E-5 

0031399 regulation of protein modification process 8.37E-08 1.83E-5 

0043067 regulation of programmed cell death 8.82E-08 1.83E-5 

0009892 negative regulation of metabolic process 9.54E-08 1.83E-5 

0031324 negative regulation of cellular metabolic process 9.77E-08 1.83E-5 

0010941 regulation of cell death 1.01E-07 1.83E-5 

0052547 regulation of peptidase activity 3.12E-07 5.06E-5 

Table S7. The top 10 enriched GO categories (Biological Process domain) for the ulcerative colitis dataset using 

Cytoscape plugin BiNGO 

GO ID Description p-value FDR 

0050793 regulation of developmental process 4.43E-7 6.25E-4 

0001934 positive regulation of protein amino acid phosphorylation 9.82E-7 6.25E-4 

0016310 phosphorylation 1.80E-6 6.25E-4 

0042327 positive regulation of phosphorylation 1.90E-6 6.25E-4 

0045937 positive regulation of phosphate metabolic process 2.25E-6 6.25E-4 

0010562 positive regulation of phosphorus metabolic process 2.25E-6 6.25E-4 

0042221 response to chemical stimulus 2.97E-6 6.25E-4 

0043434 response to peptide hormone stimulus 3.00E-6 6.25E-4 

0006468 protein amino acid phosphorylation 3.35E-6 6.25E-4 

0009725 response to hormone stimulus 4.10E-6 6.67E-4 
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Table S8. The top 10 enriched GO categories (Biological Process domain) for the cervical cancer dataset using Cy-

toscape plugin BiNGO 

GO ID Description p-value FDR 

0030855 epithelial cell differentiation 7.75E-11 1.17E-7 

0008544 epidermis development 2.77E-10 2.10E-7 

0009913 epidermal cell differentiation 6.13E-10 2.91E-7 

0007398 ectoderm development 7.69E-10 2.91E-7 

0009888 tissue development 2.75E-9 8.32E-7 

0030216 keratinocyte differentiation 8.09E-9 2.04E-6 

0018149 peptide cross-linking 1.52E-8 3.29E-6 

0060429 epithelium development 3.38E-7 6.40E-5 

0009628 response to abiotic stimulus 2.58E-6 4.01E-4 

0007005 mitochondrion organization 2.65E-6 4.01E-4 

Table S9. The top 10 enriched GO categories (Biological Process domain) for the renal cell carcinoma dataset using 

Cytoscape plugin BiNGO 

GO ID Description p-value FDR 

0007588 excretion 1.29E-9 2.14E-6 

0048878 chemical homeostasis 3.81E-8 2.40E-5 

0050801 ion homeostasis 4.35E-8 2.40E-5 

0006950 response to stress 8.63E-8 3.57E-5 

0032501 multicellular organismal process 2.05E-7 5.85E-5 

0042221 response to chemical stimulus 2.84E-7 5.85E-5 

0048731 system development 3.17E-7 5.85E-5 

0042127 regulation of cell proliferation 3.27E-7 5.85E-5 

0048856 anatomical structure development 3.32E-7 5.85E-5 

0042592 homeostatic process 3.77E-7 5.85E-5 
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14. Kolmogorov-Smirnov test on the small cell lung cancer gene set 

Lung cancer is categorized into two main subtypes: non-small cell lung cancer (NSCLC), which accounts 

for approximately 85% of lung cancer, and small cell lung cancer (SCLC). Except for the 

Kolmogorov-Smirnov test (K-S test) executed on Kyoto Encyclopedia of Genes and Genomes (KEGG) 

hsa05223 (non-small cell lung cancer) we also performed the enrichment test on KEGG hsa05222 (small 

cell lung cancer) gene set, since there was no evidence supporting an exact subtype proportion of lung 

cancer for GSE4115. The related K-S test results are shown in Fig. S16. 

	
Fig. S16: The p-values of gene set enrichment analyses of KEGG pathway hsa05222 for each ranking method on 

GSE4115. The gray dotted line represents the p=0.05 significance level. The abbreviations for each method are the 

same as in Fig. 4. 

The result showed that MarkRank exhibited a preferable enrichment performance (K-S test p-value < 

0.05) with KEGG pathway hsa05222 when compared with other traditional ranking methods. Combined 

with the K-S test result in Fig. 6, genes identified via MarkRank give a good prioritization of the lung 

cancer genes for both NSCLC and SCLC subtypes. 
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15. Alternative methods for constructing the gene cooperation network 

The key component of the MarkRank method is the construction of the gene cooperation network	𝐺(. In 

our MarkRank model, we followed the subnetwork scoring function, 𝑓, as in previous studies and used 

the mutual information increment as the weight on related edge in	𝐺(. 

In the MarkRank algorithm, constructing 𝐺( needs the computation of mutual information for all pairs 

of possible genes. The time complexity for computing all mutual information is polynomial on the number 

of genes and is thus acceptable for large datasets. In practice, it may be time consuming when compared 

with other computation steps such as random walk iteration. Alternatively, we designed another two 

forms of 𝐺( construction to reduce the computation time. Here we used the same notations as intro-

duced in Materials and Methods. 

First, as the start of our inquiry, we tested that whether a source gene 𝑖 pointing to a target gene 𝑗 is 

approximately equivalent to the fact that	𝑀𝐼(𝑒 𝑗 , 𝑦) ≥ 𝑀𝐼(𝑒 𝑖 , 𝑦). If so, we can simplify the calculation in 

the 𝐺( construction by just using a fast ordering of single gene mutual information. Therefore, we used a 

related version of weight calculation as follows: 

𝑤#,4 = max	 0, 𝑓 𝑥4 = 1, 𝑜𝑡ℎ𝑒𝑟𝑠 = 0 − 𝑓(𝑥# = 1, 𝑜𝑡ℎ𝑒𝑟𝑠 = 0)  

In simulation studies, we found that for the same dataset, the overlap of non-zero terms in an adja-

cent matrix derived by 𝑤#,4	and 𝑤#,4	was approximately 70% on average, whereas the AUC performance 

computed using 𝑤#,4 was far below the corresponding performance derived by	𝑤#,4 (data not shown). 

Since this modeling method neglects the gene combination effect diverging from our original motivation, 

no further analysis using this method was performed. 

Second, we added parameter	𝑑 to reduce the computation time. Precisely, only the gene pairs 

whose shortest distances in the PPI network are less than 𝑑 participate in 𝐺( construction. A smaller 𝑑 

restricts our search on the gene pairs with smaller PPI distance and 𝑑 = ∞ equivalent to our original 

computation method. The user can set an appropriate 𝑑 to balance the calculation depth with computa-

tion time in our implemented markrank function in the R package Corbi. 

In conclusion, the former method neglects the gene combination effect diverging from our original 

motivation, and the latter one simplifies the calculation at the cost of losing complementary information of 

genes with long distance in the PPI network. Therefore, to fully use the information of expression dataset, 

we recommend the computation method introduced in the Materials and Methods section. 
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