Modularity optimization in community identification of complex networks

Supplementary Material 2

Xiang-Sun Zhang^a^{*}, Rui-Sheng Wang^b, Yong Wang^a, Ji-Guang Wang^a, Yu-Qing Qiu^a, Lin Wang^a, and Luonan Chen^c

^aAcademy of Mathematics and Systems Science, CAS, Beijing 100080, China, ^bDepartment of Physics, The Pennsylvania State University, University Park, PA 16801, USA, ^cDepartment of Electronics, Information, and Communication Engineering, Osaka Sangyo University, Osaka 574-8530, Japan.

Discrete convex analysis on Q and D

For an arbitrary partition of a network $P = \{G_1, G_2, \dots, G_K\} = \{(V_1, E_1), (V_2, E_2), \dots, (V_K, E_K)\}$, we discuss the two-stage optimization problems:

$$Q_{II} : \max_{K} Q_{I}(k) = \max_{K} \max_{P_{k}} \sum_{s=1}^{K} Q_{s};$$
(1)

and

$$D_{II} : \max_{K} D_{I}(K) = \max_{K} \max_{P_{k}} \sum_{s=1}^{K} D_{s};$$
 (2)

where $Q_I(K)$ and $D_I(K)$ are the solutions from the first-step optimization problems. And

$$Q_I: \max_K Q_I(K) \text{ and } D_I: \max_K D_I(K)$$
(3)

are the second-step optimization problems.

Two exemplary modular networks are used here. One is a ring of dense lumps which consist of N ($N \ge 8$ and $N = 2^k, k = \{3, 4, 5 \cdots\}$) dense lumps each with m nodes. There are l_{bw} links between adjacent lumps. Let $A_s, s = 1, 2, \cdots, N$ denote the $m \times m$ adjacency matrix of the sth lump $G_s = (V_s, E_s)$. Thus, the adjacent matrix A of the whole network is $Nm \times Nm$. Here we assume that all lumps have the same number of links l_{in} . The second exemplary network is a special version of the ad hoc network, which also consist of N dense subgraphs, but there are l_{bw} link between each pair of dense subgraphs. So the total number of links in this network is $L = Nl_{in} + N(N-1)l_{bw}/2$. When L is fixed, the larger l_{bw} is, the more ambiguous the lumps G_s become; the larger l_{in} is, the more loosely connection between the lumps.

The ring network of lumps

(1) Modularity function Q

Suppose that we partition the whole network into K communities with each community containing N_i lumps, $N_1 + \cdots + N_K = N$. When K = 1, $Q_P = 0$, then we discuss the situation of $K \ge 2$ as follows:

^{*}To whom correspondence should be addressed at: E-mails: zxs@amt.ac.cn

$$\begin{split} \max_{K \ge 2} \max_{P_k} \sum_{i=1}^{K} Q_i \\ = & \max_{K \ge 2} \max_{\sum_{i=1}^{K} N_i = N} \sum_{i=1}^{K} \left[\frac{N_i 2l_{in} + 2(N_i - 1)l_{bw}}{N2l_{in} + 2Nl_{bw}} - \left(\frac{N_i 2l_{in} + 2(N_i - 1)l_{bw} + 2l_{bw}}{N2l_{in} + 2Nl_{bw}} \right)^2 \right] \\ = & \max_{K \ge 2} \max_{\sum_{i=1}^{K} N_i = N} \sum_{i=1}^{K} \frac{-1}{(N2l_{in} + 2Nl_{bw})^2} [(2l_{in} + 2l_{bw})^2 N_i^2 - N(2l_{in} + 2l_{bw})^2 N_i + 2Nl_{bw}(2l_{in} + 2l_{bw})] \\ & + 2Nl_{bw}(2l_{in} + 2l_{bw})] \\ = & \max_{K \ge 2} \max_{\sum_{i=1}^{K} N_i = N} \sum_{i=1}^{K} \frac{1}{N^2} \left(-N_i^2 + NN_i - \frac{2Nl_{bw}}{2l_{in} + 2l_{bw}} \right) \\ & = & \max_{K \ge 2} \max_{\sum_{i=1}^{K} N_i = N} \max_{i=1}^{K} \left\{ 1 - \frac{Kl_{bw}}{N(l_{in} + l_{bw})} - \sum_{i=1}^{K} \frac{N_i^2}{N^2} \right\} \end{split}$$

Note that the first-step optimization problem is a discrete convex program in the feasible region $F = \{1, 2, 4, \dots, N/2^{s+1}, N/2^s, N/2^{s-1}, \dots, N\}$. A function (or a programming) whose variables take discrete values (or, say, the sample values) is called as discrete convex (concave) function (or programming) if they can be embedded into a continuous convex (concave) function (or programming). Solving the K-K-T equation of the above first-step optimization problem leads to $N_1 = \dots = N_K = \frac{N}{K}$, then

$$\max_{K \ge 2} Q_I(K) = \max_{K \ge 2} \left\{ 1 - \frac{1}{K} - \frac{l_{bw}}{N(l_{in} + l_{bw})} K \right\}.$$

 So

$$Q_{I}(K) = \begin{cases} 1 - \frac{1}{K} - \frac{l_{bw}}{N(l_{in} + l_{bw})}K & K \ge 2\\ 0 & K = 1 \end{cases}$$

It is easy to see that $Q_I(K)$ is a discrete concave function, then the solution is given by the derivative of $Q_I(K)$ at zero. we have solution

$$K^* = \langle \sqrt{\frac{l_{in} + l_{bw}}{l_{bw}}} \sqrt{N} \rangle_F \tag{4}$$

where $\langle \sqrt{\frac{l_{in}+l_{bw}}{l_{bw}}}\sqrt{N}\rangle_F$ means the integer in F nearest to $\sqrt{\frac{l_{in}+l_{bw}}{l_{bw}}}\sqrt{N}$. The solution is either on the boundary of F or an interior point of F depending on the values of l_{bw} and l_{in} : $Q_I(1) \leq \cdots \leq Q_I(N/2^s) \leq \cdots \leq Q_I(N)$, when $l_{bw} \leq \frac{l_{in}}{N-1}$; $Q_I(\langle \sqrt{\frac{l_{in}+l_{bw}}{l_{bw}}}\sqrt{N}\rangle_F) \geq \max\{Q_I(N), Q_I(1)\}$, when $l_{bw} > \frac{l_{in}}{N-1}$. When $\langle \sqrt{\frac{l_{in}+l_{bw}}{l_{bw}}}\sqrt{N}\rangle_F = N$, $(l_{bw} < \frac{l_{in}}{9N/16-1})$, Q identifies each lump as a qualified community. As

 l_{bw} becomes larger, the optimal K will be less than N so that Q fails to identify qualified communities, i.e., it suffers from resolution limit until the value of l_{bw} reaches to l_{in} . When $l_{bw} > l_{in}$, the single lump will not satisfy the weak definition of community anymore.

(2) Modularity density D

$$\max_{K \ge 2} \max_{P_k} \sum_{i=1}^{K} D_i$$

$$= \max_{K \ge 2} \max_{\sum_{i=1}^{K} N_i = N} \left\{ \sum_{i=1}^{K} \left(\frac{N_i 2l_{in} + 2(N_i - 1)l_{bw}}{N_i m} - \frac{2l_{bw}}{N_i m} \right) \right\}$$

$$= \max_{K \ge 2} \max_{\sum_{i=1}^{K} N_i = N} \sum_{i=1}^{K} \left(\frac{-4l_{bw}}{N_i m} + \frac{2l_{in} + 2l_{bw}}{m} \right)$$

where m is the number of nodes in A_s . The first-step optimization is a convex programming problem with solution $N_1 = \cdots = N_K = \frac{N}{K}$, then

$$\max_{K \ge 2} D_I(K) = \max_{K \ge 2} \left\{ -\frac{4l_{bw}}{m} \frac{K^2}{N} + K \frac{2l_{in} + 2l_{bw}}{m} \right\}$$
(5)

 \mathbf{So}

$$D_{I}(K) = \begin{cases} -\frac{4l_{bw}}{m} \frac{K^{2}}{N} + K \frac{2l_{in} + 2l_{bw}}{m} & K \ge 2\\ \frac{2(l_{in} + l_{bw})}{m} & K = 1 \end{cases}$$

The solution is $K^* = \langle \frac{(l_{in}+l_{bw})N}{4l_{bw}} \rangle_F$. With the same reasoning for Q, we can easily get $D_I(1) \leq \cdots \leq D_I(N/2^s) \leq \cdots \leq D_I(N)$, when $l_{bw} \leq \frac{l_{in}}{3}$; $D_I(\langle \frac{l_{in}+l_{bw}}{4l_{bw}}N \rangle_F) \geq \max\{D_I(N), D_I(1)\}$, when $l_{bw} > \frac{l_{in}}{3}$. When $\langle \frac{l_{in} + l_{bw}}{4l_{bw}} N \rangle_F = N$ ($l_{bw} < \frac{l_{in}}{2}$), D identifies each lump as a community satisfying the weak definition. But when l_{bw} becomes larger, the optimal K will be less than N, and D fails to identify

qualified communities, i.e., it suffers from resolution limit until $l_{bw} = l_{in}$, from where single lump does not satisfy the weak definition of community anymore.

The *ad hoc* network

=

(1) Modularity function Q

$$\max_{K} \max_{P_{k}} \sum_{i=1}^{K} Q_{i}$$

$$= \max_{K} \max_{\sum_{i=1}^{k} N_{i}=N} \sum_{i=1}^{K} \left[\frac{N_{i} 2l_{in} + N_{i}(N_{i}-1)l_{bw}}{N 2l_{in} + N(N-1)l_{bw}} - \left(\frac{N_{i} 2l_{in} + N_{i}(N_{i}-1)l_{bw} + N_{i}(N-N_{i})l_{bw}}{N 2l_{in} + N(N-1)l_{bw}} \right)^{2} \right]$$

$$= \max_{K} \max_{\sum_{i=1}^{k} N_{i}=N} \sum_{i=1}^{k} \left\{ \frac{2l_{in} - l_{bw}}{N^{2}[2l_{in} + l_{bw}(N-1)]} (-N_{i}^{2} + NN_{i}) \right\}$$

Note that the first-step optimization is a convex programming if $l_{bw} < 2l_{in}$, then it has solution $N_1 = \cdots = N_K = \frac{N}{K}$. We further have

$$Q_{II}: \max_{K} \left\{ \frac{2l_{in} - l_{bw}}{2l_{in} + l_{bw}(N-1)} (1 - \frac{1}{K}) \right\}$$
(6)

as a convex problem and the solution is $K^* = N$.

When $2l_{in} < l_{bw}$, Q_I is a concave programming, the solution is reached at the boundary. Note that $Q_I(K)$ is a monotonously decreasing function, then $K^* = 1$.

Since each dump in the *ad hoc* network will not satisfy the weak definition when $l_{bw} \geq \frac{2l_{in}}{N-1}$, Q suffers misidentification when $\frac{2l_{in}}{N-1} < l_{bw} < 2l_{in}$.

Table S2-1: The properties of optimization model to maximize the modularity measures Q and D on two exemplary networks.

	The ring of lumps	The Ad hoc network
Q	$Q_I(K)$ is a discrete concave function, thus Q_{II} is a discrete convex programming	$Q_I(K)$ is a discrete concave function, thus Q_{II} is a discrete convex programming when $l_{bw} < 2l_{in}$. and $Q_I(K)$ is a discrete convex function, thus Q_{II} is a discrete concave programming when $l_{bw} \ge 2l_{in}$
	Q_I is a discrete convex programming	Q_I is a discrete convex programming when $l_{bw} < 2l_{in}$, and a discrete concave programming when $l_{bw} \ge 2l_{in}$
D	$D_I(K)$ is a discrete concave function, thus D_{II} is a discrete convex programming	$D_I(K)$ is a linear function, thus D_{II} is a linear programming, then is a discrete convex programming
	D_I is a discrete convex programming	D_I is a linear programming

(2) Modularity density D

$$\max_{K} \max_{P_{k}} \sum_{i=1}^{K} D_{i}$$

$$= \max_{K} \max_{\sum_{i=1}^{K} N_{i}=N} \sum_{i=1}^{K} \left\{ \frac{N_{i} 2l_{in} + N_{i}(N_{i}-1)l_{bw}}{N_{i}m} - \frac{N_{i}(L-N_{i})l_{bw}}{N_{i}m} \right\}$$

$$= \max_{K} \max_{\sum_{i=1}^{K} N_{i}=N} \frac{1}{m} \sum_{i=1}^{K} \{ 2l_{in} + 2N_{i}l_{bw} - (N+1)l_{bw} \}$$

Now the first-step optimization is a simple linear programming problem with any feasible solution as the optimal solution. Then

$$D_{II} := \max_{K} \{ K(2l_{in} - (N+1)l_{bw}) + 2Nl_{bw} \}$$
(7)

is also a linear function, then

$$K^* = \begin{cases} N & if \ l_{bw} < 2l_{in}/(N+1), \\ 1 & if \ l_{bw} > 2l_{in}/(N+1). \end{cases}$$
(8)

and when $l_{bw} = \frac{2l_{in}}{N+1}$, any K is a solution.

Note that each lump in the *ad hoc* network will not satisfy the weak definition when $l_{bw} \geq \frac{2l_{in}}{N-1}$, then *D* suffers resolution limit for $\frac{2l_{in}}{N+1} < l_{bw} < \frac{2l_{in}}{N-1}$. The above analysis are summarized in two tables S2-1 and S2-2.

Table S2-2: The result of community partitions of two exemplary networks using different modularity measures.

	The ring of lumps	The ad hoc network
Q	$Q_I(1) \leq \cdots \leq Q_I(N/2^s) \leq \cdots \leq Q_I(N),$	$Q_I(1) \leq \cdots \leq Q_I(N/2^s) \leq \cdots \leq Q_I(N),$
	when $l_{bw} \leq \frac{l_{in}}{N-1}$	when $l_{bw} \leq 2l_{in}$
	$Q_{I}(\langle \sqrt{\frac{l_{in}+l_{bw}}{l_{bw}}}\sqrt{N}\rangle_{F}) \ge \max\{Q_{I}(N), Q_{I}(1)\},$	$Q_I(N) \leq \cdots \leq Q_I(N/2^s) \leq \cdots \leq Q_I(1),$
	when $l_{bw} > \frac{l_{in}}{N-1}$	when $l_{bw} > 2l_{in}$
D	$D_I(1) \leq \cdots \leq D_I(N/2^s) \leq \cdots \leq D_I(N),$	$D_I(1) \leq \cdots \leq D_I(N/2^s) \leq \cdots \leq D_I(N),$
	when $l_{bw} \leq \frac{l_{in}}{3}$	when $l_{bw} \leq \frac{2l_{in}}{N+1}$
	$D_I(\langle \frac{l_{in}+l_{bw}}{4l_{bw}}N\rangle_F) \ge \max\{D_I(N), D_I(1)\},\$	$D_I(N) \leq \cdots \leq D_I(N/2^s) \leq \cdots \leq D_I(1),$
	when $l_{bw} > \frac{l_{in}}{3}$	when $l_{bw} > \frac{2l_{in}}{N+1}$