
Li et al

Supporting Material

1 COMPUTATIONAL COMPLEXITY OF PTG
We first show that there is a bound for the number of haplotypes by
PTG, and then analyze its computational complexity.

PROPOSITION 4. If the genotype matrixG hasm rows and
n columns, then the resolution set of haplotype inference problem
obtained by Algorithm 1 must satisfy the following inequality

|H(G)| ≤ min{2m, 2n}.

PROOF. According to Algorithm 1, when a node corresponds to
only one divided index in its index set, it must grow only one branch
in the next layer, and the new node corresponds to only one divided
index in its index set. In the last layer of the tree, every index can
be marked in no more than two index sets of nodes. Hence, the total
nodes of the last layer are no more than2m. Since one node of the
last layer corresponds to a unique haplotype, the total haplotypes
can not be more than2m, that is|H(G)| ≤ 2m.

On the other hand, every node can grow at most 2 branches, and
the tree has only one root node. Therefore, there are at most2n

nodes in then-th layer, which implies that there are at most2n

haplotypes, that is,|H(G)| ≤ 2n.

THEOREM 1. The computational complexity of PTG is
O(m2n), wherem denotes the number of genotypes andn is the
number of SNP sites in the genotypes or haplotypes.

PROOF. For m genotypes andn SNP sites, the corresponding
genotype matrix is anm× n matrix.

In the growing-tree, every layer has no more than2m
nodes. Executing Substep 1.1 to resolve thei-th column needs
O(m2) arithmetic operations. Executing Substep 1.2 needsO(m)
arithmetic operations. Hence, resolving every column ofG needs
O(m2) arithmetic operations. Because the genotype matrixG has
n columns, resolving all columns ofG needsO(m2n) arithmetic
operations, which completes the proof for the computational
complexityO(m2n) for PTG.

2 RESULTS OF PTG ON β2AR GENE DATA
We first divide the genotype matrixG into blocks. In this example,
columns 4 to 7 belong to one block, and any other column consists
of a block. Hence, there are 9 blocks in the genotype matrixG, and
the block matrix is as follows.

�

Fig. 2. A growing-tree forβ2AR gene data by PTG

B =

0
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

2 0 2 2 2 2 0 0 0
1 0 0 1 0 1 0 0 0
2 0 0 2 0 2 2 0 2
0 0 1 0 1 0 0 0 0
0 0 2 0 2 0 2 0 2
2 0 2 2 0 2 0 0 0
0 0 2 0 2 0 2 0 0
2 0 2 0 1 0 0 0 0
2 0 0 0 2 0 2 0 2
2 0 0 2 0 2 0 0 0
2 2 2 2 2 2 0 0 0
2 0 0 2 0 2 2 2 2
2 0 2 2 2 2 2 0 2
0 2 1 0 1 0 0 0 0
0 0 1 0 2 0 0 0 0
0 0 2 0 2 0 2 2 2
0 0 1 0 1 0 2 0 2
0 0 0 0 0 0 1 2 1

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

Then we use PTG algorithm to resolve block matrixB. The
growing-tree for this problem is depicted in Figure 2, wherevjk

denotes thek-th node of thej-th layer and also represents the
corresponding index set. Eachvjk is listed as follows.

The tree has 9 layers of nodes, and there are 10 nodes in the
last layer, which represent 10 haplotypes respectively. For example,
by tracing the branches, the haplotype corresponding to nodev9,6

is 001010101, and the haplotype corresponding to nodev9,5 is
001010000. These two haplotypes resolve the 17-th row of block
matrix B. It is easy to verify that the resolution of every genotype
obtained by our algorithm can be easily recover to the corrected
haplotypes resolving all 18 genotypes, that is, the error rate is 0.

8

A Parsimonious Tree-Grow Method for Haplotype Inference

v0,1 = {1, · · · , 18}
v1,1 = {1, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18}
v1,2 = {1, 2, 3, 6, 8, 9, 10, 11, 12, 13}
v2,1 = {4, 5, 7, 15, 16, 17, 18, 1, 3, 6, 8, 9, 10, 12, 13, 14}
v2,2 = {14, 11}
v2,3 = {1, 2, 3, 6, 8, 9, 10, 11, 12, 13}
v3,1 = {18, 5, 7, 9, 10, 12, 16, 3}
v3,2 = {4, 15, 17, 5, 7, 14, 16, 13, 8, 6, 1}
v3,3 = {14, 11}
v3,4 = {1, 2, 3, 6, 8, 9, 10, 11, 12, 13}
v4,1 = {18, 5, 7, 9, 10, 12, 16, 3}
v4,2 = {4, 15, 17, 5, 7, 14, 16, 13, 8, 6, 1}
v4,3 = {14, 11}
v4,4 = {2, 13, 6, 10, 11, 12, 1, 3}
v4,5 = {8, 9}
v5,1 = {18, 3, 5, 7, 9, 10, 12, 16}
v5,2 = {4, 17, 15, 1, 5, 7, 8, 14, 16, 13}
v5,3 = {15, 6}
v5,4 = {14, 11}
v5,5 = {2, 1, 3, 6, 10, 12, 13, 11}
v5,6 = {8, 9}
v6,1 = {18, 5, 7, 9, 16, 3, 10, 12}
v6,2 = {4, 17, 5, 7, 8, 15, 16, 1, 13}
v6,3 = {15, 6}
v6,4 = {14, 11}
v6,5 = {2, 1, 3, 6, 10, 11, 12, 13}
v6,6 = {8, 9}
v7,1 = {10}
v7,2 = {18, 12, 9, 7, 5, 3, 16}
v7,3 = {4, 1, 8, 14, 15, 17, 5, 7, 16}
v7,4 = {17, 13}
v7,5 = {15, 6}
v7,6 = {14, 11}
v7,7 = {2, 1, 6, 10, 11, 13, 12, 3}
v7,8 = {8, 9}
v8,1 = {10}
v8,2 = {18, 16, 12}
v8,3 = {18, 3, 5, 7, 9}
v8,4 = {4, 1, 8, 14, 7, 15, 17, 5, 16}
v8,5 = {17, 13}
v8,6 = {15, 6}

v8,7 = {14, 11}
v8,8 = {2, 1, 3, 6, 10, 11, 13, 12}
v8,9 = {8, 9}
v9,1 = {10}
v9,2 = {18, 16, 12}
v9,3 = {7}
v9,4 = {18, 3, 5, 9}
v9,5 = {4, 1, 8, 14, 15, 5, 7, 16, 17}
v9,6 = {13, 17}
v9,7 = {6, 15}
v9,8 = {11, 14}
v9,9 = {2, 1, 6, 10, 11, 12, 3, 13}

v9,10 = {8, 9}

9

