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Relationship between the modularity measures Q, D, and the

weak definition of community

Given a graph G = (V, E), and partitions PK = {G1, G2, · · · , GK}={(V1, E1),(V2, E2),· · · ,(VK , EK)},
K = 1, · · · , |V |, we denote Q(P ), D(P ) as the values of Q, D on the partition P .

Relationship between D and the weak definition of community

For modularity measure D, we have the following proposition.

Proposition 2 Let us denote D(P ) =
∑K

i=1
Di. If for ∀ i, Gi satisfies the weak definition [1], then we

have D(P ) > 0.

Proof. If Gi satisfies the weak definition, then Di > 0 is valid. It is easy to see that D(P ) =
∑K

i=1
Di > 0

is valid.

We note that the reverse of Proposition 2 is not correct, i.e., if D(P ) > 0 then it is not necessary all
Gi (∀ i) satisfies the weak definition. An example is shown in Figure 1(b) in the main text. Suppose we
have a network which is a 15-clique connected with another two nodes by three edges. In our experimental
the optimization of D partition the network into two communities (Shown in Figure 1(b) in the main
text). The first one is the 15-clique with Di value 13.8. The second one is the community with two nodes
with Di value −0.5. So D(P ) = 13.3 > 0. However we can simply check that the second community does
not satisfy the weak definition.

Relationship between Q and the weak definition of community

For modularity measure Q, we have the following proposition.

Proposition 3 Let us denote Q(P ) =
∑K

i=1
Qi. If for ∀ i, Gi satisfies the weak definition [1], then there

exists a constant B, and we have Qi > B ≥ 0, i.e., Q has a positive lower bound.
Proof

(1) In the simplest situation, P = {G1, G2}, we use S1 = L(V1, V1), S2 = L(V2, V2), S12 = L(V1, V2) to
denote the edges in G1, G2, and the edges between them respectively (as shown in figure S1).
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Q1 =
S1

L
−

(

2S1 + S12

2L

)2

4L2Q1 = 4S1L − (2S1 + S12)
2

= 4S1(S1 + S2 + S12) − 4S2
1 − 4S1S12 − S2

12

= 4S1S2 − S2
12,

where L represents the number of edges in the whole network. By the weak definition of module,

{

2S1 > S12

2S2 > S12,

we have

Q1 =
4S1S2 − S2

12

4L2
> 0.

Similarly we have

Q2 =
4S1S2 − S2

12

4L2
> 0.

Thus let

B =
4S1S2 − S2

12

2L2
≥ 0.

We have Q = Q1 + Q2 > B ≥ 0
(2) Accordingly, for K = 3, we have

Q1 >
S23(S12 + S13)

L2
> 0

Q2 >
S13(S12 + S23)

L2
> 0

Q3 >
S12(S13 + S23)

L2
> 0

Thus let

B =
S23(S12 + S13) + S13(S12 + S23) + S12(S13 + S23)

L2
> 0.

and we have Q = Q1 + Q2 + Q3 > B > 0
(3)In a general case,

Q1 =
S1

L
−

(

2S1 +
∑K

j=2
S1j

2L

)2

4L2Q1 = 4S1L − (2S1 +

K
∑

j=2

S1j)
2

= 4S1(

K
∑

i=1

Si +

K−1
∑

i=1

K
∑

j=i+1

Sij) − 4S2
1 − 4S1

K
∑

j=2

S1j −





K
∑

j=2

S1j





2

= 4S1

K
∑

i=2

Si + 4S1

K−1
∑

i=2

K
∑

j=i+1

Sij −





K
∑

j=2

S1j





2

= (∗).
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Figure S1: Illustration of different partitions for graph G.
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Since all the modules satisfy weak definition, we have















2S1 >
∑K

j=2
S1j

2S2 >
∑

j 6=2
S2j

· · ·
2SK >

∑

j 6=K SKj ,

so

(∗) >





K
∑

j=2

S1j





K
∑

i=2

∑

j 6=i

Sij + 2





K
∑

j=2

S1j





K−1
∑

i=2

K
∑

j=i+1

Sij −





K
∑

j=2

S1j





2

=





K
∑

j=2

S1j









K
∑

i=2

∑

j 6=i

Sij + 2

K−1
∑

i=2

K
∑

j=i+1

Sij −

K
∑

j=2

S1j





=





K
∑

j=2

S1j
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K−1
∑

i=2

K
∑

j=i+1

Sij ,

and further

Q1 >
4
(

∑K

j=2
S1j

)

∑K−1

i=2

∑K

j=i+1
Sij

4L2

=

(

∑K

j=2
S1j

)

∑K−1

i=2

∑K

j=i+1
Sij

L2
> 0,

then we can get a lower bound B for Q as

B =

K
∑

l=1

(

∑

j 6=l Slj

)

∑

i6=l

∑K

j=i+1
Sij

L2

Thus we have Q =
∑K

l=1
Ql > B > 0.

Similarly the reverse of Proposition 3 is not correct, i.e., if Q(P ) > 0 then it is not necessary all
Gi (∀ i) satisfies the weak definition. A simple example is given in Figure 1(a) in main text, where there
are five 6-cliques, any two of which are connected by eight links. Experimental result shows that the
optimization of Q partition the network into five communities and identify every 6-clique as a separate
community (Shown in Figure 1(a) in the main text). The optimal value of Q(P ) = 0.280 is larger than
zero. However these five communities all have 15 inner-links and 32 out-links and do not satisfy the weak
community definition. We further calculate the lower bound B in Proposition 3 which has a value 0.32
and is larger than the optimal value of Q(P ).
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