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ABSTRACT

Motivation: Haplotype information has become increasingly
important in analyzing fine-scale molecular genetics data, such as
disease genes mapping and drug design. Parsimony Haplotyping is
one of haplotyping problems belonging to NP-hard class.

Results: In this paper, we aim to develop a novel algorithm for the
haplotype inference problem with the parsimony criterion, based on a
parsimonious tree-grow method (PTG). PTG is a heuristic algorithm
that can find the minimum number of distinct haplotypes based on the
criterion of keeping all genotypes resolved during tree-grow process.
In addition, a block-partitioning method is also proposed to improve
the computational efficiency. We show that the proposed approach is
not only effective with a high accuracy but also very efficient with the
computational complexity in the order of O(m?n) time for n SNP sites
in m individual genotypes.

Availability: The software is available upon request from the authors,
or from http://zhangroup.aporc.org/bioinfo/ptg/

Contact: chen@elec.osaka-sandai.ac.jp

1 INTRODUCTION

both Wanget al. (Wang and Xu, 2003) and Browet al.(Brown

and Harrower, 2004) developed an exact algorithm to solve the
haplotype inference problem based on the parsimony condition, by
the branch-and-bound method and by integer programming method
respectively. However, the pure parsimony haplotype inference
problem is NP-hard (Gusfield,2001). Any exact algorithm generally
suffers from the curse of dimensionality, which impedes the
application for analyzing large-scale genomic data.

In this paper, we aim to develop a novel algorithm for the
haplotype inference problem with the parsimony criterion, based on
a parsimonious tree-grow method (PTG). We show that the proposed
approach is not only effective with a high accuracy but also very
efficient with the computational complexity in the order@fm?>n)
time for n SNP sites inm individual genotypes. The rest of this
paper is organized as follows. Section 2 gives a formal definition
of the haplotype inference problem. In Section 3, we explore PTG
to develop a new algorithm for the haplotype inference problem and
further analyze its computational complexity and optimality. Several
numerical experiments are provided in Section 4 to demonstrate the
proposed algorithm. In Section 5, we provide an algorithm to reduce
he genotype matrix to a smaller block matrix so as to improve

gSIer:%riiz uvczlﬁg?ig?\ iﬂommggh:ongzIa(t?ol\rl]z_s)m;g:;r?;ﬁgzs STI?:;St Othe efficiency of PTG algorithm. Final_ly, we give several general
sequence from each of the two copies of a given chromosome iﬁemarks to conclude the paper in Section 6.
a diploid genome. In contrast, genotypeis a description of the
mixture information of the two haplotypes in a given chromosome.
Recently, haplotype information has become increasingly importan? NOTATION
in analyzing fine-scale molecular-genetics data for a variety ofin this paper, we restrict ourselves to biallelic SNPs. Without loss
purposes, such as disease genes mapping and drug design. Howe@rgenerality, assume that the values of the two involved alleles
current sequencing technology typically determines genotype§f each SNP are always O and 1, which represent the common
rather than haplotypes due to the requirement of tedious and Cost@“de and the rare alleles respectively. Since the SNPs are located
experiments. Such restriction makiessilico haplotyping attractive. ~sequentially on a chromosomehaplotypewith lengthr is a vector
So far, many inference and statistical methods have been propos@yer{0, 1}", where each positioiis also called aiteor alocus On
for haplotyping, such as Clark method (Clark,1990), parsimonythe other hand, genotype vectoror simply agenotyperepresents
approaches (Gusfield,2001; Laneigal,2001; Wanget al,2005),  two haplotypes as a sequence of unordered pairs over tie,sgt
maximum-likelihood methods (Excoffier and Slatkin, 1995; Hawley Each pair represents the nucleotides in a given site. Since the pairs
and Kidd, 1995), phylogeny-based approaches (Gusfield,2002re unordered, we are not able to determine the two haplotypes
Chung and Gusfield,2003; Halperin and Eskin, 2004), and Bayesiafiom the genotype alone. For example two haplotypes with length
methods (Stepheret al, 2001; Niuet al, 2002). In particular, the 3 are(0,1,1) and (1,0, 1) that are combined into the genotype
parsimony criterion that seeks the minimum number of haplotypeg(0,1), (0, 1), (1,1)).
to explain a given set of genotypes, has been widely investigated Whenever a pair is made of two identical values, the SNP
due to its intuitive simplicity and biological implication. Recently Site is homozygousotherwise it isheterozygousClearly, by the
assumption on the values of the alleles, the pair for a homozygous
*This author's work is partly supported by Informatics Research Centessite is (0,0) or (1, 1), while the pair for an heterozygous site is
for Development of Knowledge Society Infrastructure, Graduate School of(0, 1). In contrast to the unordered pairs, the genotype can also be
Informatics, Kyoto University, Japan represented by a compact form, i.e., a compact representation of
fto whom correspondence should be addressed the genotype consists of a vector over the alphdbet, 2}, where
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one of the first two symbols is used if the site is homozygous,3.1 Main Idea of PTG

and a2 encodes a heterozygous site. For example, the compagt 5 genotype matrixG has only one column, we can easily
representation of the genotyi€0, 1), (0, 1), (1,1)) is therefore  regolve all genotypes i by no more than two distinct haplotypes
(2,2,1). Next, we only use the compact form of genotype in this of |ength 1. If a genotype matrix (or submatrix) hascolumns
paper. If a genotype has no heterozygous site, then we call iinq we have resolved the genotype submaii,k — 1] by a

homozygoteotherwise we call iheterozygote . haplotype fragment set((G[1,k — 1]) of length k& — 1, then
Given a genotypeg = (g1,---,9») € {0,1,2}", then  \ye can resolve the genotype matrix (or submat@)L, k] by a
a resolution of g is a pair (h,k) of haplotypes, whereh = papiotype set(G|1, k]) of lengthk with every haplotype obtained

(h1,--- hn) andk = (k1 - -, ky) are defined in such away that by adding one SNP value 0 or 1 to one of the haplotype fragments
hi = ki = gi if gi # 2; andh;, ki € {0, 1} with hi # ki if g = 2. jn 2¢(G[1, k — 1]). In other words, we can resolve the genotype
When the above conditions hold, we also say thatc) resolvess,  matrix columns one by one. The resolving process is executed by a
which is denoted b © k = g. Next, we give several definitions  growing-tree with minimal branching principle, which we called as
as well as a basic result which is used in the proposed algorithm. p1g |n the growing-tree, successive layers of the tree correspond
to the successive columns, from the left to the righGofWe denote
a submatrix ofG asGJ1, j], and call the rowg[1, 5], or simply
gx(7) of G[1, 7] as genotype fragments or row fragments.

Each column ofG is resolved one by one in a consecutive way.
Suppose thatx[1, 7] has been resolved and the tree has grown to the

DEFINITION 1. LetG = {g1, - ,gm} be asetofn genotypes
whereg;, = g1 - gin IS the expression of theth genotype, and
gi; € {0, 1,2} is thej-th SNP value in thé-th genotype. Then

Z; 5;2 z;: j-th layer. In the process of resolving@|[1, 7 + 1], the tree grows or
G = . ] . 1) extends to a new layer, i.e., tli¢ + 1)-th layer, where every node
: : : in the (5 + 1)-th layer corresponds to a distinct haplotype fragment
gmi gm2 - Gmn of lengthj + 1 that can be used to resolve some row fragments in
GJ1, j+1]. Allnodes in the(j+1)-th layer correspond to all distinct
is called a genotype matrix withu genotypes im SNP sites. haplotype fragments that resolve all row fragment&ifi, 5 + 1].
When all the columns ofz are resolved, each node in the final
Let - .
‘ layer corresponds to a unique haplotype, and thereby we can obtain
g1i  gri+1 e g1j . . .
_ _ _ the parsimony haplotype solution set corresponding to the genotype
o g2i g2i+1 o g2j trix G
Glijl=| . . . (2) MmarixG. _ _ o
: : cee Before we describe the algorithm of PTG in detail, we introduce
Gmi  Gmit1 0 Gmj several definitions. Let the genotype matéixin (1) havem rows
andn columns, andyo1 = {1,---,m} be the index set of rows,

denote a submatrix comprising the columns fromittie to thej-th
in G. Then this submatrix is a genotype submatrixmofgenotype
fragments with consecutivg — ¢ + 1 SNP sites, i.e., from thé
th SNP site to thej-th SNP site. Denote thé-th row of G[i, j]
by gi[¢, j], that is,gr[é, j] = grigri+1 - - gk, Which is called a
genotype fragment.

Pure parsimony haplotype inference problem for a given input s
of m genotype vectors, is to find a setrafpairs of haplotypes, one
for each genotype vector, such that the number of distinct haplotypes .
is minimum. For convenience, |6t (G) be a solution set of a 3.2 Algorithm of PTG
haplotype inference problem for a given genotype ma@ixand  We first give the detail procedure of PTG, and then use an illustrative
H*(G) be the optimal haplotype solution set with the parsimonyexample to demonstrate the performance of the algorithm.
criterion. Then,H*(G) is the solution with the smallest number

which is also the index set of genotypes.

DEFINITION 2. For a given genotype matrig, if there is an
for 1 <1 < j such thatg;; = 2, theni is called a divided index in
the j-th layer. Otherwises is called an undivided index in thgth
layer. To distinguish them, we use a boolean variaf{lg to denote

e\tivhe’[her the indexis divided at each iteration of PTG program.

of distinct haplotypes that can resolve the genoty@esClearly ALGORITHM 1. PTG.Initialization : Input anm x n genotype
|H*(G)| < |H(G)| where| - | means the number of elements in matrix G. Set a root node denoted hy;, which represents the
the set. index set{1,--- ,m}, i.e.,vo1 = {1,---,m}. Setf (i) = false,
) foreveryi =1,--- ,m. Letj = 0, and go to step 1.
PropPosITION 1. Foranyl < j <n — 1, we have Step 1 Resolve submatri@[1, j + 1].
. . « . Suppose that there agenodesv;i, - - - , vk, - - - , vjp in the j-th
(MG DI < [HH(GIL, 5 +1])]- layer of the growing-tree, which correspondsitdistinct haplotype
fragments resolvingx[1, j]. The node®;1, - - - ,v;, also represent
3 PARSIMONIOUS TREE-GROW METHOD (PTG) their corresponding index sets. Do Substeps 1.1 and 1.2 depicted

In this section, we propose a novel algorithm, called Parsimoniouselow.

Tree-Grow method (PTG), to solve the pure parsimony haplotypeéSubstep 1.1 For eachl < k < p, and eachi, (1 < i < m),
inference problem for a given genotype matéix It is a heuristic  if ¢ € v;, resolve thei-th genotype fragment i6[1, j] wheni
algorithm to find the minimal number of distinct haplotypes basedsatisfies either of the following two conditions:

on the criterion of keeping all genotypes resolved during a tree-grow Condition 1: g; j+1 # 2;

process. Condition 2: g;,;+1 = 2, and f (i) = false.
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Otherwise, record thei in a setl(j); and recordv; in a node
setT;;, whereT;; is a set of thej-th layer nodes that include node
1.

e if g; ;41 = 0, then add a branch of type 0 to the node when
there is no branch of type 0 growing from nodg,; add i to

. . i Viz (1] Vo3 q V32
the index set of the nodg; ; 1., which is connected to the node

v, by the existing or just added branch of type 0.

e if g; ;41 = 1, then add a branch of type 1 to the nadg when Fig. 1. Growing-tree for resolving all three columns Gf
there is no branch of type 1 growing from nodg,; add i to
the index set of the nodg; ; 1., which is connected to the node

v by the existing or just added branch of type 1. Next, resolve the second genotype fragmgnfl, 1]. Despite

e if gij11 = 2and f(z) = false, then add a branch of type  ;,, — 2, since both the branch of type 0 and the branch of type
0 (‘& branch of type 1) or both branches ( one of type 0 andj have grown from nodey;, we add index 2 into both,; andv;»
the other of type 1) or nothing to the nodg; according to  respectively, i.e.p1; = {1,2},v12 = {1,2}. Setf(2) = true.
the following cases: only one type of branch exists, no branchrhen, we resolves|[1, 1].
exists, or two types of branches exist. Adiato both index sets Finally resolve the third genotype fragment{1, 1]. Sincegs; =
of the(j + 1)-th layer nodes, which are connected tonegle,  (, and there is already a branch of type 0 growing from nadewe

setf(i) = true. add index 3 intay;. Thereforepy; = {1,2,3} andvis = {1, 2},
Substep 1.2 Fori € I(j), SUpposell; = {vje,,vs, }, that is, ;lthli;ﬁrréeslolvegg,[l,l]. The result is shown in the first layer of tree

1 belongs tov;x, andv;k,. Check whether there are two different
types of branches growing separately from nogle andv;, . 3.3.2 Resolve Submatri&[1,2] (or the Second Column o)
First check all indices in11. Due tol € v1; with f(1) = true
6}andgu = 2, we record the nodé in a list I(1) to be treated later,
and recordviy in 711, i.e. T11 = {v11}. Becaus& € w11 with
g22 = 0 and there is no branch of type 0 growing from nade

1. If there are no such two different types of branches, then add
proper type of branch to nodg, or v;x,, or add two different
types of branches, one to nodg,, while the other to node

Vika- _ _ yet, we add a branch of type 0 to nodg and denote the new node
2. Choose (_or randomly choose) a pair of dn_"ferent type branchespy v,; and letvs; = {2}. Becaus& ¢ v11 with f(3) = false and
one growing from node;y, , the other growing from node;x,. g3, = 2 and there is no branch of type 1 growing from nade,

Add: into both node index sets of tiig + 1)-th layer which  we add a branch of type 1 to node,, denote the corresponding
are connected to;x, Or vjx, by one of the chosen branches. node attached to it byss, and further add index 3 to,; andvas
respectively, i.eva1 = {2,3},v22 = {3}. Setf(3) = true. Now
gs3[1, 2] is resolved.

In the same manner, we can check all indices;in Sincel €
vi2 With f(1) = t¢rue andgi2 = 2, we recordvio in 111, i.e.
= {v11,v12}. Since2 € vz with g2 = 0 and there is no
ch of type 0 growing from node» yet, we add a branch of
type 0 to nodev:» and denote the corresponding nodesbyand let

Step2If 7+ 1 < n, setj := j+1, and return to Step 1. Otherwise
assemble haplotypes as follows.

Trace each path from node, to every node in the-th layer of
the growing-tree. The sequence of branch type indices (0 or 1) of th
path gives a haplotype, which can be used to resolve the genotyp%%;m
whose indices belong to the corresponding node inritth layer.
All the haplotypes corresponding to theth layer nodes consist of vas = {2}. Now gs[1, 2] is resolved.

H(G). According to Substep 1.2 of the algorithm, now we consider the
3.3 An lllustrative Example indices inI(1). Sincel € I(1) andTi; = {vi1,v12}, there are
three branches growing from nodes andwvi2. Hence, we choose
the branch of type 1 growing from;; and the branch of type 0
growing fromuwi, to resolvegi2 = 2, add index 1 inve2 andwvss
respectively. Novg.[1, 2] is resolved, and

To demonstrate the algorithm, we resolve a genotype métras
follows.

2 20

G = 2 0 2

022 va1 = {2,3}, a2 = {1,3}, vas = {1,2}.

Let a root node of the tree hg; with index setvo; = {1, 2, 3}. .
3.3.3 Resolve Submatn|1, 3] (or the Third Column of) In

3.3.1 Resolve Submatri#[1, 1] (or the First ColumnofG) We  the same manner as the above two iterations, we obtain the index
first resolve genotype fragmept [1,1]. Sincegi1 = 2, we must  sets for the third layer nodes:
use two distinct haplotype fragments (0 and 1) to resgiviéd, 1],
which results in a branch of type 0 and a branch of type 1 growing v31 = {1,3}, wvs2 ={1,2}, w3z ={2,3}
from nodewo:. Denote the two new nodes in the first layerday
andvi2 respectively, and set;; = {1} andvi2 = {1}. Because which finally solve the haplotyping problem to the givén
index 1 is now a divided index, s¢{1) = true. Then we resolve The final tree is depicted in figure 1, which has three nodes in the
g1[1,1]. last layer corresponding to three distinct haplotypes. By tracing all
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paths, we obtain three haplotypes for resolving all genotyp&,in  1able 1. Ten haplotypes and eighteen genotypes:#R genes.

H'(G) = {001,010, 100} Haplotype Genotype
which is actually the optimal solution of the haplotype inference h; 100000010000 85,89
problem. Because of € v3; and1l € w3z, the haplotypes 010 h, 100111101000 gi,82.,83.86, 810,811,812,813
(corresponding tas;) and 100 (corresponding te.) resolve the h; 011000010000 811,814
first genotypeg: (220). Clearly, according to the index sets of hs; 001000010000 g1,84,85.87, 85,814,815,816,817
(vs1, v32, v33), each haplotype can be used to resolve two genotypes ~ hs 001000000000 86,815
of G, for example, the haplotype correspondingvto (i.e., 010) hs 000000000101 £3.85,89,818
can be used to resolve genotypesandgs (sincel € wv3; and h; 000000000111 812,816,818
3 € vz1). hsg 001000010101 g13,817
. . hy 000000000100 g7
3.4 Computational Complexity hy, 000000000000 g10

There is a bound for the number of haplotypes by PTG. As proven in

Proposition 4 in Appendix 1 of Supporting Material, if the genotype

matrix G hasm rows andn columns, then the resolution set of Tapje 2. Haplotypes for the maize data (Ching et al., 2002).
haplotype inference problem obtained by Algorithm 1 must satisfy

the following inequality Haplotype Frequency
|H(G)| < min{2m,2"}. h; 011001001100100101 0.03
. . . ) h, 000000000000000000 0.47
From Theorem_ 1in Append_lx 1_of Suppo.rtlng Mater!a}l, we can hs 000010001000000000 0.23
prove that PTG is a polynomial time algorithm. Specifically, the hs 101101110111011010 0.26

computational complexity of PTG i©(m?n), wherem denotes

the number of genotypes andis the number of SNP sites in the
genotypes or haplotypes. Such a result implies that PTG may be
very efficient in terms of CPU cost even for a large amount of

genomic data 4.2 Angiotensin Converting Enzyme Gene Data

Angiotensin Converting Enzyme (ACE) is encoded by the gene
4 EXPERIMENTAL RESULTS DCP1. Complete data for the genomic sequencing of DCP1 from 11
In thi " both | dat d simulati dat tlnlelduaIs in 22 chromosomes are available (Riedéegl, 1999).
n this section, we use both real data and simufation dala 1orpe 0 50 52 SNP sites and 11 genotypes, which are resolved by
demonstrate the performance of PTG. To improve the computatlona_LI3 distinct haplotypes (Riedet al, 1999; Wang and Xu, 2003)
efgplﬁnpy,dlnput_bdzzta_ arg Earﬁprpce;set(_j acgorcgrll%tct)_ Algor_lthm.ZWe obtained 13 haplotypes with 9 correct haplotypes that resolve 9
w 'f[:_ IS ei‘ct“ Ie in ffa' SAIIn fﬁ |onl ) dq 2 _Il_rr?es INIS o4t of the 11 genotypes correctly with a error rate of 2/11=0.182.
section are fotal amount for Algoriihms -~ and <. The programg, ., 5 performance is better than or at least equal to widely used

is implemented on a 1.8G Hz 512M RAM Pentium 4 Processorexisting programs, i.e., HAPAR with error rate of 0.273, Haplotyper

PC using Borland Delphi 5.0 by Pascal, and is available UPONyith error rate of 0.182, HAPINFERX with error rate of 0.273
request or from website. Throughout our experiment, to measure thg i

S nd PHASE with error rate of 0.273 (Wang and Xu, 2003). The
performance of PTG, we usgror rate, a commonly used criterion

: - . relatively low accuracy is mainly due to the small sample size. In
in haplotype inference problem (Stephen et.al., 2001; Niu et.al. . P

. . these experiments, the average CPU time is 0.320 second.
2003; Wang and Xu, 2003). The error rate is the proportion of P g

genotypes whose original haplotype pairs are incorrectly |nferreol4.3 Maize Data Set

by the program.
. The maize data set is used as one of a benchmark to evaluate

4.1 Experiment on3;AR Gene Data accuracy of haplotype programs (Wang and Xu, 2003). Acetyl-CoA
B2-Adrenergic Receptors3(AR) are G protein-coupled receptors C-acyltransferase which is an enzyme and catalyses the final step
that mediate the actions of catecholamines in multiple issues. Theref fatty acid oxidation, has 18 SNP sites and 4 haplotypes with
are 13 variable sites within a span of 1.6kb in the huffighR gene.  frequencies of 0.03, 0.47, 0.23 and 0.26 in the maize data set, as
Among 121 individuals, there are 18 distinct genotypes, but only 1Gshown in Table 2. We follow the same procedure as Wang and Xu
haplotypes resolve all the genotypes. Those 10 haplotypes and 18003) to generate a samplemfenotypes by randomly picking 2
genotypes are illustrated in Table 1 (Wang and Xu, 2003). haplotypes according to their frequencies and conflating them. Table

We run PTG o3 AR gene data for 100 times. Among 80 times 3 is the simulation results (Wang and Xu, 2003) for five programs.
of them, we find 10 distinct haplotypes to resolve all 18 genotypesThe error rates are average values for 100 random samples. Clearly,
where 9 haplotypes of the 10 haplotypes correctly resolve 1PTG correctly resolves all genotypes for sample sizes from 4 to
genotypes. The average error rate in 100 ru@siS6. In particular, 10, and behaves best among five programs in terms of accuracy.
in 10 of 100 runs, we found all ten correct haplotypes to resolveWe also conducted simulations for Adhl in the maize data set for
all 18 genotypes. The average running time is about 0.016 secondjfferent sample sizes, which has 6 haplotypes and 14 SNP sites
which is considered to be very efficient in contrast to HAPER (overwith frequencies of 0.031, 0.031, 0.125, 0.25, 0.25 and 0.312. The
one minute) and PHASE (over ten minutes). Detail computationsimulation results are almost the same as those of Table 3, and PTG
process for PTG is described in Appendix 2 of Supporting Material.correctly resolves all genotypes.
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Table 3. Comparison of error rates for five programs on Maize data set.  Table 7. The simulation results of PTG on large size of data.

m n  CPU(sec.) errorrate

Samplesize PTG HAPAR HAPLOTYPER HAPINFERX PHASE 1000 100 303.687 0.01
3 0.02 0.1 0.47 0.86 0.53 1000 150 412.052  0.06
4 0 010 0.14 0.64 0.15 1000 200 491.641  0.05
7 0 005 0.05 0.43 0.07
10 0 0 0 0.28 0

Table 8. The simulation results of PTG on data with recombination.

Table 4. The simulation results of PTG with = 10 .

m n CPU(sec.) errorrate

m n CPU(sec.) errorrate 10 10 0.015 0.25
10 10 0.010 0.120 15 10 0.025 0.45
15 10 0.010 0.100 20 10 0.030 0.37
20 10 0.010 0.050 25 10 0.031 0.35
25 10 0.021 0.030 30 10 0.040 0.34
30 10 0.027 0.025 35 10 0.045 0.30
35 10 0.032 0.018 40 10 0.046 0.31
40 10 0.036 0.005

Table 5. The simulation results of PTG with = 50. time and accuracy (Halperin and Eskin, 2004), even for large size

of genomic data, in contrast to PHASE (Stephextsl,, 2001) and

m n CPU(sec.) errorrate HAPLOTYPER (Niuet al, 2002) and other methods. The results
50 50 0.211 0.190 indicate the superiority of our algorithm over the conventional
100 50 0.283 0.280 approaches. Both the numbers of genotypes and SNP sites affect the
150 50 0.292 0.075 computational cost, which is also proved in Section 3.4 or Appendix
200 50 0.316 0.062 1 of Supporting Material.

250 50 0.371 0.036

300 50 0.431 0.037 4.4.2 Coalescence-Based Simulations With Recombination

this section, we introduce recombination into the model when
generating simulated haplotypes. We set recombination parameter

Table 6. The simulation results of PTG with = 200. p to be 100.0 when generating haplotypes by the software ms. The
simulation results are illustrated in Table 8.
m n  CPU(sec.) errorrate Comparing with Figure 5 of (Wang and Xu, 2003), the error
100 200  1.260 0.38 rate results in Table 8 are similar to those obtained by the existing
200 200  7.120 0.20 haplotype softwares. However, in contrast to the cases without
400 200 45.024 0.12 recombination shown in Table 4, the error rates are high. The
600 200 229.941 0.08 reason resulting in relatively high error rate is that in the simulation

data with recombination, the number of correct distinct haplotypes
resolving all genotypes is often not the minimum one. For example,
in our simulation of 30 genotypes with 10 SNP sites, the number
4.4 Experiments on Simulation Data of the correct distinct haplotypes resolving all 30 genotypes is 24.

The haplotype generator, ms, in Hudson (2002) is a well-knowrf"owe\_’er' by PTG, we can finq a solution of 19 distinct haplqtypes
standard program based on the coalescent model of SNP sequer&§©!Ving all 30 genotypes. Since PTG can aimost always find the
evolution. In this subsection, we use the software (ms) to generat®inimum number of haplotypes to resolve all genotypes, the error
2m haplotypes, each with. SNP sites, and then randomly pair rate may not be low when recombination rate is high. This is also

them to obtainn genotypes, which are used as input for the P-I-Gthe reason why the error rate of other programs is also high too.
program. Such a fact implies that parsimony approach may not be suitable for

the data with a high recombination rate, or needs to be modified to
4.4.1 Coalescence-Based Simulations Without Recombinatiohandle such problems by further considering the characteristics of
In this section, the number of SNPs is fixed as 10, 50, 200recombination.
respectively, and 100 replications were made for each sample size. To study the bottleneck effect, we do simulation on large scale of
When generating haplotypes, we specify recombination parametetata without recombination, as shown in Table 7. For a sample of
to be 0. The CPU times and error rates of PTG are illustrated irL000 individuals, PTG currently can handle 200 SNPs in no more
Tables 4- 7 respectively, where denotes the number of genotype than ten minutes, which is better than HAPLOTYPER (handling
matrix rows, anc is the number of genotype matrix columns. 50 SNPs of 1000 individuals); For a sample of 300 individuals,
Comparing with Figure 4 of (Wang and Xu, 2003), the PTG can handle 400 SNPs, which is also efficient in contrast to
computation in Tables 4 - 7 is fairly efficient in terms of both CPU HAPLOTYPER (handling 256 SNPs of 100 individuals). PTG can
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even resolve problems with much large-size of data if there iscan be resolved by one identical homozygous haplotype 000, and all

sufficient capacity of computer RAM>512MB). genotype fragments in the heterozygous block
0 0 0

5 IMPROVING EFFICIENCY OF PTG 111
2 2 2

Usually in genotype matrix derived from human haplotypes, many
columns corresponding to SNP sites are identical. Indeed, as noteghn be resolved by two identical homozygous haplotype fragments,
in (Patil, N., et al,, 2001), the number of identical columns in real j.e., 000 and 111. Given a genotype mat€ we can use the
data is considerably large. Itis common to keep only one column oufollowing algorithm to divideG into blocks, which are further

of several identical columns since they are assumed not to carry amgbmbined into a block matriB.

additional information (Patil, Net al., 2001). Thus we can improve
the performance (in both CPU times and memory requirements
by reducing the number of columns of genotype matrix. This can o |nitialization: input a genotype matrixG with m individual
be executed by dividing the genotype matrix into blocks, as a  genotypes and SNP sites, and let := 1, := 1,4, := j.
precomputation process of Algorithm 1. e Step 1. if

) ALGORITHM 2. Dividing genotype matrixz into blocks.

DEFINITION 3. Given a genotypgr = gr1---gkn and a Jlix g1i+1 0
fragmentgy (i, j| = gri- - grj, If gee = 0 (or 1) for each: < 921, g2j+1
t < j, then the fragmengy |, j] is called an identical homozygous .
genotype fragment of type O (or 1) .gif: = 2 for eachi < ¢t < 7, : :
thengy[i, 7] is called an identical heterozygous genotype fragment. iy, gmj+1 0

thenj := j + 1, go to Step 2; otherwise go to Step 3.
e Step 2. ifj = n, go to Step 3; otherwise go to Step 1.

o

DEFINITION 4. Given a genotype submatri¥[i, j], if every
row of G[i, 7] is either an identical homozygous genotype fragment o ] )
or an identical heterozygous genotype fragment, i.e., every row of ® Step 3.Gx = Glix, j], which is defined in (2). I = n, stop

Gli, j] is one of the following three types: and output all block&s, of G; otherwise, let := k+1, j:=
j+1, ix:=j,and go to Step 1.
Type 0: 0---0; e Step 4. Combine all blocks into a block matEwhere each
Type1l: 1---1; column represents a block.
Type 2: 2.2,

It can be easily shown that Algorithm 2 can divide the genotype
then G[i, 5] is called ablock A block is called ahomozygous matrix G into blocks in no more tha®(mn) arithmetic operations.

block of type O (or type 1) if every row is an identical homozygoussmce all columns in a block ar.e ideptical, We can use one of them
genotype fragment of type 0 (or type 1). Otherwise, it is called 4lo represent the block. After doing this to all blocks@f we obtain
heterozygous block a matrix B, which is called alock matrixof G. Obviously, each

block is comprised of consecutive identical columns of a genotype
Clearly, a block is a submatrix of the genotype matrix with all the matrix. Clearly, the algorithm can be easily extended to find an

columns identical. extended blocknatrix with the minimum number of “blocks”, where
each extended block is composed by all the identical columf in
DEFINITION 5. Given a haplotypéhy, = hy1 - - - hin Where PROPOSITION 3. Given a genotype matrixG and its
hw € {0,1} for 1 < I < n, a haplotype fragmenhy[i,j] =  corresponding block matriB, let 7*(G) andH* (B) respectively
hii - - hij is ca_llled an identical homozygous haplotype fragmentpq the optimal haplotype solution sets of the haplotype inference
of type 0 (or 1) ifhx, = 0 (or hx, = 1) holds foranyi <t < j. problem with G and B. Then|H*(G)| = |[H*(B)|, and the

] ] ) - haplotypes inH*(G) can be obtained from those iR*(B) by
~With the preparation above, we have a basic proposition below t9,qing the corresponding SNPs. On the other hand, the haplotypes
simplify the computation in PTG algorithm. in H*(B) can be obtained from those iH*(G) by deleting the

. SNPs according to the rule of dividing into blocks.
PropPoOsITION 2. All the genotype fragments in a homozygous

block of type 0 (type 1) can be resolved by one (or two identical) EXAMPLE 1. Given a genotype matrix
identical homozygous haplotype fragment of type 0 (type 1). All the 2 29 2 0 0
genotype fragments in a heterozygous block can be resolved by two G- 0 2 2
different types of identical homozygous haplotype fragments in the - 9 92 9

2
. - 0
spirit of parsimony.

2
0

the corresponding block matrix is

2 2
B=| 2 0
0 2

0
0
0 according to Algorithm 2.

For example, all genotype fragments in the homozygous block

0
0
0

NN O
v

0
0
0
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An optimal solution for the block matrix i$<*(B)
{001,010,100} by PTG algorithm, which means{*(G)
{00011, 00100, 11000} by Proposition 3. Clearly, every haplotype
in H*(B) is a “compression” of the haplotype iIK* (G), and every
haplotype inH*(G) is an “extension” of the haplotype if{* (B).

Therefore, instead of the original genotype mat#xwe can use
the block matrixB = (b - - - b:) that has less columns, to improve
the computational efficiency in Initialization of Algorithm 1, in

particular, for large scale data. Generally, such a compression not'?
only reduces the combination of possible haplotypes, but also Ioseshl]

no information of genotype data. Hence, given a genotype matrix
G, we first use Algorithm 2 to reduce the number of column&in
and obtain the block matriB, then apply Algorithm 1 (PTG) to
the block matrixB. After resolving the block matriB, we recover
haplotypes of full length to resolve the genotype matdx The
program in this paper is coded by both Algorithms 2 and 1.

[13]Lancia,G.,

[6]Excoffier,L. and Slatkin, M. (1995) Maximum-likelihood estimation of molecular
haplotype frequencies in a diploid populatidfol. Biol. Evol.,12, 921-927.

[7]Greenberg,H., Hart,W.E. and Lancia,G. (2002) Opportunities for combinatorial
optimization in computational biology. Technical report, University of Colorado
at Denver, Mathematics Department, Denver,CO.

[8]Gusfield, D. (2001) Inference of haplotypes from samples of diploid populations:
Complexity and algorithmslournal of Computational Biologys,305-324.

[9]Gusfield, D. (2002) Haplotyping as perfect phylogeny: Conceptual framework and

efficient solutionsProceedings of RECOMB 2002: The sixth Annual International

Conference on Computational Biolggh66-175.

Halperin,E. and Eskin, E. (2004) Haplotype reconstruction from genotype data

using imperfect phylogengioinformatics 20, 1842-1849.

Hawley, M. and Kidd, K. (1995) Haplo: a program using the EM algorithm to

estimate the frequencies of multi-site haplotypkesieredity 86, 409-411.

[12]Hudson, R. (2002) Generating samples under a Wright-Fisher neutral model of

genetic variationBioinformatics,18, 337-338.

Bafna,V., Istrail,S., Lippert,R. and R. Schwartz. (2001) SNPs
problems, complexity and algorithms. IRroceedings of Annual European
Symposium on Algorithms (ESA)161, Lecture Notes in Computer Science,
182-193, Springer.

Using this modified PTG algorithm, we obtained an optimal [14]Lin,S., Cutler,D.J., Zwick,M.E. and Chakravarti,A. (2002) Haplotype inference

solution of 52 AR gene data, the corresponding growing tree and
the index sets are depicted in Appendix 2 of Supporting Material.

6 FURTHER DISCUSSION OF PTG ALGORITHM

In this paper, we proposed a novel graphic algorithm-PTG, which
not only is very efficient with polynomial arithmetic operations but

in random population sampleAmerican Journal of Human Genetjcg1,1129-
1137.

[15]Lincia,G. and Perlin,M. (1998) Genotyping of pooled microsatellite markers by

combinatorial optimization techniqueBiscrete Applied Mathematic88, 291-
314.

[16]Niu,T., Quin,Z.S, Xu,X. and Liu, J.S. (2002) Bayesian haplotype inference for

multiple linked single-nucleotide polymorphism&merican Journal of Human
Genetics70,157-169.

also has h|gh accuracy for the hap|0type inference prob|em_ In[17]Patil,N., et al. (2001) Blocks of limited haplotype diversity revealed by high-

particular, the computational cost is very low even for large scale
genomic data as indicated in Table 7 and proven in Theorem 1.

[18]Qian,D. and Beckmann,L. (2002) Minimum-recombinant haplotyping

resolution scanning of human chromosome 2dience294, 171923.
in
pedigreesAmerican Journal of Human Genetjc&0,1434-1445.

In contrast to Clark’s method, there is no restriction for the given [19]Rieder,M., Taylor,S., Clark,A. and Nickerson,D. (1999) Sequence variation in the
genotypes, i.e., PTG can resolve the case that every genotype has human angiotensin converting enzyrat. Genet.22, 59-62.
more than one heterozygous site such as the illustrative examp|é20]Stephens,M., Smith,N.J. and Donnelly,P. (2001) A new statistical method for

and in the simulation tests in Section 4.4.

haplotype reconstruction from population dafemerican Journal of Human
Genetics68, 978-989.

AIthOUgh PTG is very efficient, it is based on the parSimony [21]Wang, L.S. and Xu, Y. (2003) Haplotype inference by maximum parsimony.

criterion,
information of genotypes into consideration,

which generally does not directly take the count
as indicated

Section 4. To alleviate such a disadvantage, instead of pure
g¢, p [23]Xu,C.F., et al(2002) Effectiveness of computational method in haplotype

parsimony, a modified parsimony criterion may be required, such
as by adding weighting parameters to approximately incorporate
frequency information of genotypes in the model. In addition, PTG
algorithm currently has no function to handle gaps in the genotype
matrix. As a future topic, we will improve the PTG algorithm to
incorporate missing data in optimization.

We are grateful to Wang and Xu for kindly giving us haplotype
data sets and related information. This work is partially supported
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Supporting Material

1 COMPUTATIONAL COMPLEXITY OF PTG

We first show that there is a bound for the number of haplotypes by

PTG, and then analyze its computational complexity.

PROPOSITION 4. If the genotype matriXG hasm rows and

n columns, then the resolution set of haplotype inference probl 0

obtained by Algorithm 1 must satisfy the following inequality

|H(G)| < min{2m, 2" }.

PrRoOOF. According to Algorithm 1, when a node corresponds to

only one divided index in its index set, it must grow only one branchFig. 2. A growing-tree for3; AR gene data by PTG
in the next layer, and the new node corresponds to only one divided

index in its index set. In the last layer of the tree, every index can

be marked in no more than two index sets of nodes. Hence, the total

nodes of the last layer are no more tl#an. Since one node of the

last layer corresponds to a unique haplotype, the total haplotypes

can not be more tha2wn, that is|H(G)| < 2m.

On the other hand, every node can grow at most 2 branches, and

the tree has only one root node. Therefore, there are at Pfost
nodes in then-th layer, which implies that there are at mast
haplotypes, that igH(G)| < 2.

THEOREM 1. The computational complexity of PTG is
O(m?n), wherem denotes the number of genotypes anis the
number of SNP sites in the genotypes or haplotypes.

PROOF. For m genotypes andv SNP sites, the corresponding
genotype matrix is am x n matrix.

In the growing-tree, every layer has no more tham
nodes. Executing Substep 1.1 to resolve tith column needs
O(m?) arithmetic operations. Executing Substep 1.2 ne@@s.)
arithmetic operations. Hence, resolving every columrGofieeds
O(m?) arithmetic operations. Because the genotype mairikas
n columns, resolving all columns & needsO(m?n) arithmetic

operations, which completes the proof for the computational

complexityO(m?n) for PTG.

2 RESULTS OF PTG ON ;AR GENE DATA
We first divide the genotype matri& into blocks. In this example,

OO OO NNNNNNONOONFN
OO OO NIODONIODODODODODODODODO O OO
OFRF N FFNONOODNNDNDNFEOON
O OO OONNNNOODONOONRFN
OF NNFNONONFDNONFOON
QOO OO NNDNNOODONOONRFN
F NN OONNODONONONONOO
NONODODONODODODODOOOO O oo
HFNDNOONNODONOOONONOO

Then we use PTG algorithm to resolve block matBx The
growing-tree for this problem is depicted in Figure 2, wherg
denotes thek-th node of thej-th layer and also represents the
corresponding index set. Eacly, is listed as follows.

The tree has 9 layers of nodes, and there are 10 nodes in the
last layer, which represent 10 haplotypes respectively. For example,
by tracing the branches, the haplotype corresponding to ngde
is 001010101, and the haplotype corresponding to nage is
001010000. These two haplotypes resolve the 17-th row of block

columns 4 to 7 belong to one block, and any other column consistaatrix B. It is easy to verify that the resolution of every genotype

of a block. Hence, there are 9 blocks in the genotype m&iand
the block matrix is as follows.

obtained by our algorithm can be easily recover to the corrected
haplotypes resolving all 18 genotypes, that is, the error rate is O.
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vop = {1,---,18}

vii = {1,3,4,5,6,7,8,9,10,11,12,13, 14, 15, 16,17, 18}

v = {1,2,3,6,8,9,10,11,12,13}

ves = {4,5,7,15,16,17,18,1,3,6,8,9,10, 12,13, 14}

ven = {14,11}

vas = {1,2,3,6,8,9,10,11,12,13}

vs1 = {18,5,7,9,10,12,16,3}

vs, = {4,15,17,5,7,14,16,13,8,6, 1} vy = {14.11)
vss = {1411} vss = {2,1,3,6,10,11,13,12}
vsa = {1,2,3,6,8,9,10,11,12,13} ves = (8.9)
vas = {18,5,7,9,10,12,16,3} wor = {10}

vip = {4,15,17,5,7,14,16,13,8,6,1} s — {18.16,12)
vas = {14,11} wos = (1)

vaa = {2,13,6,10,11,12,1,3} vox = {18.3.5.9)
vis = {89} vos = {4,1,8,14,15,5,7,16,17}
vsa = {18,3,5,7,9,10,12,16} v = {13.17)
vse = {4,17,15,1,5,7,8,14,16,13} vor = {6.15)
vss = {15,6} vgs = {11,14}
vsa = {14,11} veo = {2,1,6,10,11,12,3,13}
vss = {2,1,3,6,10,12,13,11} voro = {8.9)
vss = {8,9}

ves = {18,5,7,9,16,3,10,12}

ve. = {4,17,5,7,8,15,16,1,13}

ve,s = {15,6}

vea = {14,11}

ves = {2,1,3,6,10,11,12,13}

ve, = 18,9}

vr1 = {10}

v = {18,12,9,7,5,3,16}

vrs = {4,1,8,14,15,17,5,7,16}

vra = {17,13}

vrs = {15,6}

v = {14,11}

vrr = {2,1,6,10,11,13,12,3}

vrs = {8,9}

vg,p = {10}

vse = {18,16,12}

vg3 = {18,3,5,7,9}

vsa = {4,1,8,14,7,15,17,5,16}

vss = {17,13}

V8,6 = {15, 6}




