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Detecting community structure of complex networks is a fundamental but challenging topic in
Network Science. Modularity measures play critical roles as quality indices in partitioning a network
into communities. This paper explored the modularity optimization by a quasi-analytic analysis and
revealed its startling and complex behavior. It shows that except the resolution limit phenomenon
that restricts the applicability of the widely used modularity function Q, there is a more serious
limitation called misidentification for the Q and the modularity density D, a recent suggested
modularity measure for alleviating the resolution limit effect. Misidentification means that the
resulting communities do not satisfy the basic definition of a community: a community is a subgraph
of a network whose nodes are connected tightly inside and sparsely to the outside. The cause leading
misidentification is analyzed and a complete modularity optimization model and a realistic algorithm
are given. Experiment results on both simulated data and real networks show the effectiveness of
the new model and algorithm.

Many systems in real world can be represented as a net-
work, in which nodes denote the objects of interest and
edges that connect nodes describe the relationships be-
tween them. Examples range from social networks, tech-
nological networks to biological networks such as email
network and protein interaction network. These differ-
ent types of complex networks have been revealed to have
common topological features such as scale-free and small-
world [1]. Importantly, many complex networks have
community or modular structure, i.e., networks consist
of specific, relatively separate dense subgraphs [2]. In a
widely used community definition [3–7], a community is a
subgraph of a network whose nodes are connected tightly
inside and sparsely to the outside. Uncovering such com-
munity structure not only helps us understand the topo-
logical structure of large-scale networks, but also reveals
the functionality of each component. This is, for exam-
ple, confirmed by the modular organization of biological
networks [5], where the communities are sets of compo-
nents with similar functions and the modular structure
is the result of evolutionary constraints. With its criti-
cal role in the network science, there have been a batch
of significant papers related to the community structure
study in top journals among them we name a few that
are related to this paper: [2–7, 10, 11, 15, 21, 23].

Radicchi et al. introduced two quantitative commu-
nity definitions, in weak sense and in strong sense [3].
The weak definition is widely used: given a network
G = (V, E) with vertex set V and edge set E, we de-
note A = [aij ] as its adjacency matrix. Letting Vs ⊂ V
be a subgraph and V s = V \Vs be the set of nodes in the
rest of the network, then Vs is a community in a weak
sense if

L(Vs, Vs) > L(Vs, V s), (1)

where L(Vs, Vs) =
∑

i∈Vs

∑

j∈Vs
aij , L(Vs, V s) =

∑

i∈Vs

∑

j 6∈Vs
aij .

There are two streams of methods that have been pro-
posed to detect communities in complex networks. One
class includes betweenness-based methods [2], random
walk methods [7], information theoretical methods [6],
machine learning methods [8], etc. The concentration of
this class of research is on the concrete algorithm design.
The efficiency of the designed algorithms is evaluated by
known test problems. The second class of methods is to
build an optimization model that optimizes certain mod-
ularity measures which are related with the community
definition. This class is more theoretically oreinted than
the first class. One popular measure is the modularity
function Q developed by Newman [9]. It is a quantitative
measure for evaluating how good a community partition
of a network is. A large number of methods have been
devised for community detection based on optimizing Q
[4, 10–20]. However, Q has been exposed to resolution
limits, i.e., communities smaller than certain scale may
not be resolved by optimization of Q even in the extreme
case that they are complete graphs connected by single
bridges [21]. In a recent study [22], Li et al. proposed an-
other quantitative measure D called modularity density
to evaluate the community structure of networks. This
measure is based on the concept of graph density. Opti-
mization of D does not show the resolution limit for the
examples where Q fails. But there is no theoretical anal-
ysis to show the advantage of D over Q. Furthermore,
we find that Q and D have much more complex behav-
iors than that the existing literature tells. For example,
except the resolution limit there is a misidentification
phenomena. To explain the new phenomenon, we first
give the Q, D definition in detail.

Suppose that we have a partition PK = (G1, G2, · · · ,
GK) = ((V1,E1), · · · ,(VK , EK)), where K is the number
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FIG. 1: Illustration of the misidentification phenomena.

of candidate communities of the partition. The modular-
ity function Q [9] is defined as

Q =
∑K

s=1

[

L(Vs, Vs)
2L −

(

L(Vs, Vs) + L(Vs, V s)
2L

)2
]

≡ ∑K

s=1
Qs,

(2)
where L = L(V, V )/2 is the total number of links in the
network, and L(Vs, Vs) + L(Vs, V s) is the total degree of
the nodes in community s. This measure compares the
number of edges inside a given community with the ex-
pected value in a randomized graph of the same size and
same degree sequence. It provides a way to determine
if a partition is good enough to decipher the community
structure of a network. Generally, a bigger Q corresponds
to a better community structure.

Similarly, for a given partition PK , the modularity den-
sity D [22] is defined as

D =

K
∑

s=1

L(Vs, Vs) − L(Vs, V s)

|Vs|
≡

K
∑

s=1

Ds, (3)

where |Vs| is the number of nodes in community s. It
should be noted that node information in a community
is incorporated into the denominator of the modularity
density D. This is different from Q.

We use the term “misidentification” to denote a case
when optimization of Q and D leads to the resulting com-
munities failing to satisfy the weak community defini-
tion in (1). An illustrative example is given in FIG.1(a),
where there are five 6-cliques, any two of which are con-
nected by eight links. Let P5 denote the partition of five
communities where each clique is a community, and P1

denote the partition that the whole network is a com-
munity. Simply computing the modularity function Q
shows that Q(P5) = 44/155 > 0 = Q(P1), which im-
plies that optimizing Q partitions the network into five
communities. However, such communities have 15 inner-
links and 32 out-links and thereby do not satisfy the weak
community definition. The consequence of such misiden-
tification is that some detected communities may have
sparser connection within them than between them. An-
other simple example in FIG.1(b) shows that both Q and
D suffer from misidentification. In this example, there
are 3 links between n-clique Kn and a 2-clique. Obvi-
ously, 2-clique does not satisfy the weak definition. Op-
timizing Q partitions the network into 2 communities
when n ≥ 3, while D partitions into 2 when n ≥ 10.
Experiments on real networks further indicate that the
misidentification of Q and D is common in many types of
artificial and real networks and sometimes leads to un-
reasonable results especially in biological networks (see
the details in Supplementary Material (SM) 1, see SM
on http://zhangroup.aporc.org).

In this paper, to analyze the complex behavior of Q
and D including both resolution limit and misidentifica-
tion we write the Q-optimization and D-optimization as
two-stage nonlinear programming problems:

QII : max
K

QI(K) = max
K

max
Pk

K
∑

s=1

Qs (4)

DII : max
K

DI(K) = max
K

max
Pk

K
∑

s=1

Ds (5)

For two widely used exemplar sparse networks called a
ring of dense lumps and the ad hoc network, the problems
(4) and (5) become to two-stage discrete convex/concave
programming, then we can solve the detailed solution
with a statistical nature (for the detailed analysis, see
SM 2). Since the analysis is based on the two exemplary
networks, we call our analysis as quasi-analytic.

For the network “ring of lumps” which consists of
N (N ≥ 8 and N = 2k, k = {3, 4, 5 · · · }) dense lumps,
each with m nodes and lin links (FIG.2(a)). And between
two adjacent lumps there are lbw links. When lbw = 1
and the lumps are cliques, the ring of lumps becomes a
ring of cliques which has been discussed in [21, 22]. Thus,
a ring of dense lumps is characterized by three parame-
ters: lbw, lin and N . Parameters lbw, lin are more related
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FIG. 2: Illustration of the exemplar networks: the ring of
lumps and the ad hoc network.

to the network structure than N , then we call them as
the structure parameters, while N is a scale parameter.

Note that the first-step and second-step optimization
problems are all discrete convex programs for Q and D
in the case of the ring of lumps (see SM 2). Then they
are solvable analytically with specified N value. The op-
timization solution is

K∗
Q = 〈

√

lin + lbw
lbw

√
N〉F (6)

where 〈
√

lin+lbw

lbw

√
N〉F means the point in the integer set

F = {1, 2, 4, · · · , N/2s+1, N/2s, N/2s−1, · · · , N} nearest

to
√

lin+lbw

lbw

√
N . Similarly, optimizing D gives solution

K∗
D = 〈 (lin + lbw)N

4lbw
〉F (7)

The solution K∗
Q and K∗

D are unscrambled in FIG.3 in
terms of the resolution limit and misidentification phe-
nomena.

From FIG.3, we see that when lbw < lin/(9N/16− 1),
both modularity measures can identify the known com-
munities (with each lump as a community). When lbw is
larger than lin/(9N/16−1) and less than lin/2, D still can
identify the known communities but Q identifies a collec-
tion of lumps as a community, i.e., the resolution limit
problem appears. D suffers from the resolution limit in
the parameter interval lbw > lin/2, lbw < lin which de-
pends on the network structure; Q has resolution limit
in the interval lbw > lin/(9N/16 − 1), lbw < lin which
depends on the network structure and the scale. For a
large scale network, Q is easy to fail to find smaller com-
munities which is less than a scale related to the network
structure and scale. When the parameter lbw > lin, the
lumps are no more qualified communities, the situation
becomes more complicated. That is, both Q and D may
produce misidentification result, we will not discuss it in
details in this paper but only point out that the complex
behavior of the modularity functions should be carefully
treated.
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FIG. 3: Illustration of the theoretic analysis for modularity
measures Q and D by optimization methodology on two ex-
emplary networks. In this figure, RL and MI respectively
mean resolution limit and misidentification, which have been
defined above. Green ‘

√

’ means the partition is correct.

In the case of the ring of lumps with lin/(9N/16 −
1) < lbw < lin, Q identifies a collection of lumps as a
community. The number of identified communities by Q
is

KQ = 〈
√

lin + lbw
lbw

√
N〉F , (8)

where KQ is proportional to
√

N . This result can be
verified by the example in [21], where the authors only
consider the case lbw = 1. In fact, when lbw = 1, we
have lin/(N − 1) < 1 that leads to lin < (N − 1) which
implies that the number of cliques is larger than about√

Nlin + N − 1 which is consistent with the result in [21].
Now we turn to discuss the second exemplar network,

the ad hoc network [9, 23], which also consists of N dense
subgraphs (FIG.2(b)), but has lbw links between each
pair of dense subgraphs. Hence, the total number of links
in this network is L = Nlin+N(N−1)lbw/2. In addition,
we assume that all the links in Gs, s = 1, 2, · · · , N, are
evenly distributed.

Using the same computation framework in the case
of the ring of lumps, the solutions of Q and D opti-
mization on the ad hoc network are obtained and ex-
plained in FIG.3, where both modularity measures Q
and D correctly identify the known communities when
lbw < 2lin/(N + 1), while in the interval (2lin/(N +
1), 2lin/(N − 1)) Q still works but D falls into the reso-
lution limit although this interval is decreasing with the
increase of the network scale. For lbw > 2lin/(N − 1),
D works well again but Q misidentifies the communities
until lbw = 2lin since it takes subgraphs Gss as commu-
nities which actually do not satisfy the weak community
definition.

es the whole Therefore, we conclude that for a class of
networks represented by the ad hoc network, modularity
function Q suffers from more limitations than modularity
density D.

The reason causing misidentification is investi-
gated through the relationship between Q,D and the
weak community definition. Given a partition P =



{G1, G2, · · · , GK}={(V1, E1),(V2, E2),· · · ,(VK , EK)},
K = 1, · · · , |V |, we denote Q(P ), D(P ) as the values of
Q, D on the partition P . For modularity measure D and
Q, we have the following proposition (Detailed proof is
provided in SM 3).

Proposition Let us denote D(P ) =
∑K

i=1
Di, Q(P ) =

∑K

i=1
Qi, K ≥ 2. If for any i, Gi satisfies the weak

definition [3], then we have D(P ) > 0 and Q(P ) > 0.
We note that the reverse of the proposition is not cor-

rect, i.e., if D(P ) > 0 or Q(P ) > 0, then it is not neces-
sary for all Gi to satisfy the weak definition. An example
is shown in FIG.1(a). This indicates that maximizing Q
or D makes their value as much positive as possible but
not guarantees to produce a feasible partition.

To force a partition as a feasible one, i.e., each com-
munity in the partition satisfies the weak definition, it is
naturally to have the following constrained Q (D) opti-
mization problem based on the modularity measures:

max
∑K

s=1
Qs

s.t. L(Vs, Vs) > L(Vs, V s), s = 1, · · · , k

(9)

This is a problem in NP class, to solve them we need
to improve the simulation annealing algorithm in [10].
The improved algorithm and software can be find on
http://zhangroup.aporc.org. Using the improved algo-
rithm, we correctly solved several examples both in arti-
ficial and in real biological and social networks which are
misidentified by using the original algorithm (See SM 1).

In conclusion, we systematically analyze the modu-
larity optimization methodology for network community
identification in this paper. First, we show that the res-
olution limit is closely related to the special structure of
the network. And the modularity Q is much more sensi-
tive to the resolution limit effect for some special network
structures than the modularity density D. The analy-
sis is based on a discrete convex/concave programming
framework. Secondly we found that both the modularity
measures Q and D suffer from a misidentification prob-
lem. We pointed out that the misidentification problem
revealed is caused by the fact that optimizing the mod-
ularity Q and the density D is not equivalent to search
communities that satisfy the weak community definition.
In other words, maximizing Q and D can not guarantee
all resulting subgraphs as qualified communities. It is
noted that Q is much sensitive to the misidentification-
potential structure than the D. Furthermore the theo-
retical analysis on special networks shows that the reso-
lution limit and misidentification alternatively appear in
different regions of the parameters. The analysis provides
to the users with an insight into limitation and applica-
bility of Q and D.

To overcome the limitations, a constrained optimiza-
tion model and an revised simulated annealing algorithm

are given. Experiments on both simulated data and prac-
tical data show that the new algorithm really eliminates
the misidentification phenomena. If D is used in the new
model and new algorithm, then we can maximally reduce
both the resolution limit and misidentification phenom-
ena. Further research is needed to choose better mod-
ularity functions or build more complete optimization
models.
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