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Discrete convex analysis on Q and D

For an arbitrary partition of a network P = {G1, G2, · · · , GK} = {(V1, E1), (V2, E2), · · · , (VK , EK)}, we
discuss the two-stage optimization problems:

QII : max
K

QI(k) = max
K

max
Pk

K∑
s=1

Qs; (1)

and

DII : max
K

DI(K) = max
K

max
Pk

K∑
s=1

Ds; (2)

where QI(K) and DI(K) are the solutions from the first-step optimization problems. And

QI : max
K

QI(K) and DI : max
K

DI(K) (3)

are the second-step optimization problems.
Two exemplary modular networks are used here. One is a ring of dense lumps which consist of

N (N ≥ 8 and N = 2k, k = {3, 4, 5 · · · }) dense lumps each with m nodes. There are lbw links between
adjacent lumps. Let As, s = 1, 2, · · · , N denote the m×m adjacency matrix of the sth lump Gs = (Vs, Es).
Thus, the adjacent matrix A of the whole network is Nm × Nm. Here we assume that all lumps have
the same number of links lin. The second exemplary network is a special version of the ad hoc network,
which also consist of N dense subgraphs, but there are lbw link between each pair of dense subgraphs.
So the total number of links in this network is L = Nlin + N(N − 1)lbw/2. When L is fixed, the larger
lbw is, the more ambiguous the lumps Gs become; the larger lin is, the more loosely connection between
the lumps.

The ring network of lumps

(1) Modularity function Q
Suppose that we partition the whole network into K communities with each community containing

Ni lumps, N1 + · · ·+ NK = N . When K = 1, QP = 0, then we discuss the situation of K ≥ 2 as follows:
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max
K≥2

max
Pk

K∑

i=1

Qi

= max
K≥2

max∑K
i=1 Ni=N

K∑

i=1

[
Ni2lin + 2(Ni − 1)lbw

N2lin + 2Nlbw
−

(
Ni2lin + 2(Ni − 1)lbw + 2lbw

N2lin + 2Nlbw

)2
]

= max
K≥2

max∑K
i=1 Ni=N

K∑

i=1

−1
(N2lin + 2Nlbw)2

[(2lin + 2lbw)2N2
i −N(2lin + 2lbw)2Ni

+2Nlbw(2lin + 2lbw)]

= max
K≥2

max∑K
i=1 Ni=N

K∑

i=1

1
N2

(
−N2

i + NNi − 2Nlbw

2lin + 2lbw

)

= max
K≥2

max∑K
i=1 Ni=N

{
1− Klbw

N(lin + lbw)
−

K∑

i=1

N2
i

N2

}

Note that the first-step optimization problem is a discrete convex program in the feasible region
F = {1, 2, 4, · · · , N/2s+1, N/2s, N/2s−1, · · · , N}. A function (or a programming) whose variables take
discrete values (or, say, the sample values) is called as discrete convex (concave) function (or programming)
if they can be embedded into a continuous convex (concave) function (or programming). Solving the K-
K-T equation of the above first-step optimization problem leads to N1 = · · · = NK = N

K , then

max
K≥2

QI(K) = max
K≥2

{
1− 1

K
− lbw

N(lin + lbw)
K

}
.

So

QI(K) =





1− 1
K − lbw

N(lin+lbw)K K ≥ 2

0 K = 1

It is easy to see that QI(K) is a discrete concave function, then the solution is given by the derivative of
QI(K) at zero. we have solution

K∗ = 〈
√

lin + lbw

lbw

√
N〉F (4)

where 〈
√

lin+lbw

lbw

√
N〉F means the integer in F nearest to

√
lin+lbw

lbw

√
N . The solution is either on the

boundary of F or an interior point of F depending on the values of lbw and lin: QI(1) ≤ · · · ≤ QI(N/2s) ≤
· · · ≤ QI(N), when lbw ≤ lin

N − 1 ; QI(〈
√

lin + lbw
lbw

√
N〉F ) ≥ max{QI(N), QI(1)}, when lbw > lin

N − 1 .

When 〈
√

lin + lbw
lbw

√
N〉F = N , ( lbw < lin

9N/16−1 ), Q identifies each lump as a qualified community. As

lbw becomes larger, the optimal K will be less than N so that Q fails to identify qualified communities,
i.e., it suffers from resolution limit until the value of lbw reaches to lin. When lbw > lin, the single lump
will not satisfy the weak definition of community anymore.

(2) Modularity density D
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max
K≥2

max
Pk

K∑

i=1

Di

= max
K≥2

max∑K
i=1 Ni=N

{
K∑

i=1

(
Ni2lin + 2(Ni − 1)lbw

Nim
− 2lbw

Nim

)}

= max
K≥2

max∑K
i=1 Ni=N

K∑

i=1

(−4lbw

Nim
+

2lin + 2lbw

m

)

where m is the number of nodes in As. The first-step optimization is a convex programming problem
with solution N1 = · · · = NK = N

K , then

max
K≥2

DI(K) = max
K≥2

{
−4lbw

m

K2

N
+ K

2lin + 2lbw

m
.

}
(5)

So

DI(K) =




− 4lbw

m
K2

N + K 2lin+2lbw

m K ≥ 2

2(lin+lbw)
m K = 1

The solution is K∗ = 〈 (lin+lbw)N
4lbw

〉F . With the same reasoning for Q, we can easily get DI(1) ≤ · · · ≤
DI(N/2s) ≤ · · · ≤ DI(N), when lbw ≤ lin

3 ; DI(〈 lin + lbw
4lbw

N〉F ) ≥ max{DI(N), DI(1)} , when lbw > lin
3 .

When 〈 lin + lbw
4lbw

N〉F = N ( lbw < lin

2 ), D identifies each lump as a community satisfying the weak
definition. But when lbw becomes larger, the optimal K will be less than N , and D fails to identify
qualified communities, i.e., it suffers from resolution limit until lbw = lin, from where single lump does
not satisfy the weak definition of community anymore.

The ad hoc network

(1) Modularity function Q

max
K

max
Pk

K∑

i=1

Qi

= max
K

max∑k
i=1 Ni=N

K∑

i=1

[
Ni2lin + Ni(Ni − 1)lbw

N2lin + N(N − 1)lbw
−

(
Ni2lin + Ni(Ni − 1)lbw + Ni(N −Ni)lbw

N2lin + N(N − 1)lbw

)2
]

= max
K

max∑k
i=1 Ni=N

k∑

i=1

{
2lin − lbw

N2[2lin + lbw(N − 1)]
(−N2

i + NNi)
}

Note that the first-step optimization is a convex programming if lbw < 2lin, then it has solution
N1 = · · · = NK = N

K . We further have

QII : max
K

{
2lin − lbw

2lin + lbw(N − 1)
(1− 1

K
)
}

(6)

as a convex problem and the solution is K∗ = N .
When 2lin < lbw, QI is a concave programming, the solution is reached at the boundary. Note that

QI(K) is a monotonously decreasing function, then K∗ = 1.
Since each dump in the ad hoc network will not satisfy the weak definition when lbw ≥ 2lin

N−1 , Q suffers
misidentification when 2lin

N−1 < lbw < 2lin.
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Table S2-1: The properties of optimization model to maximize the modularity measures Q and D on two
exemplary networks.

The ring of lumps The Ad hoc network
Q QI(K) is a discrete concave function, thus

QII is a discrete convex programming
QI(K) is a discrete concave function, thus
QII is a discrete convex programming
when lbw < 2lin. and QI(K) is a discrete
convex function, thus QII is a discrete con-
cave programming when lbw ≥ 2lin

QI is a discrete convex programming QI is a discrete convex programming when
lbw < 2lin, and a discrete concave program-
ming when lbw ≥ 2lin

D DI(K) is a discrete concave function, thus
DII is a discrete convex programming

DI(K) is a linear function, thus DII is a
linear programming, then is a discrete con-
vex programming

DI is a discrete convex programming DI is a linear programming

(2) Modularity density D

max
K

max
Pk

K∑

i=1

Di

= max
K

max∑K
i=1 Ni=N

K∑

i=1

{
Ni2lin + Ni(Ni − 1)lbw

Nim
− Ni(L−Ni)lbw

Nim

}

= max
K

max∑K
i=1 Ni=N

1
m

K∑

i=1

{2lin + 2Nilbw − (N + 1)lbw}

Now the first-step optimization is a simple linear programming problem with any feasible solution as
the optimal solution. Then

DII : = max
K
{K(2lin − (N + 1)lbw) + 2Nlbw} (7)

is also a linear function, then

K∗ =

{
N if lbw < 2lin/(N + 1),
1 if lbw > 2lin/(N + 1).

(8)

and when lbw = 2lin

N+1 , any K is a solution.
Note that each lump in the ad hoc network will not satisfy the weak definition when lbw ≥ 2lin

N−1 , then
D suffers resolution limit for 2lin

N+1 < lbw < 2lin

N−1 .
The above analysis are summarized in two tables S2-1 and S2-2.
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Table S2-2: The result of community partitions of two exemplary networks using different modularity
measures.

The ring of lumps The ad hoc network
Q QI(1) ≤ · · · ≤ QI(N/2s) ≤ · · · ≤ QI(N), QI(1) ≤ · · · ≤ QI(N/2s) ≤ · · · ≤ QI(N),

when lbw ≤ lin
N − 1 when lbw ≤ 2lin

QI(〈
√

lin + lbw
lbw

√
N〉F ) ≥ max{QI(N), QI(1)}, QI(N) ≤ · · · ≤ QI(N/2s) ≤ · · · ≤ QI(1),

when lbw > lin
N − 1 when lbw > 2lin

D DI(1) ≤ · · · ≤ DI(N/2s) ≤ · · · ≤ DI(N), DI(1) ≤ · · · ≤ DI(N/2s) ≤ · · · ≤ DI(N),

when lbw ≤ lin
3 when lbw ≤ 2lin

N + 1
DI(〈 lin + lbw

4lbw
N〉F ) ≥ max{DI(N), DI(1)} , DI(N) ≤ · · · ≤ DI(N/2s) ≤ · · · ≤ DI(1),

when lbw > lin
3 when lbw > 2lin

N + 1
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