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Abstract – The Potts model was used to uncover community structure in complex networks.
However, it could not reveal much important information such as optimal number of communities
and overlapping nodes hidden in networks effectively. Distinct from the previous studies, we estab-
lished a new framework to study the dynamics of Potts model for community structure detection
using Markov process, which had a clear mathematic explanation. Based on our framework, we
showed that the local uniform behavior of spin values could naturally reveal the hierarchical com-
munity structure of a given network. Critical topological information regarding to the optimal
community structure could also be inferred from spectral signatures of the Markov process. A
two-stage algorithm to detect community structure is developed. The effectiveness and efficiency
of the algorithm had been theoretically analyzed as well as experimentally validated.

Introduction. – Uncovering community structure [1]
[2] [3] in complex networks has been studied for decades.
Community structure refers to the occurrence of groups of
nodes in a network that are more densely connected inter-
nally than with the rest of the network. In the early stage,
these studies were restricted to the regular networks. Re-
cently, inspired by several common characteristics of real
networks [4], for example scale-free property, the majority
of the studies focuses on networks with complex topolo-
gies.

Potts model has also been applied to uncover commu-
nity structure in networks. Detecting community by us-
ing Potts model [5], also known as the superparamagnetic
clustering method, has been a subject of intensive research
since its introduction by Blatt et al [6]. The physical as-
pects of the method and its dependence on the definition
of the neighbors, type of interactions, number of possi-
ble states, and size of the dataset have been well stud-
ied [7] [8] [11]. Reichardt and Bornholdt [9] introduced a
spin glass Hamiltonian with a global diversity constraint
to identify proper community structures in complex net-
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works. Despite those excellent works, the relationship be-
tween dynamics of Potts model and other dynamics, such
as Markov process, has not been studied. Furthermore,
there are still many fundamental questions which have
not yet been clearly answered. For example, can Potts
model reveal critical properties of a given network such as
the optimal number and stability of community structure?
Is Potts model able to uncover multiscale communities in
large real networks? How can Potts model recognize over-
lapping communities effectively?

We notice that the dynamics of Markov process can
naturally reflect the intrinsic properties of spin dynam-
ics in networks with modularity structures and exhibit
local uniform behaviors. In this work, using the Potts
model and spin-spin correlation, we first investigate this
phenomenon, and then uncover the relation between the
community structure of a network and its meta-stability
of spin dynamics, and further propose spectral signatures
to characterize and analyze the stability of community.
For any given network, one can straightforwardly derive
critical information related to its modularity, such as the
stability of its community structures and the optimal num-
ber of communities from its spectral signature without us-
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ing particular algorithms. It overcomes the inefficiency of
the classic methods, such as the resolution limitation of
modularity Q [23] [10]. Based on the basic properties of
Potts model and Markov process, we then develop a two-
stage algorithm to numerically detect community struc-
ture, which is able to identify overlapping communities by
associating each node with a membership vector that de-
scribes node’s involvement in each community. We also
demonstrate that the algorithm is scalable and effective
for large scale networks.
The outline of the paper is as follows. Section 2 intro-

duces the Potts model and the motivation of this work. In
Section 3, we present a Markov stochastic model, which
explains the relationship between spectral signatures and
community structure. Section 4 describes our algorithm,
and numerical computation for representative networks is
presented in Section 5 to validate the effectiveness and ef-
ficiency of the algorithm. Section 6 concludes this paper.

Potts model and spin-spin correlation . – The
Potts model is one of the most popular models in statis-
tical mechanics [5]. It describes a system of spins that
can be in q different states. Given an unweighted network
with N nodes without self-loops, a spin configuration {S}
is defined by assigning each node i a spin label si which
may take integer values si = 1, ..., q. The Hamiltonian
H(S) of a Potts model with this spin configuration S is
given by:

H(S) =
∑
⟨ij⟩

Jij(1− δsisj ), (i, j = 1, ..., N) (1)

where the sum is running over all neighboring nodes de-
noted as ⟨ij⟩, Jij is the interaction between a pair of spins
associated with the nodes i and j, and δsisj is 1 if si = sj ,
otherwise 0. Jij is set as

Jij = Jji =
1

⟨k⟩
exp[− (dij)

2

2
], (i, j = 1, ..., N) (2)

where ⟨k⟩ is the average number of neighbors per node
and dij is the Euclidean distance between nodes i and j.
The interaction Jij is a monotonous decreasing function
of dij and the spins si and sj tend to have the same value
as dij becomes smaller.
To characterize the coherence and correlation between

two spins, spin-spin correlation function Cij is defined as
the thermal average of δsisj [6] [7] [8]:

Cij = ⟨δsisj ⟩ (3)

It represents the probability that spin variables si and sj
have the same value. The measure Cij takes values from
the interval [0, 1], representing the continuum from no cou-
pling to perfect accordance of spins i and j. There are two
phases in a homogeneous system where Jij is determined.
At high temperatures, the system is in the paramagnetic
phase and the spins are in disorder. Cij ≈ 1

q for all nodes
i and j, and q is the number of possible spin values. At

Fig. 1: Dynamics of spin values of four communities
(A,B,C,D) when they go through several local uniform states
to the global stable state with temperature decreasing. At tem-
perature t4 (t4 > t3 > t2 > t1, ti denotes the temperature that
i spin states exist in the system), we observe four local uniform
spin state distributions corresponding to four communities. At
temperature t3, C and D mix together. At t2, A with B mix
together in terms of their hierarchical structure. Finally, at t1,
only one spin state is left in the system, in which all nodes have
an identical spin distribution.

low temperatures, the system turns into the ferromagnetic
phase and all the spins are aligned to the same direction.
Cij ≈ 1 holds for nodes pair i and j.

If the system is not homogeneous but has a community
structure, the states are not just ferromagnetic or para-
magnetic. We assume that before spins reach a globally
stable state with all same value as temperature decreases,
they will go through a hierarchy of local uniform states
(meta-stable states) first, as shown in Fig.1. In each local
uniform state, due to the dense connection, spin values
of nodes within the same communities are identical and
the whole system is divided into several different local re-
gions (communities). Correspondingly, we can calculate
the hitting and exiting time of each local uniform state
to analyze its stability. The hitting or exiting time is the
time scale that the system just enters or leaves this local
uniform state, during which the spin values of nodes will
stably stay on this state. We can associate the communi-
ty structure with a local uniform state. For a well-formed
community structure, each community should be cohesive,
which means that it is easy for the nodes to hit the local
uniform state. Thus, the hitting time should be early.
At the same time, communities should stand clear from
each other, which means it is hard for nodes to exit the
local uniform state, therefore the existing time should be
late. Hence, there should be a big gap between the hitting
and exiting times corresponding a well-formed community
structure.

Once Jij has been determined, Cij can be obtained by
a Monte Carlo procedure. We used the Swendsen-Wang
(SW) algorithm [12] because it exhibits much smaller au-
tocorrelation times [12] than standard methods and also
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provides an improved estimator of Cij . We set a the ini-
tial number of possible spin values q = N/2 because if
the number of communities is smaller than q, the excess
spin states will not be populated. For a specific node, we
choose a initial spin value randomly from 1 to q.

A stochastic model and spectral signatures of
networks. – In this section, we will discuss the connec-
tion between the community structure of a network and
the local uniform behavior of Potts model by introducing
a Markov stochastic model, featured with spectral signa-
tures for the network. Let G = (V,E) denote a network,
where V is the set of nodes and E is the set of edges (or
links). Consider a Markov random walk process defined
on G, in which a random walker freely walks from one
node to another along their links. After arriving at one
node, the walker will randomly select one of its neighbors
and move there. Let X = Xt, t ≥ 0, denote the walker po-
sitions, and P{Xt = i, 1 ≤ i ≤ N} be the probability that
the walker hits the node i after exact t steps. For it ∈ V ,
we have P (Xt = it|X0 = i0, X1 = i1, ..., Xt−1 = it−1) =
P (Xt = it|Xt−1 = it−1). That is, the next state of the
walker is determined only by its current state. Hence, this
stochastic process is a discrete Markov chain and its state
space is V . Furthermore, Xt is homogeneous because of
P (Xt = j|Xt−1 = i) = pij , where pij is the transition
probability from nodes i to j. Markov random walk [18]
has been used to find communities [19] [20]. If a graph has
a strong community structure, a random walker spends a
long time inside a community due to the high density of
internal edges and consequent number of paths that could
be followed.
To relate the Markov process with the patterns of Potts

model, pij is defined as

pij =
Cij∑N
j=1 Cij

(4)

where Cij is the spin-spin correlation function defined in
Eq.(3). Via this representation, the tools of stochastic
theory and finite-state Markov processes [19] [20] can be
utilized for the purposes of community detection analysis.
Let P be the transition probability matrix, we have:

P = D−1
C C (5)

where DC is the diagonal degree matrix of C. Let p
(τ)
ij be

the probability of hitting unit j after τ steps starting from
unit i, we have:

p
(τ)
ij = (P τ )ij (6)

For this ergodic Markov process, P τ corresponds to
the probability of transitions between states over a pe-
riod of τ time steps. To compute the transition matrix
P τ , the eigenvalue decomposition of P is used. If λk with
k = 0, ..., N − 1 denote the eigenvalues of P , and its right
and left eigenvectors fk and hk are scaled to satisfy the
orthonormality relation [20]:

fkhl = δkl (7)

, the spectral representation of P is given by

P =
∑
k

λkfkhk (8)

and consequently

P τ =
∑
k

λτ
kfkhk (9)

We assume that eigenvalues of P are sorted such that
λ0 = 1 > |λ1| ≥ |λ2| ≥ ... ≥ |λN−1|. The convergence
of every initial distribution to the stationary distribution
P (0) corresponds to the fact that the spin of whole system
ultimately reaches exactly the same value, as temperature
decreases when time goes on. This perspective belongs to
a timescale τ → ∞, at which all eigenvalues λτ

k go to 0
except for the largest one, λτ

0 = 1. In the other extreme
of a timescale τ = 0, P τ becomes the identity matrix. All
of its columns are different, and the system disintegrates
into as many spin values as the elements there are.

For the purposes of community identification, interme-
diate timescales of local uniform state are of interest, on
which many but not all of the eigenvalues are practically
zero. If we want to identify z communities, we expec-
t to find P τ at a timescale, the eigenvalues λτ

k of which
may be significantly different from zero only for the range
k = 0, ..., z − 1. This is achieved by determining τ such
that |λz|τ ≈ 0. Using a parameter ζ ≪ 1 which is consid-
ered to be practical zero, we require |λz|τ = ζ to determine
the appropriate hitting time for the whole system enter-
ing into a local uniform state with z different spin values
(z-state):

τ(z) =
log ζ

log |λz|
(10)

The vanishing of the smaller eigenvalues at a given
timescale describes the loss of different spin states, and
the removal of the structural features encoded in the cor-
responding weaker eigenvectors.

We define the stability of z community structure, Nz,
as the ratio between the hitting time and exiting time of
z-state, τ(z) and τ(z − 1):

Nz =
log ζ/ log |λz|

log ζ/ log |λz−1|
=

log |λz−1|
log |λz|

(11)

Because of log ζ/ log |λz| ≤ log ζ/ log |λz−1|, it is easy to
show 0 ≤ Nz ≤ 1, and a smaller Nz implies a better
community structure. For real networks, we can use the
label of the smallest Nz to estimate the natural number
of communities, opt, in a given network:

opt = arg[min
q

(Nz)] (12)
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Fig. 2: (a) A hierarchical network with 3-level community
structure with 400 nodes. Due to heavy link density, it most
likely contains eight small communities. Each two small com-
munities are contained in a moderate community and finally
the whole network is partitioned into two big sparse ones. (b)
The stability Nz versus the number of communities z.

To show that our method can discover hierarchical
structures in different scales, Fig.2 and Fig.3 give two ex-
ample of the multi-level community structures. In these
cases, the number of Nz (z > 1) approaching to zero re-
veals the actual number of hierarchical levels hidden in a
network. Furthermore, the signature of such levels can be
quantified by their corresponding values of Nz.

Finally, we emphasize the difference of Nz proposed in
this paper and the modularity Q proposed by Newman
[1] [3]. The Q is a widely used criterion for evaluating
a specific partition scheme of a network, it is defined as
“the fraction of edges that fall within communities, mi-
nus the expected value of the same quantity if edges fall
at random without regard for the community structure”
[3] [10] [21] [22]. Different partition schemes will get d-
ifferent Q values for the same network, and larger ones
mean better partitions. While Nz tries to directly char-
acterize and evaluate the structure property of networks
based on network’s spectra, rather than a specific network
partition based on a predefined function. In addition, For-
tunato et al [23] pointed out the resolution limit problem
of the modularity Q, that is, there exists an intrinsic scale
beyond which the smaller communities cannot be detect-
ed by maximizing the modularity. However, as shown in
Fig.4, when a clique ring contains two scale cliques (i.e.,the
heterogeneous community size), the intrinsic community
structure can be exactly revealed by Nz.

The algorithm. – To actually perform the commu-
nity detection, we propose a two-stage algorithm, which
is carried out in a distributed manner. In the first stage,
nodes will collaborate to find their “roles” in the commu-
nity. This is a local measure of how ‘well connected’ each
node is. Identifying the role of nodes in the community is
very important to analyze the properties of the complex
networks. Many ways can be used to define the “leader n-
ode”, such as the nodes with largest degree or betweenness
centrality. Here, we can naturally use the distribution of
phase difference defined above to search the leader nodes,
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Fig. 3: (a) Structure of RB125 [13] with partition of 25 dense
communities and 5 sparse communities is highlighted on the
original network. (b) The stability Nz versus the number of
communities z.

and the notion of “leadership” θi is defined as the sum of
phase difference:

θi =
N∑
j=1

JijCij =
1

⟨k⟩
∑
⟨ij⟩

⟨δsisj ⟩exp[−
(dij)

2

2
] (13)

where Jij is the interaction between a pair of spins asso-
ciated with the nodes i and j, Cij is the spin-spin correla-
tion, dij is the Euclidean distance and ⟨k⟩ is the average
number of neighbors per node. We observe that leader-
ship θi is actually an quality parameter and can be used
to reflect the stability of nodes: nodes with large quality
parameter are well connected, and can easily reach a sta-
ble state and keep it with a stable manner. Once assigning
leaderships to the nodes, we can choose z leaders of the
graph with the largest leadership values. Note that in the
rare cases, two or more leaders are also most influential
neighbors to each other, then they are grouped together
and both become leaders of a same group. For example,
in a fully connected network, all of the nodes are leaders
of one community, whereas for a ring network, each node
is a leader.

In the second stage, we use a simple Markov dynamic
system to assign each node a vector that includes com-
pact global information on how the node is located with
respect to the other nodes. Consider a graph with z
leaders l1, l2, ..., lz and N − z regular nodes, z is the op-
timal number of communities calculated above. Given
the leaders and a arbitrary order assigned to them, we
first determine the membership vectors for each regular
node. We calculate the membership vector of node i by
xi = [x1

i , x
2
i , ..., x

z
i ], a probability vector with length z that

describes node i’s involvement in each community. xk
i (t)

means the kth entry of the membership vector of node i
at time t. The procedure operates as follows. The mem-
bership vector of leader li is first assigned to be the unit
vector xli=1. These z vectors do not vary. For all regular
nodes i, xk

i is initialized randomly by uniform distribution
on [0, 1]. At iteration t, each regular node i, updates it-
s membership vector entry-wise (i = 1, 2, ..., z) using the
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Fig. 4: (a) Clique circle network as a schematic example. Each
circle corresponds to a clique, whose size is marked by its la-
bel C20 (contains 20 nodes) or C10 (contains 10 nodes). (b)
Stability Nz versus the number of communities q.

following dynamic system:

xk
i (t+ 1) =

1∑
j aij

∑
j

aij(x
k
j (t)) (14)

where A = (aij) is the adjacent matrix with aij = 1 if
there is an edge between nodes i and j, the value k indi-
cates the k-th community.

At each time step, the membership vector of each node
is updated by computing a weighted average of the mem-
bership vectors of its neighbors. We notice that Eq.(14)
is equivalent to X(t + 1) = PX(t) = D−1AX(t), where
P = D−1A is a standard random walk transition proba-
bility matrix, D is the diagonal matrix with i-th diagonal
element equal to the degree of node i. Actually, the in-
fluence of leader nodes lk (k = 1, 2, ..., z) on any regular
node i, xk

i , is the probability that a random walk starting
from i hits leader lk before it hits any other leader nodes
[24]. If the underlying graph is connected, the iteration
limt→∞ xi(t) converges to a set of unique vectors. We
normalize each row of these vectors so that they can natu-
rally be represented as the probability that a regular node
belongs to the community with a given leader node in [24].
As a result, we can use the algorithm to gain membership
containing global information of the whole graph.

Experiments. – In this section, we will test the per-
formances of our algorithm. We designed and implement-
ed two experiments for two main objectives: (1) to evalu-
ate the accuracy of the algorithm; (2) to apply it to real
large-scale networks.

Ad-Hoc network . We compared the accuracy of our
algorithm with other six most well-known algorithms, in-
cluding: GN algorithm [14], FN algorithm [2], two spectral
methods (Ncut algorithm [15] and Acut algorithm [16]),
GA algorithm [17] and RB Potts algorithm [9] for a wide-
ly used Ad-Hoc network model, which can produce a ran-
domly synthetic network containing 4 predefined commu-
nities and each has 32 nodes. The average degree of nodes
is 16, and the ratio of intra-community links is denot-
ed as Pin. As Pin decreases, the community structures
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Fig. 5: (a) Nz(z = 4) values of networks versus different Pin.
(b) Comparison of accuracy with other six algorithms.

of Ad-Hoc networks become more and more ambiguous,
and correspondingly, their N4 values climb from 0 to 1, as
shown in Fig.5(a).

Communities are considered to be correctly discovered if
all nodes are clustered into four original groups. Fig.5(b)
presents the experimental results, in which y-axis denotes
the fraction of nodes correctly clustered, and each point in
curves was obtained by testing them against 200 synthet-
ic networks shuffled from the original network. As we can
see, all algorithms work well when Pin is larger than 0.7
(N4 < 0.36) with accuracy larger than 0.95. Compared
with other six algorithms, our algorithm overall outper-
forms other algorithms and its accuracy is only slightly
worse than that of the GA in the case of 0.5 ≤ Pin ≤ 0.65.

Scientific collaboration network . Finally we tested
our algorithm on a large-scale network, the scientific col-
laboration network, collected by Girvan and Newman [14].
The network illustrates the research collaborations among
56276 physicists in terms of their coauthored papers post-
ed on the Physics E-print Archive at arxiv.org. Totally,
this network contains 315810 weighted edges. For visu-
alization purpose, our algorithm outputs a transformed
adjacency matrix (in which the nodes within the same
communities will be arranged together) with a hierarchi-
cal community structure. From the transformed matrix
of Figs.6(a), one can observe a quite strong communi-
ty structure, or a group-oriented collaboration pattern,
among these physicists, in which three biggest research
communities are self organized regarding to three main re-
search fields: condensed matter, high-energy physics (in-
cluding theory, phenomenology and nuclear), and astro-
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Fig. 6: (a) Transformed adjacency matrix of scientific collab-
oration network. (b) Distribution of community size in a lin-
ear plot. (c) Subnetwork including eight communities with 13
overlapping nodes enclosed by four rectangles.

physics. The distribution of community sizes is shown in
Fig.6(b). Totally, 843 communities were detected with
optimal community stability of Nz, the maximum size of
those communities is 199, the minimum size is 2, and the
average size is 67. Furthermore, a subnetwork including
eight communities is shown in Fig.6(c) and four regions
including 13 overlapping nodes are highlighted by by four
rectangles in Fig.6(c) , which were detected according to
membership vector. The partition is totally the same as
the results of Refs. [14] and [22] which have been tested
and verified. The ability to find overlapping nodes of our
method is useful to reveal a natural characteristic in many
real networks.

Conclusion. – In summary, we have presented a new
community detection method which is able to uncover the
connection between community structures and network’s
spectrum properties of local uniform state, based on Potts
model. We demonstrate that important information re-
lated to community structures can be mined from a net-
work’s spectral signatures, such as the stability of modu-
larity structures and the optimal number of communities.
Based on theoretical analysis, we further developed a two-
stage algorithm which can be implemented in a distributed
manner and can identify overlapping communities, utiliz-
ing a Markov dynamical system. Its effectiveness and ef-
ficiency have been demonstrated and verified using both
benchmark network and large-scale network.
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