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Experimental results on artificial and real networks

In the main text, we give a systematic analysis based on discrete convex programming for modularity
measures Q and D on the exemplary networks. Although these networks have very special topology
structures, the conclusion obtained on them can provide insights into general complex networks. In this
material, we conduct computational experiments on more general networks, which confirm the misidenti-
fication problem in Q and D optimization and illustrate the network configurations that the modularity
measures suit for. Furthermore, the optimization model (9) in the main text is executed to show its
effectiveness and the algorithm for solving the optimization model (9) is illustrated.

Artificial networks

The first numerical example is a set of computer-generated networks [1] which have been widely used
to benchmark community detection algorithms. Each network has 128 nodes, which are divided into 4
communities each with 32 nodes. Edges are placed randomly with given probabilities so as to keep the
average degree of a node to be 16. The average edge connection of each node to nodes of other communities
is denoted by kout. For each kout, 10 random ad hoc networks are generated. Then, the partition of each
network is obtained by optimizing modularity measures Q and D respectively by a simulated annealing
procedure [2, 5–7]. The simulated annealing strategy is used because the optimization of modularity
measure is a NP-hard problem. The network partition results by optimizing Q and D are evaluated by
the fraction of nodes correctly classified into the original 4 communities.

The average accuracy over 10 ad hoc networks with respect to kout is summarized in Figure S1-
1, from which we can see that when kout is small, i.e. the networks have distinct communities, both
modularity measures have good performance and the detected partitions are nearly the same as the known
communities. When kout becomes large, especially when kout > 8, the known communities in original
networks become very ambiguous, and the partitions detected by both measures are quite different with
the early cases. When 6 < kout < 10, Q seems to have better performance than D. This is natural, since
we can see from their definitions that D puts more penalty on outward edges of communities than Q, so
when the number of outward edges increases, they have different performance. This does not necessarily
indicate that the communities detected by Q are better. Figure S1-2 compares the misidentification
problem in both Q and D, where the community numbers (average value over 10 networks) given by the
bar plot include both communities satisfying the weak definition and the communities failing to satisfy
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Figure S1-1: Comparison of Q and D in terms of accuracy on 4-community ad hoc networks. It plots the
average accuracy over 10 ad hoc networks with respect to parameter kout. (a) The results of direct opti-
mization Q and D. (b) The results of optimization Q and D with constrains which refer to optimization
model (9).

the weak definition. From this result we can see that for the ad hoc networks, modularity density D
has no misidentification phenomenon, whereas when kout > 8, some communities detected by Q do not
satisfy the weak community definition. In other words, Q identifies some subgraphs with inner links even
less than half of outward links as communities, which violates our basic community definition. When the
optimization model (9) is applied to partition the networks, the misidentification problems are avoided
as shown in Figure S1-2.

The ad hoc network described above only has four communities, so the resolution limit does not
appear in Q optimization. Now we generate another set of ad hoc networks with 50 communities of size
8. The average node degree in these communities is 8. The results are evaluated in the same way as
the previous example and summarized in Figure S1-3. From Figure S1-3 we can see that, due to the
resolution limit in Q, i.e., the tendency to group several known dense subgraphs into one community,
Q has a bad performance even for the networks with small kout. This result is consistent with the
observation in [3], where Q is found to fail to detect communities smaller than a scale. In contrast, D
has a good performance when kout is small. With the increasing of kout, D groups all communities into
one since at this time the communities become very ambiguous. From Figure S1-4, we also can see that
the communities detected by optimizing D always satisfy the community definition in the weak sense,
whereas optimizing Q can lead to “false” communities failing to satisfy the weak community definition. It
is same as the above example that the misidentification problems can be wiped out by using optimization
model (9) as shown in Figure S1-4. The comparison results in Figures S1-1 and S1-3 also provide us
some insights on the network configurations that these two modularity measures suit for. For a network
with obvious community structure, Q is a good choice, whereas for a large sparse network with small
communities, it is better to use D.

Real networks

We further illustrate our theoretical analysis by several examples of real networks. These networks include
some well studied complex networks such as metabolic network of celegans [8], dolphin network [9],
email network [10], football network [1], jazz musician network [11], political book network [12], and
scientific collaboration networks [13]. In addition, we constructed several bio-molecular networks such as
transcriptional regulatory network and protein interaction network to study their modularity properties.
The simulated annealing procedure is used here. The statistics of the network and the partition results
are presented in Table S1-1 and Table S1-2. We find that for most of small and sparse networks, both
modularity measures Q and D work well and all of identified communities satisfy weak definition. But
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Table S1-1: Experimental results on the real networks by optimizing Q. The misidentification phenomena
are highlighted in bold.

direct optimization considering the weak definition constraints

through optimization model (9)

Network name ] of ] of Q Value ] of communities ] of communities Q Value ] of communities ] of communities

nodes edges by satisfying by satisfying

optimizing Q weak definition optimizing Q weak definition

C. celegans 453 2025 0.45 9 9 0.42 7 7

metabolic [8]

dolphins [9] 62 159 0.53 4 4 0.52 4 4

email [10] 1133 5451 0.57 10 10 0.57 9 9

football [1] 115 613 0.60 9 9 0.60 10 10

jazz [11] 198 2742 0.44 4 3 0.44 3 3

karate [4] 34 78 0.42 4 4 0.40 4 4

politics books [12] 105 441 0.53 4 4 0.53 4 4

scienceA [13] 118 200 0.75 7 7 0.75 8 8

Yeast TRN 4441 12873 0.48 14 12 0.47 13 13

Yeast TFR 162 663 0.35 6 3 0.22 3 3

when the studied networks get larger and denser, modularity measures Q and D obviously suffer from
the misidentification problem. However, the misidentification phenomena are not appeared through the
optimization model (9) which are shown in Table S1-1 and Table S1-2.

A typical example is the jazz musician network [11] which is a social network to describe the col-
laboration among jazz bands. The data are from The Red Hot Jazz Archive database which stores 198
bands that performed from 1912 to 1940 with 1275 jazz musicians [11]. In the jazz musician network,
the bands are represented by nodes and two bands with at least one shared musician are linked by an
edge. Due to the black/white racial segregation and the cities that bands recorded in, the network can
be divided into three communities in reality. The community detection results by Q and D are shown in
Table S1-1 and S1-2. We found that both Q and D partition this network into four communities with
one misidentification. We draw the partition results of Q in Figure S1-5. The community misidentified
by Q (triangles in Figure S1-5) has 4 nodes and has fewer inner links than outer links. However using
the optimization model (9) we can obtain the correct partition.

Furthermore, the experimental results show that the misidentification problem of Q and D is very
common in biological networks. We constructed a transcriptional regulatory network (TRN) in yeast from
six global ChIP-chip experiments [14–19], which describes the direct interactions between transcription
factors (TFs) and target genes (TGs). The yeast TRN network with 163 TFs, 4,405 TGs, and 12,873
transcriptional regulations. The result in Table S1-1 and S1-2 shows that both D and Q suffer from
misidentification problem in this large and sparse network. Q has 2 misidentified communities and D has
1 misidentified community. Furthermore, to take a closer look, we extracted the TF regulatory network
in yeast (Yeast TFR) from the Yeast TRN by merely considering the regulatory relationships among
TFs which results in a smaller and denser network with 162 TFs and 663 regulatory interactions. We
find that D partitions the network into four communities where all of them satisfy weak definition of
community. While Q partitions the network into six communities where three of them do not satisfy the
weak definition. Then we used the Gene Ontology Term Finder http://db.yeastgenome.org/cgi-bin/
GO/goTermFinder.pl to find the significant shared GO terms to describe the TFs in a community. We
simply counted the number of GO terms with p-value less than 1 × 10−9 in every community, then
calculated the average number of significant GO terms for a partition. The results show that the partition
given by D has 35 significant GO terms while the partition obtained by Q only has 25.6 significant
GO terms. It demonstrates that misidentification could leads to misunderstand the network function
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Table S1-2: Experimental results on the real networks by optimizing D. The misidentification phenomena
are highlighted in bold.

direct optimization considering the weak definition constraints

through optimization model (9)

Network name ] of ] of D Value ] of communities ] of communities D Value ] of communities ] of communities

nodes edges by satisfying by satisfying

optimizing D weak definition optimizing D weak definition

C. celegans 453 2025 30.25 15 15 29.76 16 16

metabolic [8]

dolphins [9] 62 159 11.73 5 5 11.96 5 5

email [10] 1133 5451 63.16 31 30 60.03 28 28

football [1] 115 613 43.73 11 11 44.39 11 11

jazz [11] 198 2742 52.84 4 3 52.03 4 4

karate [4] 34 78 7.85 3 3 7.85 3 3

politics books [12] 105 441 21.86 7 7 20.05 5 5

scienceA [13] 118 200 28.30 16 16 28.31 16 16

Yeast TRN 4441 12873 15.78 15 14 19.25 23 23

Yeast TFR 162 663 11.50 4 4 11.66 4 4

and D is more effective in detecting biological functional communities than Q. We also checked the
functional enrichment of the individual communities identified by Q. For example, we have a misidentified
community with 24 nodes in the results given by Q. There are 44 inner edges in this community and
102 edges with other communities. In total there are 29 significant GO terms with p-value less than
1× 10−9. We compare it with an identified community of almost similar size satisfying weak definition.
This community has 23 nodes, 32 inner links, and 51 outer links and is enriched with 37 significant GO
terms. It further provides evidence that misidentification problem may lead to unreasonable network
partition and should be carefully considered in designing community detection model.

The simulated annealing algorithm for solving optimization model
(9)

Simulated annealing (SA) [7] is a generic probabilistically heuristic method for the global optimization
problem, namely finding a good approximation to the global minimum of a given function in a large
search space. It is to simulate the cooling process of the heated metal. From an arbitrary initial state the
SA reaches the next state with possible minimal energy. At each step, the SA considers some neighbor
s′ of the current state s, and probabilistically decides either moving the system to state s′ or staying in
state s. The probability of making the transition from the current state s to a candidate new state s′

is specified by an acceptance probability function P (e, e′, T ), that depends on the energies e = E(s) and
e′ = E(s′) of the two states, and also the temperature T .

We solve the optimization model (9) by improving the simulated annealing technique, that has been
used to solve the Q optimization in [2]. Specifically, we always set the whole network as the initial solution.
At each temperature, we provide fn2 node movements from one community to another community, where
n is the number of nodes in the network and f is a coefficient and taken as 1 often. It is noted that the node
movement must enable the two newly created communities to satisfy the weak definition, otherwise the
movement is not accepted. Meanwhile we also provide fn collective moments, which include merging two
communities and splitting a community. It is noted that the split must enable the two split communities
all satisfy the weak definition, otherwise the split is not accepted. After the movements are evaluated at
each temperature, the temperature is decreased with a constant coefficient.
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Figure S1-2: Comparison of Q and D in terms of misidentification on 4-community ad hoc networks.
(a) The community numbers detected by optimizing modularity density D (average value over 10 net-
works). (b) The community numbers detected by optimizing modularity function Q (average value over
10 networks). (c) The community numbers detected by optimizing modularity density D with the weak
condition constrains which refer to optimization problem (9). (d) The community numbers detected by
optimizing modularity function Q with the weak condition constrains which refer to optimization problem
(9). It shows that in this example D has no misidentification problem, whereas Q suffers from the misiden-
tification problem when kout > 8. Under the weak definition constrains, Q is free of misidentification
limitation.
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Figure S1-3: Comparison of Q and D in terms of accuracy on 50-community ad hoc networks. It shows
that modularity function Q suffers from the resolution limit problem when kout is small. (a) The results
of direct optimization Q and D. (b) The results of optimization Q and D with constrains which refer to
optimization model (9).
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Figure S1-4: Comparison of Q and D in terms of misidentification on 50-community ad hoc networks.
(a) The community numbers detected by optimizing modularity density D (average value over 10 net-
works). (b) The community numbers detected by optimizing modularity function Q (average value over
10 networks). (c) The community numbers detected by optimizing modularity density D with the weak
condition constrains which refer to optimization problem (9). (d) The community numbers detected by
optimizing modularity function Q with the weak condition constrains which refer to optimization problem
(9). It shows that D has no misidentification problem in this example, whereas Q suffers from the misiden-
tification problem when kout > 4. Under the weak definition constrains, Q is free of misidentification
problems. Q also suffers from the resolution limit when kout = 1.
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Figure S1-5: Misidentification in optimization of modularity measures Q in the jazz musician network.
In this network, the nodes denote the jazz bands and edges represent jazz musician sharing relationships.
In reality, there are three communities (white musician community, black musician community located
in New York, and black musician community located in Chicago) which represent black/white racial
segregation and cities that bands recorded in. We use modularity measures Q to partition this network.
The communities with different node shapes are identified by Q based on direct optimization, and com-
munities with different colors are detected by Q based on optimization model (9). The results show that
Q find a community unsatisfying the weak definition. The misidentified community by Q (triangles)
has 4 nodes with fewer inner links than outer links. However the optimization model (9) can correctly
partition the network.
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