Modularity optimization in community identification of complex networks

Supplementary Material 2

Xiang-Sun Zhang ${ }^{\text {a* }}$, Rui-Sheng Wang ${ }^{\text {b }}$, Yong Wang ${ }^{\text {a }}$, Ji-Guang Wang ${ }^{\text {a }}$, Yu-Qing Qiu ${ }^{\text {a }}$, Lin Wang ${ }^{\text {a }}$, and Luonan Chen ${ }^{\text {c }}$
${ }^{a}$ Academy of Mathematics and Systems Science, CAS, Beijing 100080, China, ${ }^{\text {b }}$ Department of Physics, The Pennsylvania State University, University Park, PA 16801, USA, ${ }^{\text {c Department of Electronics, Information, and }}$ Communication Engineering, Osaka Sangyo University, Osaka 574-8530, Japan.

Discrete convex analysis on Q and D

For an arbitrary partition of a network $P=\left\{G_{1}, G_{2}, \cdots, G_{K}\right\}=\left\{\left(V_{1}, E_{1}\right),\left(V_{2}, E_{2}\right), \cdots,\left(V_{K}, E_{K}\right)\right\}$, we discuss the two-stage optimization problems:

$$
\begin{equation*}
Q_{I I}: \max _{K} Q_{I}(k)=\max _{K} \max _{P_{k}} \sum_{s=1}^{K} Q_{s} \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
D_{I I}: \max _{K} D_{I}(K)=\max _{K} \max _{P_{k}} \sum_{s=1}^{K} D_{s} \tag{2}
\end{equation*}
$$

where $Q_{I}(K)$ and $D_{I}(K)$ are the solutions from the first-step optimization problems. And

$$
\begin{equation*}
Q_{I}: \max _{K} Q_{I}(K) \text { and } D_{I}: \max _{K} D_{I}(K) \tag{3}
\end{equation*}
$$

are the second-step optimization problems.
Two exemplary modular networks are used here. One is a ring of dense lumps which consist of $N\left(N \geq 8\right.$ and $\left.N=2^{k}, k=\{3,4,5 \cdots\}\right)$ dense lumps each with m nodes. There are $l_{b w}$ links between adjacent lumps. Let $A_{s}, s=1,2, \cdots, N$ denote the $m \times m$ adjacency matrix of the s th lump $G_{s}=\left(V_{s}, E_{s}\right)$. Thus, the adjacent matrix A of the whole network is $N m \times N m$. Here we assume that all lumps have the same number of links $l_{i n}$. The second exemplary network is a special version of the ad hoc network, which also consist of N dense subgraphs, but there are $l_{b w}$ link between each pair of dense subgraphs. So the total number of links in this network is $L=N l_{i n}+N(N-1) l_{b w} / 2$. When L is fixed, the larger $l_{b w}$ is, the more ambiguous the lumps G_{s} become; the larger $l_{i n}$ is, the more loosely connection between the lumps.

The ring network of lumps

(1) Modularity function Q

Suppose that we partition the whole network into K communities with each community containing N_{i} lumps, $N_{1}+\cdots+N_{K}=N$. When $K=1, Q_{P}=0$, then we discuss the situation of $K \geq 2$ as follows:

[^0]\[

$$
\begin{aligned}
& \max _{K \geq 2} \max _{P_{k}} \sum_{i=1}^{K} Q_{i} \\
= & \max _{K \geq 2} \max _{\sum_{i=1}^{K} N_{i}=N} \sum_{i=1}^{K}\left[\frac{N_{i} 2 l_{i n}+2\left(N_{i}-1\right) l_{b w}}{N 2 l_{i n}+2 N l_{b w}}-\left(\frac{N_{i} 2 l_{i n}+2\left(N_{i}-1\right) l_{b w}+2 l_{b w}}{N 2 l_{i n}+2 N l_{b w}}\right)^{2}\right] \\
= & \max _{K \geq 2} \max _{\sum_{i=1}^{K} N_{i}=N} \sum_{i=1}^{K} \frac{-1}{\left(N 2 l_{i n}+2 N l_{b w}\right)^{2}}\left[\left(2 l_{i n}+2 l_{b w}\right)^{2} N_{i}^{2}-N\left(2 l_{i n}+2 l_{b w}\right)^{2} N_{i}\right. \\
& \left.+2 N l_{b w}\left(2 l_{i n}+2 l_{b w}\right)\right] \\
= & \max _{K \geq 2} \max _{\sum_{i=1}^{K} N_{i}=N} \sum_{i=1}^{K} \frac{1}{N^{2}}\left(-N_{i}^{2}+N N_{i}-\frac{2 N l_{b w}}{2 l_{i n}+2 l_{b w}}\right) \\
= & \max _{K \geq 2} \max _{\sum_{i=1}^{K} N_{i}=N}\left\{1-\frac{K l_{b w}}{N\left(l_{i n}+l_{b w}\right)}-\sum_{i=1}^{K} \frac{N_{i}^{2}}{N^{2}}\right\}
\end{aligned}
$$
\]

Note that the first-step optimization problem is a discrete convex program in the feasible region $F=\left\{1,2,4, \cdots, N / 2^{s+1}, N / 2^{s}, N / 2^{s-1}, \cdots, N\right\}$. A function (or a programming) whose variables take discrete values (or, say, the sample values) is called as discrete convex (concave) function (or programming) if they can be embedded into a continuous convex (concave) function (or programming). Solving the K-K-T equation of the above first-step optimization problem leads to $N_{1}=\cdots=N_{K}=\frac{N}{K}$, then

$$
\max _{K \geq 2} Q_{I}(K)=\max _{K \geq 2}\left\{1-\frac{1}{K}-\frac{l_{b w}}{N\left(l_{i n}+l_{b w}\right)} K\right\} .
$$

So

$$
Q_{I}(K)= \begin{cases}1-\frac{1}{K}-\frac{l_{b w}}{N\left(l_{i n}+l_{b w}\right)} K & K \geq 2 \\ 0 & K=1\end{cases}
$$

It is easy to see that $Q_{I}(K)$ is a discrete concave function, then the solution is given by the derivative of $Q_{I}(K)$ at zero. we have solution

$$
\begin{equation*}
K^{*}=\left\langle\sqrt{\frac{l_{i n}+l_{b w}}{l_{b w}}} \sqrt{N}\right\rangle_{F} \tag{4}
\end{equation*}
$$

where $\left\langle\sqrt{\frac{l_{i n}+l_{b w}}{l_{b w}}} \sqrt{N}\right\rangle_{F}$ means the integer in F nearest to $\sqrt{\frac{l_{i n}+l_{b w}}{l_{b w}}} \sqrt{N}$. The solution is either on the boundary of F or an interior point of F depending on the values of $l_{b w}$ and $l_{i n}: Q_{I}(1) \leq \cdots \leq Q_{I}\left(N / 2^{s}\right) \leq$ $\cdots \leq Q_{I}(N)$, when $l_{b w} \leq \frac{l_{i n}}{N-1} ; Q_{I}\left(\left\langle\sqrt{\frac{l_{i n}+l_{b w}}{l_{b w}}} \sqrt{N}\right\rangle_{F}\right) \geq \max \left\{Q_{I}(N), Q_{I}(1)\right\}$, when $l_{b w}>\frac{l_{i n}}{N-1}$.

When $\left\langle\sqrt{\frac{l_{i n}+l_{b w}}{l_{b w}}} \sqrt{N}\right\rangle_{F}=N,\left(l_{b w}<\frac{l_{i n}}{9 N / 16-1}\right), Q$ identifies each lump as a qualified community. As $l_{b w}$ becomes larger, the optimal K will be less than N so that Q fails to identify qualified communities, i.e., it suffers from resolution limit until the value of $l_{b w}$ reaches to $l_{i n}$. When $l_{b w}>l_{i n}$, the single lump will not satisfy the weak definition of community anymore.
(2) Modularity density D

$$
\begin{aligned}
& \max _{K \geq 2} \max _{P_{k}} \sum_{i=1}^{K} D_{i} \\
&= \max _{K \geq 2} \max _{\sum_{i=1}^{K} N_{i}=N}\left\{\sum_{i=1}^{K}\left(\frac{N_{i} 2 l_{i n}+2\left(N_{i}-1\right) l_{b w}}{N_{i} m}-\frac{2 l_{b w}}{N_{i} m}\right)\right\} \\
&= \max _{K \geq 2} \max _{i=1}^{K} N_{i}=N \\
& \sum_{i=1}^{K}\left(\frac{-4 l_{b w}}{N_{i} m}+\frac{2 l_{i n}+2 l_{b w}}{m}\right)
\end{aligned}
$$

where m is the number of nodes in A_{s}. The first-step optimization is a convex programming problem with solution $N_{1}=\cdots=N_{K}=\frac{N}{K}$, then

$$
\begin{equation*}
\max _{K \geq 2} D_{I}(K)=\max _{K \geq 2}\left\{-\frac{4 l_{b w}}{m} \frac{K^{2}}{N}+K \frac{2 l_{i n}+2 l_{b w}}{m} .\right\} \tag{5}
\end{equation*}
$$

So

$$
D_{I}(K)= \begin{cases}-\frac{4 l_{b w}}{m} \frac{K^{2}}{N}+K \frac{2 l_{i n}+2 l_{b w}}{m} & K \geq 2 \\ \frac{2\left(l_{i n}+l_{b w}\right)}{m} & K=1\end{cases}
$$

The solution is $K^{*}=\left\langle\frac{\left(l_{i n}+l_{b w}\right) N}{4 l_{b w}}\right\rangle_{F}$. With the same reasoning for Q, we can easily get $D_{I}(1) \leq \cdots \leq$ $D_{I}\left(N / 2^{s}\right) \leq \cdots \leq D_{I}(N)$, when $l_{b w} \leq \frac{l_{i n}}{3} ; D_{I}\left(\left\langle\frac{l_{i n}+l_{b w}}{4 l_{b w}} N\right\rangle_{F}\right) \geq \max \left\{D_{I}(N), D_{I}(1)\right\}$, when $l_{b w}>\frac{l_{i n}}{3}$.

When $\left\langle\frac{l_{i n}+l_{b w}}{4 l_{b w}} N\right\rangle_{F}=N\left(l_{b w}<\frac{l_{i n}}{2}\right), D$ identifies each lump as a community satisfying the weak definition. But when $l_{b w}$ becomes larger, the optimal K will be less than N, and D fails to identify qualified communities, i.e., it suffers from resolution limit until $l_{b w}=l_{i n}$, from where single lump does not satisfy the weak definition of community anymore.

The ad hoc network

(1) Modularity function Q

$$
\begin{aligned}
& \max _{K} \max _{P_{k}} \sum_{i=1}^{K} Q_{i} \\
= & \max _{K} \max _{\sum_{i=1}^{k} N_{i}=N} \sum_{i=1}^{K}\left[\frac{N_{i} 2 l_{i n}+N_{i}\left(N_{i}-1\right) l_{b w}}{N 2 l_{i n}+N(N-1) l_{b w}}-\left(\frac{N_{i} 2 l_{i n}+N_{i}\left(N_{i}-1\right) l_{b w}+N_{i}\left(N-N_{i}\right) l_{b w}}{N 2 l_{i n}+N(N-1) l_{b w}}\right)^{2}\right] \\
= & \max _{K} \max _{\sum_{i=1}^{k} N_{i}=N} \sum_{i=1}^{k}\left\{\frac{2 l_{i n}-l_{b w}}{N^{2}\left[2 l_{i n}+l_{b w}(N-1)\right]}\left(-N_{i}^{2}+N N_{i}\right)\right\}
\end{aligned}
$$

Note that the first-step optimization is a convex programming if $l_{b w}<2 l_{i n}$, then it has solution $N_{1}=\cdots=N_{K}=\frac{N}{K}$. We further have

$$
\begin{equation*}
Q_{I I}: \max _{K}\left\{\frac{2 l_{i n}-l_{b w}}{2 l_{i n}+l_{b w}(N-1)}\left(1-\frac{1}{K}\right)\right\} \tag{6}
\end{equation*}
$$

as a convex problem and the solution is $K^{*}=N$.
When $2 l_{i n}<l_{b w}, Q_{I}$ is a concave programming, the solution is reached at the boundary. Note that $Q_{I}(K)$ is a monotonously decreasing function, then $K^{*}=1$.

Since each dump in the $a d$ hoc network will not satisfy the weak definition when $l_{b w} \geq \frac{2 l_{i n}}{N-1}, Q$ suffers misidentification when $\frac{2 l_{i n}}{N-1}<l_{b w}<2 l_{i n}$.

Table S2-1: The properties of optimization model to maximize the modularity measures Q and D on two exemplary networks.

	The ring of lumps	The Ad hoc network
Q	$Q_{I}(K)$ is a discrete concave function, thus $Q_{I I}$ is a discrete convex programming	$Q_{I}(K)$ is a discrete concave function, thus $Q_{I I}$ is a discrete convex programming when $l_{b w}<2 l_{i n}$. and $Q_{I}(K)$ is a discrete convex function, thus $Q_{I I}$ is a discrete concave programming when $l_{b w} \geq 2 l_{i n}$
	Q_{I} is a discrete convex programming	Q_{I} is a discrete convex programming when $l_{b w}<2 l_{i n}$, and a discrete concave programming when $l_{b w} \geq 2 l_{i n}$
D	$D_{I}(K)$ is a discrete concave function, thus $D_{I I}$ is a discrete convex programming	$D_{I}(K)$ is a linear function, thus $D_{I I}$ is a linear programming, then is a discrete convex programming
	D_{I} is a discrete convex programming	D_{I} is a linear programming

(2) Modularity density D

$$
\begin{aligned}
& \max _{K} \max _{P_{k}} \sum_{i=1}^{K} D_{i} \\
= & \max _{K} \max _{\sum_{i=1}^{K} N_{i}=N} \sum_{i=1}^{K}\left\{\frac{N_{i} 2 l_{i n}+N_{i}\left(N_{i}-1\right) l_{b w}}{N_{i} m}-\frac{N_{i}\left(L-N_{i}\right) l_{b w}}{N_{i} m}\right\} \\
= & \max _{K} \max _{\sum_{i=1}^{K} N_{i}=N} \frac{1}{m} \sum_{i=1}^{K}\left\{2 l_{i n}+2 N_{i} l_{b w}-(N+1) l_{b w}\right\}
\end{aligned}
$$

Now the first-step optimization is a simple linear programming problem with any feasible solution as the optimal solution. Then

$$
\begin{equation*}
D_{I I}:=\max _{K}\left\{K\left(2 l_{i n}-(N+1) l_{b w}\right)+2 N l_{b w}\right\} \tag{7}
\end{equation*}
$$

is also a linear function, then

$$
K^{*}=\left\{\begin{array}{rll}
N & \text { if } & l_{b w}<2 l_{i n} /(N+1) \tag{8}\\
1 & \text { if } & l_{b w}>2 l_{i n} /(N+1)
\end{array}\right.
$$

and when $l_{b w}=\frac{2 l_{i n}}{N+1}$, any K is a solution.
Note that each lump in the $a d$ hoc network will not satisfy the weak definition when $l_{b w} \geq \frac{2 l_{i n}}{N-1}$, then D suffers resolution limit for $\frac{2 l_{i n}}{N+1}<l_{b w}<\frac{2 l_{i n}}{N-1}$.

The above analysis are summarized in two tables S2-1 and S2-2.

Table S2-2: The result of community partitions of two exemplary networks using different modularity measures.

	The ring of lumps	The ad hoc network
Q	$\begin{aligned} & Q_{I}(1) \leq \cdots \leq Q_{I}\left(N / 2^{s}\right) \leq \cdots \leq Q_{I}(N), \\ & \text { when } l_{b w} \leq l_{i n}-1 \\ & Q_{I}\left(\left\langle\sqrt{\frac{l_{i n}+l_{b w}}{l_{b w}}} \sqrt{N}\right\rangle_{F}\right) \geq \max \left\{Q_{I}(N), Q_{I}(1)\right\}, \\ & \text { when } l_{b w}>\frac{l_{i n}}{N-1} \end{aligned}$	$\begin{aligned} & Q_{I}(1) \leq \cdots \leq Q_{I}\left(N / 2^{s}\right) \leq \cdots \leq Q_{I}(N), \\ & \text { when } l_{b w} \leq 2 l_{\text {in }} \\ & Q_{I}(N) \leq \cdots \leq Q_{I}\left(N / 2^{s}\right) \leq \cdots \leq Q_{I}(1), \\ & \text { when } l_{b w}>2 l_{\text {in }} \end{aligned}$
D	$\begin{aligned} & D_{I}(1) \leq \cdots \leq D_{I}\left(N / 2^{s}\right) \leq \cdots \leq D_{I}(N) \\ & \text { when } l_{b w} \leq \frac{l_{i n}}{3} \\ & D_{I}\left(\left\langle\frac{l_{i n}+l_{b w}}{4 l_{b w}} N\right\rangle_{F}\right) \geq \max \left\{D_{I}(N), D_{I}(1)\right\}, \\ & \text { when } l_{b w}>\frac{l_{i n}}{3} \end{aligned}$	$\begin{aligned} & D_{I}(1) \leq \cdots \leq D_{I}\left(N / 2^{s}\right) \leq \cdots \leq D_{I}(N), \\ & \text { when } l_{b w} \leq \frac{2 l_{\text {in }}}{N+1} \\ & D_{I}(N) \leq \cdots \leq D_{I}\left(N / 2^{s}\right) \leq \cdots \leq D_{I}(1), \\ & \text { when } l_{b w}>\frac{2 l_{\text {in }}}{N+1} \end{aligned}$

[^0]: ${ }^{*}$ To whom correspondence should be addressed at: E-mails: zxs@amt.ac.cn

