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Abstract: Protein-RNA interactions play crucial roles in numerous biological processes. However, detecting the in-

teractions and binding sites between protein and RNA by traditional experiments is still time consuming and labor 

costing. Thus, it is of importance to develop bioinformatics methods for predicting protein-RNA interactions and 

binding sites. Accurate prediction of protein-RNA interactions and recognitions will highly benefit to decipher the 

interaction mechanisms between protein and RNA, as well as to improve the RNA-related protein engineering and 

drug design. In this work, we summarize the current bioinformatics strategies of predicting protein-RNA interac-

tions and dissecting protein-RNA interaction mechanisms from local structure binding motifs. In particular, we fo-

cus on the feature-based machine learning methods, in which the molecular descriptors of protein and RNA are ex-

tracted and integrated as feature vectors of representing the interaction events and recognition residues. In addition, 

the available methods are classified and compared comprehensively. The molecular descriptors are expected to elu-

cidate the binding mechanisms of protein-RNA interaction and reveal the functional implications from structural 

complementary perspective. 

Keywords: Bioinformatics, Molecular descriptor, Prediction, Protein-RNA interaction, Protein-RNA recognition. 

1. INTRODUCTION 

The interactions between protein and RNA play crucial 
roles in many fundamental biological processes, such as al-
ternative splicing [1], RNA interference [2], and RNA stabil-
ity and degradation [3] in the post-transcriptional gene ex-
pression regulation [4]. Nowadays, various RNAs are gradu-
ally discovered to be key regulators of performing essential 
functions, such as microRNA (miRNA) [5] and long non-
coding RNA (lncRNA) [6]. The techniques of next genera-
tion sequencing identified a number of novel lncRNAs, some 
of which have been shown to have significant impacts on 
human diseases [7, 8]. However, the specific functions of 
many RNAs are still mysteries. RNAs are always recognized 
to cooperate with particular proteins and form certain com-
plexes so as to carry out paramount important activities. 
Without the interactions with proteins, these RNAs cannot 
correctly perform their critical roles [4]. 
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During the booming research interests of RNA functions, 
experimental techniques have correspondingly been devel-
oped for investigating protein-RNA interactions in vivo, such 
as RNA immunoprecipitation (RIP) and cross-linking im-
munoprecipitation (CLIP). RIP uses an antibody-based tech-
nique to precipitate specific RNA-binding proteins and their 
associated RNAs that can be identified by real-time PCR, 
microarray or deep sequencing (ChIP) [9]. The low resolu-
tion of RIP-ChIP limits the identification of actual binding 
sites and specificities. CLIP combines ultraviolet (UV) 
cross-linking with immunoprecipitation to map RNA-
binding sites of a specific protein [10]. Joint with high-
throughput sequencing termed as HITS-CLIP or CLIP-Seq 
[11], enhanced CLIP-based techniques are currently popular 
to identify genome-wide protein-RNA interactions. iCLIP is 
such a modified CLIP with individual-nucleotide resolution 
of binding sites [12]. It has successfully identified the pro-
tein-RNA interactions in various crucial biological processes 
[13, 14]. The improved methods demonstrate the promising 
sequencing technologies in detecting the protein-RNA inter-
actions [11, 13, 15, 16]. 

The experimental approaches are usually time consuming 
and labor costly. Also, there are the throughput difficulties of 
identifying the protein-RNA interactions and the problems 
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on low resolutions of binding sites [10]. Therefore, bioin-
formatics methods of predicting protein-RNA interactions 
trained on the available knowledge provide alternative pipe-
lines to identify the interactions between protein and RNA 
[17, 18]. The predicted interacting pairs can be further vali-
dated by in vivo experiments and used to design downstream 
experiments. More importantly, bioinformatics methods are 
often built on some assumption of protein-RNA interaction 
mechanism. The computational methods collect the data 
sources of protein-RNA interactions based on which the pre-
dictors are trained. The dissected propensities behind the 
protein-RNA interaction events, as well as the locations of 
sequence specificities in the protein-RNA recognition resi-
dues are extremely valuable to reveal their binding principle 
[19]. 

In the paper, we review the main computational strategies 
developed for predicting protein-RNA interactions and bind-
ing residues. We firstly illustrate them by a general machine 
learning framework. Secondly, we introduce the derived 
features of molecular descriptors, the encoding procedure 
and several learning algorithms. Then the available protein-
RNA interaction resources and the existing bioinformatics 
methods of prediction are summarized respectively. We also 
briefly summarize the local structural motifs of protein-RNA 
interactions for dissecting their recognition structure basis. 
Last but not least, we present a discussion of future research 
directions, and conclude the achievements and outlooks of 
predicting protein-RNA interactions. 

2. FRAMEWORK OF PREDICTION 

Fig. (1) demonstrates the framework of predicting pro-
tein-RNA interactions. The available prediction methods can 
be categorized as two subgroups. First is the prediction of 
protein-RNA interaction events. Given a pair of protein and 
RNA, it is to determine whether they interact or not. Second 
is the prediction of binding sites. That is to predict the bind-
ing residues in the protein-RNA recognition. Generally 
speaking, an assumption underlying these prediction meth-
ods is that the principles of determining the interaction or 
non-interaction between one pair of protein and RNA can be 
generalized and extended to another pair of protein and 
RNA. In these methods, protein and RNA are represented 
and encoded by their numerical features respectively. A pair 
of protein and RNA is often formulated as a single feature 
vector. A classification algorithm is then utilized to build a 
predictor by distinguishing the interactions from non-
interactions. After we train the predictor in these feature vec-
tors of interactions and non-interactions, a decision is made 
for determining whether there exists an interaction between a 
predicting protein-RNA pair according to their encoded fea-
ture vector. 

Although the two predictions focus on different objects, a 
similar strategy can be implemented for both of them. In the 
prediction of protein-RNA interactions, the strategy is to 
represent the predicting pair of protein and RNA into a fea-
ture vector (Fig. 1a). By collecting the prior knowledge of 
protein-RNA interactions (with protein-RNA non-
interactions) (Fig. 1c), the protein-RNA pairs are represented 
into feature vectors individually. After labeling the feature 
vectors with binary signs of ‘1’ for protein-RNA interactions 

and ‘0’ for protein RNA non-interactions (Fig. 1d), a ma-
chine learning algorithm is resorted to learn the correspon-
dence between the interaction and the encoded features (Fig. 
1e). After a classifier is trained (Fig. 1b), it can be used to 
predict if there is a new interaction or not in a given pair of 
protein and RNA according to the encoded feature vector as 
that in the training samples. 

Often, a cross-validation procedure is implemented to 
evaluate the prediction performance in the training data be-
fore an independent prediction (Fig. 1g). That is to divide the 
available training samples into several complementary sub-
sets, then perform the learning on one subset (training set), 
and validate the prediction on the other subset (testing set). 
The prediction and validation steps are rotationally estimated 
in these subsets. Then, the prediction performance in terms 
of sensitivity, specificity, accuracy, F1-measure and the area 
under receiver operating characteristic curve can be achieved 
[17, 20]. 

The framework of predicting binding residues in protein-
RNA recognition is similar, except that the encoding proce-
dure is to represent each candidate residue into a feature vec-
tor. The knowledge of RNA-binding residues can be ex-
tracted in three-dimensional (3D) structure of protein-RNA 
complexes. After assigning the binary labels to these resi-
dues (‘1’ for binding residues and ‘0’ for non-binding resi-
dues), the latter training and testing steps are very similar to 
that in the prediction of protein-RNA interaction events. 

Currently, various molecular descriptors have been ex-
tracted as features to encode protein and RNA in the predic-
tion of protein-RNA interactions and binding residues. Some 
physicochemical properties (e.g., amino acid type and atom 
number), biochemical features (e.g., hydrophobic indices of 
amino acids and nucleotides), evolutionary information (e.g., 
position-specific scoring matrix), self-defined propensities 
and statistical potentials, sequence-based conjoint triad fea-
tures, and structure-based solution accessible area features 
are represented numerically as descriptors for protein and 
RNA respectively. The features reflect their properties from 
various aspects of protein-RNA interaction and recognition. 
They are the elements in the encoded feature vector. 

3. MOLECULAR DESCRIPTORS AS FEATURES 

The knowledge of protein-RNA interactions indicates 
some molecular descriptors are related to protein-RNA inter-
actions [21-23]. These descriptors are extracted and com-
bined together to transform protein and RNA into feature 
vectors. As shown in Fig. (1), one pair of protein and RNA is 
represented by one feature vector, in which the elements are 
the molecular descriptors of their diverse properties, from 
physicochemical characteristics (PC) to derived or defined 
properties of amino acids and nucleotides. The following 
subsections summarize some widely-used molecular descrip-
tors in the predictions. 

Physicochemical Characteristics 

Firstly, the 20 amino acids and 4 nucleotides are those 
easily achievable sequence-based descriptors. Some particu-
lar residues are found to be enriched in the RNA-binding 
sites, such as arginine-rich motifs [21, 23]. Different types of 
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residues can be represented by different numbers. The sin-
gle-sequence information (SSI) encodes the sequences into 
features [24, 25]. The number of atoms, number of electro-
static charge, and number of potential hydrogen bonds con-
tained in amino acids and nucleotides are also often extracted 
as features [17]. 

Hydrophobicity 

Hydrophobicity of protein surfaces is identified to be im-
portant in protein–RNA binding [17, 26]. The hydrophobic 
indices of amino acids are often identified as the descriptors 
of characterizing protein-RNA interaction [27]. 

Side Chain pKa Value 

Protein pKa value measures its acid dissociation constant 
of a solution [28]. The side chain pKa value (pKa) is impor-
tant in determining the pH-dependent characteristics of a 
protein [29]. The descriptor describes the environmental 
characteristic of RNA-binding, and thus it is often used in 
the prediction of protein-RNA interaction [25]. 

Position-Specific Scoring Matrix 

The conservation or evolutionary information of se-
quences is important information of general interactions with 
RNA across protein complexes and species. Position-specific 
scoring matrix (PSSM) is a commonly-used representation 
of these patterns [30]. The protein-RNA interaction and their 
binding profiles are represented as the numerical descriptors. 
PSSM significantly facilitates the prediction of interactions 
between protein and RNA [31], as well as the discovery of 
binding motif [32]. 

Conjoint Triad Feature 

The derived conjoint triad feature (CTF) represents pro-
tein and RNA by their percentages of conjoint triad residues 

in the sequences. The 20 types of amino acids are divided 
into 7 groups, i.e., {A, G, V}, {C} , {D, E}, {H, N, Q, W} , 
{I, L, F, P} , {Y, M, T, S} and {R, K}[33]. In such a way, 
each protein sequence is reduced to 7-letter alphabets. The 
feature is to represent the normalized frequency of the corre-
sponding CTF in 3-mer of the 7-letter form [18]. Similarly, 
for RNA sequence, the k-mer (where k often equals to 3) 
frequency representation encodes the nucleotide percentages. 
The CTF descriptors characterize the binding sequence fea-
tures of protein-RNA interaction [34]. 

Secondary Structure 

Secondary structure (SS) describes the 3D form of local 
segments of protein and RNA [35]. RNA-binding is often 
located between α helix or loop and a groove of pocket, or 
between β sheet surface and unpaired RNA nucleotide bases 
[36, 37]. The SS descriptor of α helix, β sheet or loop pro-
vides the detailed local protein-RNA binding structure in-
formation [17]. 

Accessible Surface Area 

Protein surfaces are identified as the main locations of 
protein-RNA interaction [19, 38]. The accessible surface 
area (ASA) is the protein surface area that is accessible to a 
solvent [35]. The descriptor defines the environment and 
exposure of protein surface where the RNA-binding events 
take place. The relative ASA is often implemented by divid-
ing the ASA based on the accessible surface area of fully 
exposed amino acids [39]. 

Interaction Propensity 

Beyond the physiochemical and biochemical descriptors 
of amino acids and nucleotides, some self-defined descrip-
tors based on the ratios of different residue type in the entire 
dataset are often implemented as features of interaction pro-

  

Fig. (1). The framework of predicting protein-RNA interactions. When predicting binding sites in the protein-RNA recognition, the encoding 

features in the learning and testing are the candidate residues, not the components in a pair of protein and RNA. 
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pensity (IP). For instance, the residue propensity of each 
amino acid or nucleotide residue k (k = 1,…,20 for amino 
acids and k = 1,…,4 for nucleotides) is defined as the loga-
rithm ratio of its percentage [40], i.e., 
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Based on relative entropy, we proposed a mutual IP be-
tween a residue triplet in protein and a nucleotide in RNA as 
follows [17]: 
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in the pair ( , )p r . The ratio defines a descriptor 

which has been shown be crucial in the prediction of RNA 
binding residues [17]. 

Statistical Potentials  

Statistical potentials describe the states of residue and 
atom by an energy function [43]. Various statistical poten-
tials have been proposed to define the interactions among 
amino acid residues in protein folding [44]. The energy-
based descriptor also estimates the interface propensity of 
protein-RNA binding. The statistical potential is often de-
fined as 

exp
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N i j
S i j RT
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where R is the gas constant, T is the temperature, ( , )
obs

N i j  
is the observed number of atomic pairs ( , )i j  within a dis-
tance, and exp ( , )N i j  is the expected number of atomic pairs 
( , )i j  in the same distance in the reference state [45]. 

4. ENCODING PROCEDURE 

The former molecular descriptors derived from the se-
quence and structure of protein and RNA enable us to en-
code them into feature vectors. By coordinating and concen-
trating the values into vectors, the two macromolecules are 
represented by features. The elements in the feature vector 
are the corresponding numerical values of the molecular de-
scriptors. Different methods use different descriptors and the 
vector dimension corresponds to the number of combined 
descriptors. For example, if only using the CTF, the dimen-

sion of the feature vector for protein is 343, and 64 for RNA, 
respectively [18, 34]. Thus, one pair of protein-RNA is en-
coded into one feature vector with dimension 407. During 
the encoding procedure, a sliding-window technique [17, 33] 
is often employed to integrate the sequential information of 
neighbor residues into feature vectors. 

5. MACHINE LEARNING ALGORITHMS 

After encoding a pair of protein and RNA into a feature 
vector, we label it as ‘1’ when they are interacted and ‘0’ 
when they are not. Then, the prediction of protein-RNA in-
teraction is formulated into a binary classification problem. 
Based on entire dataset, we often train a machine learning 
algorithm to be a classifier of distinguishing protein-RNA 
interactions from non-interactions. Classic algorithms such 
as neural network (NN) [46], naïve Bayes (NB) [18], support 
vector machine (SVM) [47], and random forest (RF) [48] are 
often implemented as predictors. 

To evaluate the prediction accuracy, fivefold or tenfold 
cross-validations are often implemented. When the built pre-
dictor is tested to achieve good prediction performance, such 
as high sensitivity, specificity, accuracy and F1-measure [17, 
49], it is used to predict an independent protein-RNA inter-
action by encoding the candidate pair of protein and RNA 
into a feature vector. The features and the parameters of ma-
chine learning classifier are gradually tuned to be optimal in 
the training. After inputting the encoded feature vector of the 
candidate pair, the trained predictor outputs a prediction 
score. 

6. EXISTING SOURCES OF PROTEIN-RNA INTER-
ACTIONS 

The descriptors and the training datasets extensively re-
lied on the existing resources of protein-RNA interactions. 
The knowledge of protein-RNA interactions provides the 
fundamental background of machine learning. With the de-
velopment of structure biology and high-throughput technol-
ogy, more and more protein-RNA interactions are deposited 
in databases. Table 1 lists some popular databases of docu-
menting protein-RNA interactions and their binding sites. 

Protein Data Bank (PDB) is a worldwide repository of in-
formation about the 3D structure of proteins and nucleic acids 
[50]. The source determines the physical interactions of pro-
tein-RNA interactions of their complexes. The database pro-
vides important data resources of detecting the interacting 
residues in protein-RNA binding. Many databases related to 
protein-RNA interaction events and recognition sites are built 
on PDB, such as NDB [51], PRD [52], PRIDB [53], RPintDB 
[34], NPIDB [54] and RBPDB [55]. These databases extract 
specific protein-RNA interactions and provides certain serv-
ices of inquiring these interactions. For instance, NDB spe-
cifically contains the information about experimentally-
determined nucleic acids and complex assemblies. It provides 
the categories and the other detailed information about the 
specificities of protein-RNA interaction [51]. The brief de-
scriptions of the other databases are shown in Table 1. 

For detecting the genome-scale of protein-RNA interac-
tions, there has been great development in the field of ri-
bonomics [12, 13, 56]. RIP-ChIP [9] and CLIP [57] based 
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Table 1. Databases of protein-RNA interactions. They are ordered alphabetically. 

Database Brief Description Website Reference 

BIPA A biological interaction database for protein-nucleic acid http://www-cryst.bioc.cam.ac.uk/bipa [67] 

CLIPdb A CLIP-seq database for protein-RNA interactions http://clipdb.ncrnalab.org [60] 

CLIPZ 
A database of post-transcriptional regulatory elements of 

RNA-binding proteins built from CLIP data 
http://www.clipz.unibas.ch [58] 

DBBP 
A database of the hydrogen bonding interactions between 

proteins and nucleic acids 
http://bclab.inha.ac.kr/dbbp [68] 

DoRiNA 
A database of RNA interactions in post-transcriptional 

regulation 
http://dorina.mdc-berlin.de/ [69] 

NDB 
NDB contains the experimentally-determined protein-

nucleic acid complexes 
http://ndbserver.rutgers.edu/ [51] 

NPIDB A nucleic acid–protein interaction database http://npidb.belozersky.msu.ru [54] 

NPInter 
NPInter documents functional interactions between 

ncRNAs and proteins 
http://www.bioinfo.org/NPInter [62] 

PDB 
A protein repository containing the three-dimensional 

structural data of protein-nucleic acid interactions 
http://www.rcsb.org/pdb/ [50] 

PRD A protein-RNA interaction database http://pri.hgc.jp/ [52] 

PRID A protein-RNA interaction database http://www-bioc.rice.edu/~shamoo/prid.html [70] 

PRIDB 
A comprehensive database of protein-RNA interfaces 

extracted from complexes in PDB 
http://bindr.gdcb.iastate.edu/PRIDB [53] 

RAID 
A comprehensive resource for human RNA-associated 

interaction 
http://www.rna-society.org/raid/ [71] 

RBPDB A database of RNA-binding protein specificities http://rbpdb.ccbr.utoronto.ca/index.php [55] 

RBPmap 
A web server for mapping binding sites of RNA-binding 

proteins 
http://rbpmap.technion.ac.il/ [65] 

RPintDB A database of known RNA-protein interactions http://pridb.gdcb.iastate.edu/RPISeq/RPIntDB.html [34] 

RsiteDB 
A database of protein binding pockets that interact with 

RNA nucleotide bases 
http://bioinfo3d.cs.tau.ac.il/RsiteDB/ [64] 

starBase 
A database of the interactions between protein and RNA 

from high-throughput data 
http://starbase.sysu.edu.cn/ [72] 

 
techniques have generated high-throughput protein-RNA 
interactions and binding sites in a relatively high-resolution 
coverage. Some databases, such as CLIPZ [58], starBase 
[59] and CLIPdb [60], recorded these high-throughput pro-
tein-RNA interactions. With the research field about non-
coding RNA (ncRNA) booms, some databases such as NPIn-
ter [61] particularly collect the protein-ncRNA interactions. 
NPInter collects ncRNA interactions from recent literature 
and related databases in various species. It provides a com-
prehensive database of protein-ncRNA interactions [62]. 

Protein-RNA recognition sites such as the binding resi-
dues in proteins provide the local structure basis of protein-
RNA interaction. Based on the 3D structures in PDB and its 
generated databases, some databases focus on the interfaces 
of protein-RNA binding [63]. To dissect the mechanism of 
protein-RNA interaction, sequence domains, structural mo-
tifs and functional sites related to protein-RNA binding high-
light the functional importance of the spatial environments 

and local structure patterns in protein-RNA interaction. This 
kind of database, such as RsiteDB [64], PRIDB [53] and 
RBPmap [65], is also available. RsiteDB deposits the bind-
ing pockets that interact with single-stranded RNA nucleo-
tides [64]. The binding sites are derived from NDB and clas-
sified into several groups. Essentially, the descriptors in the 
prediction methods aim to characterize the interactions by 
sequence and structure features, and the binding residues 
coordinate the places where the binding events take place. 
They characterize the protein-RNA interactions from differ-
ent scales and perspectives. 

So far, few information is available for the non-
interacting protein-RNA pairs. In the training step of build-
ing a predictor shown in Fig. (1e), the negative interaction 
samples are often generated randomly or according to an 
iterative reduce strategy [49, 66]. That is to say, the non-
interacting protein-RNA pairs are generated computation-
ally. If an coupled protein-RNA pair cannot find its interolog 
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in the knowledge, it will be used as the protein-RNA non-
interaction for training [49]. The same encoding procedure is 
implemented as that in the positive interactions. Based on the 
available protein-RNA interactions and the constructed pro-
tein-RNA non-interactions, some machine learning algo-
rithms have been proposed to predict protein-RNA interac-
tions. 

7. EXISTING METHODS OF PREDICTING PRO-
TEIN-RNA INTERACTIONS 

Several methods have been developed for predicting pro-
tein-RNA interactions by molecular descriptors. For the 
available protein-RNA interactions documented in the data-
bases listed in Table 1, protein and RNA are encoded into a 
feature vector as illustrated in Fig. (1). The training data are 
those feature vectors with labels of interaction and non-
interaction individually. A classification algorithm such as 
SVM is implemented to learn the discriminant features of 
protein-RNA interactions and non-interactions. After train-
ing, the predictor can be used to predict novel protein-RNA 
interactions. 

catRAPID is a method of integrating multiple descrip-
tors, i.e., secondary structure (SS), hydrogen bonding (HB), 
interaction propensity (IP), polarity (PO), and van der Waals 
(VW), to predict protein associations with lncRNAs [73]. 
Only based on sequence descriptors, we proposed a predic-
tion method, ncRNAP, which performs a feature selection 
procedure to choose the distinct features in the CTF descrip-
tors [18]. ncRNAP focuses on the prediction of ncRNA-
protein interactions. We predicted protein-ncRNA interac-
tions by an extended NB classifier and validated the predic-
tions by wet experiments. Specifically, we first selected ef-
fective descriptor features and compressed the feature vector 
dimension for reducing the computational complexity. The 
selected features provide biological insights and allow rela-
tively transparent prediction. Then an extended NB classifier 
was constructed to infer protein-ncRNA interactions. We 
also conducted ncRNA pull-down experiments and identified 
interacting proteins of sbRNA CeN72 in C. elegans [18]. 
Similarly, RPIseq provides a prediction method based on 
SVM/RF algorithm by the CTF descriptors [34]. By integrat-
ing sequence and structure features, i.e., protein block (PB), 
secondary structure (SS) and conjoint triad feature (CTF), 
RPI-Pred provides an SVM-based predictor of RNA-protein 
interaction [74]. In yeast, Pancaldi and Bahler provided an 
SVM/RF-based classifier for predicting the interacting pro-
tein-mRNA pairs with several feature classes, i.e., protein 
properties, such as physical features and gene ontology asso-
ciations; mRNA properties, such as UTR characteristics, 
RNA structure, translational features, and expression levels 
[75]. 

8. EXISTING METHODS OF PREDICTING PRO-
TEIN-RNA BINDING SITES 

Compared to the prediction of protein-RNA interactions, 
relatively more methods have been proposed to predict pro-
tein-RNA binding sites because the 3D structures in 
PDB/NDB [51] are already available for learning before the 
availability of high-throughput data about protein-RNA in-
teractions [10]. 

The definition of RNA-binding sites can be easily cate-
gorized as distance-based and energy-based [23]. In the dis-
tance definition, when the distance between two bases of 
protein amino acid and RNA nucleotide is close enough to a 
threshold, such as 3Å. The two residues are defined as inter-
acting residues or the RNA-binding sites. In the energy-
based definition, when a residue is within van der Waals 
contact or hydrogen binding distance to a RNA, it is defined 
as a RNA-binding residue. The binding sites are the local 
structures of binding residues. Apparently, the non-RNA-
binding residue is the rest residues. The positive and nega-
tive RNA-binding sites are then easily composed. Compared 
to the non-binding residues, there are usually fewer residues 
identified as binding residues. Note that the imbalanced data 
classification problem can be tackled by random forest [77]. 
The negative samples are different from those in the predic-
tion of protein-RNA interaction events, in which they are 
mainly constructed by randomly coupling (few methods also 
use the physical contact distance in the protein-RNA com-
plexes as the cutoff to distinguish the protein-RNA interac-
tions from non-interactions [73]). By using a similar strategy 
in the prediction of protein-RNA interactions, various meth-
ods for predicting RNA binding residues in proteins or in 
RNAs have been developed. Table 3 lists some representa-
tives of them. 

Jeong et al. proposed a NN-based method for predicting 
RNA-binding residues with amino acid types (AA) and sec-
ondary structures (SS) [46]. Then, they improved their pre-
dictor by the weighted PSSM [78]. BindN [25] develops an 
SVM-based tool for predicting RNA (and DNA) binding 
sites in proteins by single sequence information (SSI) with 
three sequence features, i.e., side chain pKa value (pKa), 
hydrophobicity (HP) index and molecular mass (MM). 
RNABindR [79] presents a naïve Bayes method to predict 
RNA-binding sites by the molecular descriptors of interface 
propensity (IP), relative accessible surface area (ASA), se-
quence entropy (SE), hydrophobicity (HP), secondary struc-
ture (SS), and electrostatic potentials (EP). In a feature inte-
gration manner, we proposed a method named PRNA [17] to 
predict the RNA-binding residues in proteins by combining 
various descriptors, i.e., mutual interaction propensity (IP), 
sequence and structure-based features. Specifically, the mu-
tual IP represents a binding specificity of a protein residue to 
the interacting RNA nucleotide by considering its two-side 
neighborhood in a protein residue triplet. In addition, the 
sequence and structure based features are combined together 
to discriminate the interaction of amino acids with RNA. 
RNA-binding residues in proteins are then predicted by im-
plementing a well-built RF classifier. PRNA is shown to be 
able to detect the annotated protein-RNA interaction sites 
with a high accuracy by outperforming the existing methods. 
It is also compared with the other machine learning algo-
rithms, such as SVM, NN and NB, the better prediction per-
formance provides more evidence of its efficiency and ad-
vantage [17]. 

9. STRUCTURE BASIS OF PROTEIN-RNA INTER-
ACTIONS 

After using the molecular descriptors to transform the 
proteins and RNAs into feature vectors, the accurate predic-
tion of protein-RNA interaction events and recognition sites 
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Table 2. Available methods of predicting protein-RNA interactions. 

Method Descriptor Classifier Website Reference 

catRAPID SS, HB, VW, HP, PO, IP 
classified by discriminant power 

(based on IP) 
http://s.tartaglialab.com/page/catrapid_group [73] 

lncPro SS, HB, VW 
Fisher’s linear discriminant 

method 
http://cmbi.bjmu.edu.cn/lncpro [76] 

ncRNAP CTF NB http://doc.aporc.org/wiki/NCRNAP [18] 

Pancaldi and Bahler Several feature classes SVM and RF NA [75] 

PRNAinter 
PC, HP, pKa, PSSM, SS, 

ASA, IP 
RF http://doc.aporc.org/wiki/PRNAinter [17] 

RPIseq CTF SVM and RF http://pridb.gdcb.iastate.edu/RPISeq/ [34] 

RPI-Pred PB, SS, CTF SVM http://ctsb.is.wfubmc.edu/projects/rpi-pred [74] 

 

Table 3. Methods of predicting protein-RNA binding residues. 

Method Descriptor Classifier Website Reference 

BindN SSI, pKa, HP, MM SVM http://bioinfo.ggc.org/bindn/ [25] 

Choi and Han SL, SSI, MM, IP SVM http://bclab.inha.ac.kr/primer/ [80] 

Jeong et al. AA, SS, PSSM NN NA [46, 78] 

KYG IP, PSMSP 
Classified by propensity 

score (based on IP) 
http://cib.cf.ocha.ac.jp/KYG/ [81] 

PiRaNhA PSSM, IP, ASA, HP SVM http://www.bioinformatics.sussex.ac.uk/PIRANHA [26] 

PPRInt PSSM SVM http://www.imtech.res.in/raghava/pprint/ [82] 

PRBR SS, PSSM, PO, HP RF http://www.cbi.seu.edu.cn/PRBR/ [83] 

PRINTR PSSM, SSI, ASA, SS SVM http://210.42.106.80/printr/ [84] 

PRNA 
PC, HP, pKa, PSSM, SS, 

ASA, IP 
RF http://doc.aporc.org/wiki/PRNA [17] 

RISP PSSM SVM http://grc.seu.edu.cn/RISP. [85] 

RNABindR IP, ASA, SE, HP, SS, EP NB and NN http://bindr.gdcb.iastate.edu/RNABindR [79] 

RNAProB PSSM SVM NA [31] 

 
becomes binary classification problems. Machine learning 
algorithms learned the rules of determining protein-RNA 

interactions in the training data and then generalized the 
principles into the testing data. The rules are often not trans-
parent and cannot be explicitly described. From the mecha-
nism perspective, they are highly related to the latent codes 
of determining protein-RNA interactions Table 2. However, 
it is very difficult to identify a general principle underlying 
protein-RNA interactions [4, 86]. Obviously, the importance 
evaluation of molecular descriptors in the predictions will 
benefit to identify the key features of affecting the prediction 
performance. The feature evaluation provides a direct way of 
identifying the crucial factors in determining protein-RNA 
interactions. In our method ncRNAP [18], we selected the 

distinct features, which are significantly different in the in-

teractions from the non-interactions. In our method PRNA 
[17], the importance of each feature has been evaluated by 

reducing prediction accuracy individually. We identified the 
mutual IP descriptor has improved the prediction accuracy. 
The descriptor is also different in binding residues from non-
binding residues. This indicates the importance of local 
structural complementary in binding RNA. 

In protein-RNA recognition, some common sequence 
patterns have been identified, such as RNA-recognition do-
mains and motifs [21, 23, 36, 86, 87] (Table 2). They pro-
vide the structure basis of protein-RNA interaction and rec-
ognition. In [19], we provided a systematic analysis of these 
RNA-binding domains and pockets on protein surfaces. Ta-
ble 4 lists some of the major Pfam [88] domains and their 
families in RNA-binding proteins. The domain peptides 
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Table 4. Pfam superfamilies and domains of RNA-binding proteins [19]. The proteins are those representative proteins containing 

the domains. 

Clan ID Description Domain ID Description Protein 

CL0007 K-Homology (KH) domain Superfamily PF00013 KH domain 1EC6:A;2ANN:A;3AEV:B 

CL0027 RNA dependent RNA polymerase PF30561 RNA dependent RNA polymerase 1UVL:A;2E9T:A;3BSO:A 

CL0039 
HIGH-signature proteins, UspA, and PP-

ATPase 
PF38198 tRNA synthetases class I (I, L, M and V) 

1FFY:A;1GAX:A;2BTE:A;2

CSX:A 

CL0040 
Class II aminoacyl-tRNA and Biotin 

synthetases 
PF01409 

tRNA synthetases class II core domain 

(F) 

1EIY:B;2DU3:A;2DU4:A;2I

Y5:A 

CL0055 
Positive stranded ssRNA viruses coat 

protein 
PF02247 Large coat protein 1BMV:2 

CL0063 
FAD/NAD(P)-binding Rossmann fold 

Superfamily 
PF05958 tRNA (Uracil-5-)-methyltransferase 2BH2:A;3BT7:A 

CL0101 Pelota - RNA ribose binding superfamily PF01248 
Ribosomal protein 

L7Ae/L30e/S12e/Gadd45 family 
1E7K:A;1SDS:A;1T0K:B 

CL0178 PUA/ASCH superfamily PF01472 PUA domain 
1J2B:A;1R3E:A;1ZE2:B;2RF

K:A 

CL0196 DSRM-like clan PF00035 Double-stranded RNA binding motif 
1DI2:A;1RC7:A;3ADI:A;3A

DL:A 

CL0219 Ribonuclease H-like superfamily PF02171 Piwi domain 1YTU:A;2F8S:A;3F73:A 

CL0221 RRM-like clan PF00076 
RNA recognition motif. (a.k.a. RRM, 

RBD, or RNP domain) 

1B7F:A;1CVJ:A;1ZH5:A;2G

4B:A;3NNH:A 

CL0383 
Phenylalanine- and lysidine-tRNA syn-

thetase domain superfamily 
PF03483 B3/4 domain 1EIY:B 

CL0527 Sm (Small RNA binding protein domain) PF01423 LSM domain 1KQ2:A;1M8V:A;3AHU:A 

CL0537 CCCH-zinc finger PF00642 
Zinc finger C-x8-C-x5-C-x3-H type 

(and similar) 
3D2S:A 

CL0539 RNase III domain-like superfamily PF14622 Ribonuclease-III-like 1RC7:A 

 
recognize the major groove or loop of the RNA and they 
provide a structure platform of interacting with RNA. For 
instance, KH domain is a major family with αβ

 
motifs that 

bind to RNA, which contains ~70 amino acids in length [89]. 
The RNA strand is bound between its first and second α 
helices, and between its two major loops, the GXXG loop 
and variable loop with 3 to 60 residues long [86]. Often, KH 
only binds to 4 bases. Double-stranded RNA binding motif 
(dsRBM) is another domain type containing an αββα fold. 
The contacts are located between its loops 2 and 4 of the fold 
in the nearby major grooves [4, 86, 89]. 

RNA also has structural motifs of binding to specific pro-
teins, such as tetraloop, kink-turn, loop-E, π-turn, Ω-turn and 
S2-turn [90]. These RNA structural motifs are also shown 
important roles from the RNA side in protein-RNA interac-
tion [91]. Many of the structure details of the protein-RNA 
binding specificity and determination are still not very clear 
[4, 92, 93]. When most types of the 3D structures of RNA-
binding proteins are crystallized and categorized with the 
information of the binding domains information, we will 
hopefully get better understanding of the RNA-binding 
structure basis. 

As for RNA-binding pockets on protein surfaces, we 
clustered them into several major groups by a computational 
procedure based on pocket similarity network [19, 94]. Fig. 
(2) shows the major patterns of local binding pockets in 
seven selective non-redundant protein groups. The local 
structures demonstrate the binding grooves of recognizing 
RNA. As shown in Fig. (2), we identified some RNA-
binding structural motifs in the form of pockets on protein 
surfaces (format: PDB_ID:Chain_ID:Pocket_ID). Most of 
the RNA-binding pockets are contained in the domains of 
these RNA-binding proteins [19]. This indicates the RNA-
binding domains fold into certain local tertiary structures to 
facilitate the binding with RNA. These pockets provide the 
structural shapes needed in protein-RNA recognitions [38] 
(Table 4). 

DISCUSSION AND CONCLUSION 

As more and more crucial functions of RNA are revealed 
in recent years [95], predicting and analyzing protein-RNA 
interactions have been hot research topics, especially in the 
field of post-transcriptional gene regulation [96-98]. Beyond 
the crystallized 3D structure of protein-RNA complexes 
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documented in PDB, the high-throughput techniques as 
CLIP has revolutionized the detection of protein-RNA inter-
actions [57]. Bioinformatics methods provide the precious 
opportunities of identifying novel protein-RNA interactions 
and dissecting the mechanisms related to their binding. The 
growing data sources of protein-RNA interactions accelerate 
the development of more reliable predictions. When more 
protein-RNA interactions are identified in new experiments, 
more samples and knowledge can be integrated to train the 
predictor. It is expected to develop more accurate methods of 
predicting protein-RNA interactions at both molecular cou-
pling level and atomic binding level. 

As to the existing methods, different predictors have their 
advantages in different datasets or perspectives. Collabora-
tive prediction projects have received promising achieve-
ments in protein structure and gene regulatory network [99, 
100]. It is expected to build benchmarked datasets or interna-
tional challenges for evaluating the prediction strategies. 
Several future directions will be expected to improve the 
prediction of protein-RNA interaction and recognition. In the 
feature representation, the molecular descriptors encode the 
protein and RNA into feature vectors. Introducing more 
powerful molecular descriptors of protein-RNA interaction 
and recognition, not only the isolated descriptors of protein 
and RNA, will improve the prediction accuracy, such as mu-
tual IP [17] and the knowledge-based scoring functions 
[101]. In these descriptors, identifying the most important 
features related to protein-RNA interaction will reduce the 
feature dimension and computational complexity. It will 
definitely improve the prediction power with more compli-
cated and ensemble learning algorithms. Moreover, the se-
lected features will provide new insights into dissecting the 
mechanism of protein-RNA interaction. 

The structural motifs in protein-RNA interaction give the 
recognition details between protein [19] and RNA [102]. The 
biologically meaningful residues in structures generate the 

binding spatial patterns and active sites of performing certain 
roles. It is meaningful to determine the functions underlying 
the protein-RNA interactions. The structural motifs can be 
directly used for the target design of ligand binding in RNAi 
drugs [103-105]. In the prediction of protein-RNA interac-
tions, novel descriptors derived from the identified structural 
motifs which directly extract the structural complementary 
patterns will be an interesting research direction in predicting 
protein-RNA interactions. 

In conclusion, we provided a review of the current state-
of-art of bioinformatics methods of predicting protein-RNA 
interactions. The widely-used molecular descriptors and ma-
chine learning algorithms, available datasets of depositing 
protein-RNA interactions, and existing methods of predict-
ing protein-RNA interaction events and recognition sites are 
summarized and commented, respectively. In addition to 
costly experiments in vivo, computational predictions of pro-
tein-RNA interactions provide promising alternatives of 
identifying protein-RNA interactions and recognizing their 
binding specificities. The analysis of molecular descriptors, 
the identification of structural motifs, and the functional an-
notations to binding sites highlight the downstream of deci-
phering the mechanism of protein-RNA interaction and the 
following biomedical applications. Moreover, accurate iden-
tification of protein-RNA interactions will also benefit the 
research works on network biomarkers [106-108] and dy-
namical network biomarkers [109, 110] with the considera-
tion of ncRNAs on biology and medicine. 

LIST OF ABBREVIATIONS 

3D = Three-dimension 

ASA = Accessible surface area 

ChIP = Chromatin immunoprecipitation 

CLIP = Cross-linking immunoprecipitation 

 

Fig. (2). Seven major types of RNA-binding pockets and their locations on protein surfaces. 
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CTF = Conjoint triad feature 

dsRBM = Double-stranded RNA binding motif 

EP = Electrostatic potentials 

HB = Hydrogen bonding 

HITS-CLIP = High-throughput sequencing by CLIP 

HP = Hydrophobic indices 

IP = Interaction propensity 

lncRNA = Long non-coding RNA 

miRNA = MicroRNA 

MM = Molecular mass 

NA = Not available 

NB = Naïve Bayes 

ncRNA = Non-coding RNA 

NN = Neural network 

PB = Protein block 

PC = Physicochemical characteristics 

pKa = Side chain pKa value 

PO = Polarity 

PSMSP = Position-specific multiple sequence profiles 

PSSM = Position-specific scoring matrix 

RF = Random forest 

RIP = RNA immunoprecipitation 

RNA = Ribonucleic acid 

SE = Sequence entropy 

SL = Sequence length 

SP = Statistical potentials 

SS = Secondary structure 

SSI = Single-sequence information 

SVM = Support vector machine 

UTR = Untranslated regions 

UV = Ultraviolet 

VW = Van der Waals 
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