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I. THE PROOF OF EQ.(3) IN THE MAIN TEXT

In terms of the parameter of X,Θ,∆, Z and Ω, we have:

Φ = ΘBgZD
−1,Ψ = ∆BgZD

−1 (1)

where D = diag(nΩ).

Proof . We have

ϕpq =
∑
i∈Cq

1

Nq

θpi (2)

where i ∈ Cq denotes node i is in the cluster q with a size Nq, and
1
Nq

is the probability of

selecting node i from cluster q. Further, we have:

ϕpq =
1

nωq

n∑
i=1

θpi(BgZ)iq. (3)

Similarly, we have:

ψpq =
1

nωq

n∑
i=1

δpi(BgZ)iq. (4)

Thus, we have

Φ = ΘBgZD
−1,Ψ = ∆BgZD

−1 (5)

The Proof is end.

II. THE PROOF OF EQ.(5) IN THE MAIN TEXT

L(N |X,Bg) =
L∑
l=1

∑
bil ̸=0

K∑
k=j

n∏
j=1

f(θkj, aij)f(δkj, aji)ωk (6)

where f(x, y) = xy(1− x)1−y.

Proof . Let v = i denote the event that a node with linkage structure <

ai1, ..., ain, a1i, ...ani > will be observed in network N . Let y = k denote the event that

the cluster label assigned to a node is equal to k. Let i→aij j denote the event that node vi

may or may not link to node vj, depending on aij. Let i←aji j denote the event that node

vi may or may not be linked by node vj depending on aji. We have:
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L(N |X,Bg) = lnΠn
i=1P (v = i) =

n∑
i=1

lnP (v = i)

=
n∑

i=1

ln
K∑
k=1

P (v = i, y = k)

=
n∑

i=1

ln
K∑
k=1

P (v = i|y = k)P (y = k)

=
n∑

i=1

ln
K∑
k=1

(P (< ai1, ..., ain, a1i, ...ani > |y = k)P (y = k))

=
n∑

i=1

ln
K∑
k=1

(
n∏

j=1

P (i→aij j|y = k)P (i←aji j|y = k)P (y = k))

=
n∑

i=1

ln
K∑
k=1

(
n∏

j=1

(θ
aij
kj (1− θkj)

1−aij)(δ
aji
kj (1− δkj)

1−aji)ωk)

=
n∑

i=1

K∑
k=j

n∏
j=1

f(θkj, aij)f(δkj, aji)ωk

=
L∑
l=1

∑
bil ̸=0

K∑
k=j

n∏
j=1

f(θkj, aij)f(δkj, aji)ωk

(7)

The proof is end.

III. THE PROOF OF THEOREM 1 IN THE MAIN TEXT

Theorem 1. A local optimum of maximizing Eq.(6) will be guaranteed by recursively

calculating Eq.(8) and (9):



θkj =

∑L
l=1

∑
bil ̸=0 aijγlk∑L

l=1

∑
bil ̸=0 γlk

δkj =

∑L
l=1

∑
bil ̸=0 ajiγlk∑L

l=1

∑
bil ̸=0 γlk

ωk =

∑L
l=1

∑
bil ̸=0 γlk

n

(8)

γlk =
1∑n

i=1 bil
×

∑
bil ̸=0

∏n
j=1 f(θkj, aij)f(δkj, aji)wk∑K

k=1

∏n
j=1 f(θkj, aij)f(δkj, aji)wk

,
(9)
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where γlk = E[zlk] = P (y = k|b = l, X,Bg),i.e., the probability that module l is labeled with

community k given X and Bg.

Proof . Let L(G,Z|X,Bg) be the log-likelihood of the joint distribution of line graph G and

Z given X and Bg, we have

L(G,Z|X,Bg) =
L∑
l=1

∑
bil ̸=0

K∑
k=1

zlk(
n∑

j=1

(ln f(θkj, aij) + ln f(δkj, aji)) + lnωk) (10)

The detailed proof of Eq.(10) are shown in Eq.(21). Considering the expectation of

L(G,Z|X,Bg) on Z, we have:

E[L(G,Z|X,Bg)] =
L∑
l=1

∑
bil ̸=0

K∑
k=1

γlk(
n∑

j=1

(ln f(θkj, aij) + ln f(δkj, aji)) + lnωk) (11)

where E[zlk] = γlk = P (y = k|b = l, X,Bg),i.e. the probability that block l will be labeled

as cluster k given X and Bg. Let J = E[L(G,Z|X,Bg)] + λ(
∑K

k=1wk = 1), we have:

∂J
∂θkj

= 0

∂J
∂δkj

= 0

∂J
∂ωk

= 0

∂J
∂λ

= 0

⇒


θkj =

∑L
l=1

∑
bil ̸=0 aijγlk∑L

l=1

∑
bil ̸=0 γlk

δkj =
∑L

l=1

∑
bil ̸=0 ajiγlk∑L

l=1

∑
bil ̸=0 γlk

ωk =
∑L

l=1

∑
bil ̸=0 γlk∑K

k=1

∑L
l=1

∑
bil ̸=0 γlk

=
∑L

l=1

∑
bil ̸=0 γlk

n

let P (y = k|v = i) be the probability that node i belongs to cluster k given X and Bg,

We have:

γlk = P (y = k|b = l, X,Bg) =
∑
bil ̸=0

1∑n
i=1 bil

P (y = k|v = i) (12)

where 1∑n
i=1 bil

is the probability of selecting node i from block l. According to the Bayesian

theorem, we have:

P (y = k|v = i) =
P (y = k)P (v = i|y = k)∑K
k=1 P (y = k)P (v = i|y = k)

. (13)

Furthermore, we have:

P (y = k)P (v = i|y = k) =
n∏

j=1

f(θkj, aij)f(δkj, aji)ωk (14)

Thus, we have:

γlk =
1∑n

i=1 bil

∑
bil ̸=0

∏n
j=1 f(θkj, aij)f(δkj, aji)wk∑K

k=1

∏n
j=1 f(θkj, aij)f(δkj, aji)ωk

(15)
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Moreover, we have:

L(G|X,Bg) =
n∑

i=1

lnP (v = i|X,Bg)

=
n∑

i=1

ln
K∑
k=1

P (v = i, y = k|X,Bg)

=
n∑

i=1

ln
K∑
k=1

P (y = k|v = i,X(s), Bg)
P (v = i, y = k|X,Bg)

P (y = k|v = i,X(s), Bg)

(by Jensen′s inequality)

≥
n∑

i=1

K∑
k=1

P (y = k|v = i,X(s), Bg) ln
P (v = i, y = k|X,Bg)

P (y = k|v = i,X(s), Bg)

≡ G(X,X(s))

(16)

Furthermore, we have:

G(X(s), X(s)) =
n∑

i=1

K∑
k=1

P (y = k|v = i,X(s), Bg) ln
P (v = i, y = k|X,Bg)

P (y = k|v = i,Xs, Bg)

=
n∑

i=1

K∑
k=1

P (y = k|v = i,X(s), Bg) lnP (v = i|X(s), Bg)

=
n∑

i=1

lnP (v = i|X(s), Bg)
K∑
k=1

P (y = k|v = i,X(s), Bg)

=
n∑

i=1

lnP (v = i|X(s), Bg)L(N |X(s), Bg).

(17)

Let P (y = k|b = l, X(s), Bg) = γ
(s)
ik , we have:

G(X,X(s)) =
L∑
l=1

∑
bil ̸=0

K∑
k=1

γ
(s)
ik lnP (v = i, y = k|X,Bg)

−
L∑
l=1

∑
bil ̸=0

K∑
k=1

γ
(s)
ik lnP (y = k|v = i,X(s), Bg).

(18)
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Thus, we have:

argmaxG(X,X(s)) = argmax(
L∑
l=1

∑
bil ̸=0

K∑
k=1

γ
(s)
ik lnP (v = i, y = k|X,Bg)

−
L∑
l=1

∑
bil ̸=0

K∑
k=1

γ
(s)
ik lnP (y = k|v = i,X(s), Bg))

= argmax(
L∑
l=1

∑
bil ̸=0

K∑
k=1

(γ
(s)
ik lnP (v = i, y = k|X,Bg)))

= argmaxE[L(G,Z(s)|X,Bg)]

= X(s+1).

(19)

Recall that, the Θ(s+1),∆(s+1), and Ω(s+1) of X(s+1) can be computed in terms of γ
(s)
lk .

Thus, we have:

G(X(s+1), X(s)) ≥ G(X(s), X(s)) = L(G|X(s), Bg). (20)

That is to say, the X(s+1) obtained in the current iteration will be not worse than X(s)

obtained in last iteration. Thus, we have the theorem and the proof is end.

IV. THE CALCULATION OF EQ.(10)

L(N,Z|X,Bg) =
L∑
l=1

∑
bil ̸=0

K∑
k=1

zlk(
n∑

j=1

(ln f(θkj, aij) + ln f(δkj, aji)) + lnωk) (21)
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Proof :

L(N,Z|X,Bg)

= lnΠn
i=1P (v = i, y = y(i))

=
n∑

i=1

ln
K∑
k=1

mikP (v = i, y = k)

=
n∑

i=1

ln
K∑
k=1

mikP (v = i|y = k)P (y = k)

=
n∑

i=1

K∑
k=1

ln(P (v = i|y = k)P (y = k))mik

=
n∑

i=1

K∑
k=1

mik ln(P (v = i|y = k)P (y = k))

=
n∑

i=1

K∑
k=1

mik ln(
n∏

j=1

(θ
aij
kj (1− θkj)

1−aijδ
aji
kj (1− δkj)

1−aji)ωk

=
n∑

i=1

K∑
k=1

mik(
n∑

j=1

(ln f(θkj, aij) + ln f(δkj, aji)) + lnωk)

=
L∑
l=1

∑
bil ̸=0

K∑
k=1

zlk(
n∑

j=1

(ln f(θkj, aij) + ln f(δkj, aji)) + lnωk)

(22)

The proof is end.

V. THE CALCULATION OF EQ.(10) IN THE MAIN TEXT

Now, we will discuss how to approximately estimate the prior P (X|Bg) based on the

information theory. Note that 1 ≤ K ≤ L = n/g,which implies, that the coarser the

granularity is, the smaller if K. It will be shown in the following that a smaller K will

indicate a less complexity of X. Thus, we have the following: a coarser granularity prefers

simpler models,which can be mathematically written as

P (X|Bg) = η(X)g (23)

where the function η(X) measures the complexity of X in terms of its parameters. In this

paper, we set η(X) = P (X|B1) = P (X), the prior of X under g = 1.
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According to Shannon and Weaver, ln(1/P (X)) is the minimum description length of X

with a prior P (X) in its model space. Let X̄ denote the optimal coding schema for X, and

let C(X̄) be the coding length (or complexity) of X under this schema. We have

− lnP (X|Bg) = −glnP (X) = gC(X̄) (24)

Now, to estimate the prior P (X|Bg) is to design a coding(or compressing) schema as close

to X̄ as possible.

As discussed before, the main purpose of the model X is to characterize the behavior

of network N in terms of node couplings measured together by its five parameters. Next,

we will show that all node couplings can be approximately measured by three compressed

parameters instead of original five ones. In this way, one hopes to get a more compact coding

schema much closer to X̄.

First, we can compress four parameters of X,i.e.,Θ,∆, Z, and Ω, into two Φ = ΘB1ZD−1 = ΘZD−1

Ψ = ∆B1ZD−1 = ∆ZD−1

where D = diag(nΩ).

Second, parameter Z can be compressed into a map y, where y(i) = k if the entry (i, k)

of B1Z = Z is equal to one. Now, given y,Φ, and Ψ, node coupling pij and qij can be

measured by

pij = ϕy(i),y(j)qij = ψy(i),y(j) (25)

Equation (25) says that all node coupling can be approximately characterized by y,Φ, and

Ψ. Correspondingly, the compressed coding schema of X is

X̂ = (K,ΦK×K ,ΨK×K , yn×2). (26)

Now, we compare the complexity of X and X̂

C(X̂) = 1× (− ln
1

1
) + 2K2(− ln

1

K2
) + 2n(− ln

1

2n
)

= 2nK lnK2 + 2n ln 2n.

(27)

Note that the dimension of Z is n×K under B1, so we have

C(X) =1× (− ln
1

1
) + 3nK(− ln

1

nK
) +K(− ln

1

K
)

= 2nK lnnK + nK lnnK +K lnK.

(28)
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It is easy to verify C(X̂) ≪ C(X) in the case of K ≪ n. That is to say that the coding

schema closest to X̄ that we have found is given by 26. Thus, we have

C(X̄) ≈ C(X̂) = 2K2 lnK2 + 2n ln 2n. (29)

The proof is end.
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