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Abstract –The study of community structure is an important problem in a wide range of appli-
cations, which can help us understand the real network system deeply. However, due to the exist
of random factors and error edges in real networks, how to measure the significance of community
structure efficiently is a crucial question. In this paper, we present a novel statistical framework
computing significance of community structure across multiple optimization methods. Different
from the universal approaches, we calculate the similarity between a given node and its leader
and employ the distribution of link tightness to derive the significance score, instead of a direct
comparison to a randomized model. Based on the distribution of community tightness, a new
“p-value” form significance measure is proposed for community structure analysis. Specially, the
well-known approaches and their corresponding quality functions are unified to a novel general
formulation, which facilitate providing a detail comparison across them. To determine the posi-
tion of leaders and their corresponding followers, an efficient algorithm is proposed based on the
spectral theory. Finally, we apply the significance analysis to some famous benchmark networks
and the good performance verified the effectiveness and efficiency of our framework.

1 Introduction . – In many real networks, a common
feature observable is the presence of community structures
[1]- [8], i.e. subset of vertices which are densely connected
to each other while less connected to the vertices outside.
In many scenarios, community detection methods can help
to unveil the functional properties of the complex network-
s, thus there is a necessity to devise better community
detection methods which meet both speed and accuracy
requirements simultaneously [9]- [13]. In order to estimate
how much a decomposition of a network which is found by
a community detection algorithm is meaningful, we need a
quality measure. Consequently, for a particular measure,
the community detection algorithms can be ranked. To
this end, various measures have been proposed in the liter-
ature, so far. The most prevalent measure which has been
used extensively in the literature is due to Newman & Gir-
van [4]. This measure, called modularity, quantifies how
much the density of the edges inside identified communi-
ties differs from the expected edge density in an equivalent
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network with similar number of vertices and edges but ran-
domized edge placement, which is taken as the null model
for statistical tests. Considering the modularity measure,
the community detection problem is transformed to the
modularity maximization problem. Moreover, some op-
timization algorithms based on Potts models which used
to detect community structure have attracted attention.
Communities correspond to Potts model spin states, and
the associated system energy indicates the quality of a
candidate partition. For more optimization functions in
detail, please find in Supplementary Material [28].

Although a lot of optimization method and their func-
tions are proposed, some important questions remain un-
clearly answered, that are about the significance of the
communities in real networks. Are the communities par-
titioned by different optimization methods are truly sig-
nificant or they are just the coincidence of edge positions
in the network [14] [15]? How to determine the signifi-
cance of a given community effectively? To answers these
crucial questions, in this paper, we present a novel statis-
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tical framework comparing the significance of community
structure across various optimization methods. Different
from the universal approaches, we calculate the similarity
of a given node to its leader and employ the distribution
of link tightness to derive the significance score, instead of
a direct comparison to a randomized model. A small ex-
ample is shown in Fig.1(a), which illustrates that tighter
the following nodes link to its leader, more significant the
community is. Based on the distribution of communi-
ty tightness, a new “p-value” form significance measure
is proposed for community structure analysis. Specially,
the well-known approaches and their corresponding quali-
ty functions are unified to a novel general formulation, to
provide a detail comparison across them. Then, we can
choose the most suitable form of the function by set the
parameters properly. To determine the position of leader-
s and their corresponding followers, an efficient detection
algorithm is proposed based on the spectral theory. Fi-
nally, we apply the significance analysis to some famous
benchmark networks and the good performance verified
the effectiveness and efficiency of our framework.

2 The framework.

2.1 community structure and the leader.

Leader-driven algorithms [20] [21] constitute a special
case of seed-centric approaches. These methods show that,
in many real world, especial the social networks, nodes of a
network are usually classified into two categories: leaders
and followers. For each community, the most central node
is selected as a leader, and a given leader node represents
a specific community. Follower nodes are assigned to the
most nearby leader node and together form a communi-
ty. The leaders should have two properties: they are well
connected to the members of their group, and they are
able to communicate with other leaders when necessary.
If the distributed algorithm is carried out in each group
separately and the leaders communicate at a higher level,
the nodes can enjoy faster convergence rate.
For example, considering the famous Karate network

[19], nodes 1 and 33 are two significant leaders and cor-
responding communities are built around them. If two
leaders are removed, these communities will be split up,
as they link to most followers and keep the community to-
gether. Since community are consequence of information
spreading, a given community can be defined as the area
in which a leader has most influence. So, one can uncover
the community partition by finding all natural leaders and
their corresponding followers on which they influence. We
believe if followers are more tightly linked to the leader,
or leader spreads more influence on their followers, this
community are more significant or robust. When we use a
given optimization method to evolve the community con-
figure, the significance of communities also evolves corre-
spondingly, which shown in Fig.1(b). The function and

(a)

(b)

Fig. 1: (a) For a given community, the leader node usually
locates on the highest level, representing the most influential
node. Circles depict different levels in the network hierarchy,
with the darkest color denoting the highest level. Tighter the
following nodes link with its leader, more significant the com-
munity is. (b) In every circle, sectors with different colors
represent different communities. It can be noticed that the
community partition in the rightmost circle is strongest due to
the fewest intercommunity edges. When we use a given op-
timization method to evolve the community configure X (de-
scribe by different sectors) based on maximizing the objective
function maxQ = f(X), the significance of X also evolves
correspondingly. The F score is utilized to measure the signifi-
cance of community configure X. Here, the global maximum of
F is maybe an asymptotically stable fixed point of dynamical
system associates to community configure X in the rightmost
circle.

computation methods of significance are valuable which
can be utilized to measure the quality of community con-
figure. Specifically, the global maximum of significance
maybe an asymptotically stable fixed point associates to
community configure dynamics, which deserves us to s-
tudy it deeply.

2.2 The community detection algorithm based
on leader position.

In this study, the relative positions of leader and corre-
sponding followers are crucial to analyze the significance
situation. In order to obtain the leader of corresponding
community, we extract the candidate community member-
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ship by minimizing the following objective function

Jm =
n∑

i=1

k∑
j=1

xij∥di − cj∥2, (1)

where variables xij is the membership that node i in com-
munity j, with

∑
j xij = 1. This method is similar as

the famous k-means method and can be obtain both cen-
ter and assignment iteratively. di is the ith n-dimensional
data point, cj is the n-dimensional center(leader) of the
community j, and ∥ ∗ ∥ is any norm expressing the simi-
larity between a given node and the center. One can use
an iterative optimization of the objective function shown
above, to obtain the network partition by the update of
membership xij and the community leaders cj . This pro-
cedure converges to a local minimum or a saddle point of
Jm.
SupposeK is the upper bound of number of clusters and

A = (aij)n×n is the adjacent matrix of a network, then the
algorithm is stated straightforwardly as follows(for the de-
tailed algorithm framework, please find in Supplementary
Material [28]):
Step 1: for a given K
(i) Calculate the diagonal matrix D = (dii), where dii =∑

k aik.
(ii) Computing the top K eigenvectors based on general-
ized eigensystem Ax = tDx, and then establish the eigen-
vector matrix EK = [e1, e2, ..., eK ] by .
Step 2: for each number of communities 2 ≤ k ≤ K:
(i) Establish the matrix EK = [e2, e3, ..., eK ] from the ma-
trix EK .
(ii) Normalize the rows of EK to unit length using Eu-
clidean distance norm.
(iii) Cluster the row vectors of EK using any community
detection method by minimizing Eq.(1) to obtain a mem-
bership matrix Xk and corresponding leaders.
Step 3: Maximizing the modular function: Pick the opti-
mal number of communities k and the corresponding par-
tition Xk that maximizes Q(Xk).
In step 1, given the adjacent matrix A = (aij)n×n and

a diagonal matrix D = (dii), dii =
∑

k aik, two matrices
D−1/2AD−1/2 and D−1A are used. This is motivated by
Ref. [22], which uses the top K eigenvectors of the general-
ized eigensystem Ax = tDx instead of the K eigenvectors
of the adjacent matrix. It shows that after normalizing the
rows using Euclidean norm, their eigenvectors are mathe-
matically identical and emphasize that this is a numerical-
ly more stable method. Although their result is designed
to cluster real-valued points [22] [23], it is also appropriate
for network clustering.
In step 2, we choose the initial the starting centers to be

as orthogonal as possible which already used in k-means
clustering method [23] [24]. This way of choosing center-
s(leaders) does not cost additional time complexity, and
also improve the quality of the partition, thus at the same
time reduces the need for restarting the random initial-
ization process. Specially, recording the label of leaders

is crucial to compute the significance score which will be
illustrated in the next two sections.
In step 3, the Q function measures the quality of a

given community structure organization of a network and
can be used to automatically select the optimal number of
communities k according to the maximum Q value [24], we
will discuss the multiple optimization methods and their
corresponding Q function in detail in the following section.

2.3 The general and expanded formation of
function Q.

For many community detection algorithms, the target
function Q is critical. Here, we find that Q can be tried
to be optimized has the following general form:

Q =− 1

2

∑
µ

n∑
i=1

(
n∑

j=1

f+
µ aijxiµxjµ −

n∑
j=1

f−
µ (1− aij)xiµxjµ)

+
∑
µ

Rµ,

(2)

which can be rephrased as,

Q =− 1

2

∑
µ

[
2
∑n

j=1 xjµ

lµ
Rµ +

n∑
i=1

(
n∑

j=1

f+
µ aijxiµxjµ

−
n∑

j=1

f−
µ (1− aij)xiµxjµ)]

=− 1

2

∑
µ

n∑
i=1

xiµ(
n∑

j=1

f+
µ aijxjµ −

n∑
j=1

f−
µ (1− aij)xjµ

+
2

lµ
Rµ),

(3)

where lµ =
∑n

j=1 xjµ is the size of the community µ. In
fact, one can interpret these kinds of measures as different
rewarding-punishing strategies. Each choice of parameters
has its own intuition, strengths and drawbacks.
Based on Eq.(3), let us define the following function,

Qiµ =

n∑
j=1

f+
µ aijxjµ −

n∑
j=1

f−
µ (1− aij)xjµ +Riµ, (4)

and choose Riµ such that ∂Riµ/∂xiµ = 0 and Rmu =∑n
i=1 Riµ, e.g. Riµ = 2

lµ
Rmu.

Interestingly, when all xiµ are in hard membership
state, the H function with Qiµ defined as Eq.(4) can
be reduced to well-known optimization measures by
following considerations:
(1) Hofman & Wiggins [6]

f+
µ = log

pin

pout
, f−

µ = log
1− pout

1− pin
, Rµ = lµ log πµ. (5)
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(2) Ronhovde & Nussinov [7]

f+
µ = 1, f−

µ = min
µ

pin,µ, Rµ = 0. (6)

(3) RB Potts model (Erdős-Rényi null model) [5]

f+
µ = 1− γRBp, f

−
µ = γRBp,Rµ = 0. (7)

(4) RB Potts model (Configuration null model) [5]

f+
µ = 1− γRB

2m
, f−

µ =
γRB

2m
,Rµ =

∑
i>j

γRB

2m
(kikj−1)xiµxjµ.

(8)
where ki is the degree of node i and m is the number of
all edges in the network.
(5) Modularity [4]

f+
µ = 1, f−

µ =
kikj
2m

,Rµ =
∑
i>j

1

2m
(kikj − 1)xiµxjµ. (9)

where ki is the degree of node i and m is the number of
all edges in the network.
(6) Label propagation [9]

f+
µ = 1, f−

µ = 0, Rµ = 0. (10)

where ki is the degree of node i and m is the number of
all edges in the network.

3 Significance of community structure. – It is
essential to establish a detail framework analyzing the
significance of community structure, since real networks
own specific characteristics [16] [17] [18]. In this section,
we discuss these important characteristics and give a
detailed introduction of the framework.

3.1 Node similarity.

We define the similarity of nodes i and j, sim(i, j), as
the ratio between the intersection and the union of their
neighborhoods Γ(i) and Γ(j),

sim(i, j) =
|Γ(i) ∩ Γ(j)|
|Γ(i) ∪ Γ(j)|

, (11)

By employing Eq.(11), we can calculate the expected sim-
ilarity between a given node and the community leader
z,

E[sim(x, z)] =

∫
RM

sim(x, z)Q(x|z)dx, (12)

where Q(x|z) is a distribution of nodes in a community
with leader z.
Next, Using the maximum entropy principle(See the

Section 4 in Supplementary Material), the statistical un-
biased distribution fulfilling constraint can be obtained
using the maximum entropy principle:

Q(x|z, η) = 1

Zη
P0(x)e

ηsim(x,z)dx, (13)

where P0(x) is the background distribution used to con-
trast with an alternative hypothesis: node x being part of
a community, a group of nodes distinguished by enhanced
mutual similarity. Zη is the normalisation constant de-
pends on the value of the scoring parameter η:

∂

∂η
logZη = E[sim(x, z)]. (14)

η is the parameter which used to control the “width” of a
community and the larger the value of η, the smaller the
expected width or scale of a given community. Specially,
the distribution Q(x|z, η) is the same as the background
model P0(x) when η = 0.

3.2 Log-likelihood score and community tight-
ness.

We define the log-likelihood score as the deviations of
the community distribution from the null model

s(x|z, η) ≡ log
Q(x|z, η)
P0(x)

= ηsim(x, z)− logZη. (15)

By Eq.(15), nodes which are more likely to be in a com-
munity with center z and scoring parameter η own larger
positive value, than in the null background model. Given
a community with nodes set {1, ..., N}, for a given lead-
er z and a scoring parameter η, the log-likelihood scores
s(i|z, η) are positive. The community tightness is the sum
of the scores of the community elements,

S(1, ..., N |z, η) =
∑
i

max[s(i|z, η), 0]. (16)

However, we can’t determine the scoring parameter η
easily. Here, the tightness function of Eq.(16) can be sim-
plified as:

S(1, ..., N |z, η) =
N∑
i=1

max[s(i|z)− µ, 0], (17)

where s(i|z) = sim(i, z). By this transformation, one
can control the width of community using parameter µ
simply. The community tightness is determined both by
the number of elements and by their similarities with the
leader, that is, tighter communities with fewer elements
own comparable more tightness to looser but larger
communities.

3.3 Calculation of Significance score.

We can the quantified the quality of the true and ran-
dom communities by characterize the distribution of the
tightness score p(S) from the background distribution. A
new “p-value” form measure [25] can be used to define the
statistical significance of score S0, as the probability that a
random chosen nodes set contains a community with score
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greater than or equal to S0. This “p-value” form signifi-
cance can be explained by a null hypothesis: “These nodes
are drawn from the background distribution”. To test this
hypothesis, we compute the statistical significance of score
S0: low value suggests that the null hypothesis is unlikely
and allows for rejecting it. This method provides a new
connection between statistical p-value theory and network
analysis and then get an interesting significance measure.
If the network is large enough, according to the

mean field theory, si = s(i|z) owns an approximate
Gaussian-distribution with variance M , P (s(i|z)) =√
1/(2Mπ) exp{−s2/(2M)}. The distribution of the

tightness S can be calculated straightforwardly using the
derivation shown in Supplementary Material [28]. Specif-
ically, we need to compute the following quality function:

Zc(β, µ) =
∫
RN eβS(1,...,N |z,η)P (s1)...P (sN )ds1...dsN

= [
∫ +∞
−∞ eβmax[si−µ,0]P (s)ds]N

= [
∫ µ

−∞ P (s)ds+
∫ +∞
µ

eβ(si−µ)P (s)ds]N

= [(1−H(µ)) + e
(β)2

2 −βµH(µ− β)]N ,
(18)

where H(x) =
∫ +∞
x

1√
2π

e−
1
2y

2

is the complementary cu-

mulative Gaussian distribution. In Eq.(18), two inter-
vals are divided: below the score threshold µ, the s-
core is zero, which contributes the cumulative distribu-
tion

∫ µ

−∞ ds/(2π)1/2 exp[−s2/2] to the generating func-
tion. Above µ, the score is positive, which generates a
contribution of

∫ +∞
µ

ds/(2π)1/2 exp[−s2/2+β(s−µ)]. The
free energy function reads

−βf(β, µ) = log[(1−H(µ)) + e
(β)2

2 −βµH(µ− β)], (19)

and the entropy is

ω(s, µ) = −max
β

[βs+ βf(β, µ)]. (20)

According to the distribution of community tightness(See
the Section 5 in Supplementary Material),

log p(S, µ) ≃ Nω(S/N, µ)− 1

2
logN. (21)

Given a specifical community, we can calculated the sig-
nificance score F using the probability that the community
tightness S, p(S), larger than or equal to S,

F (S, µ) =

∫ +∞

S

p(S
′
, µ)dS

′
. (22)

Furthermore, from the perspective of the whole network,
we use the average significance score ⟨F ⟩Q to indicate
the robustness of a partition, defined as the average
value among F values of all communities partitioned by
maximizing a particular quality function Q shown in
section.

4 Experiments. – We will test the validity of our
framework on some famous benchmark network and real
networks. Experiments are designed and implemented for
two main purposes: (1) to evaluate the performance of
a given optimization algorithm; (2) to test the effective-
ness and efficiency of our method. Here, we use famous
Girven-Newman benchmark as example, for more result-
s on benchmarks such as LFR network, stochastic block
model and real networks, please find in Supplementary
Material [28].

First, we apply to the classical Girven-Newman bench-
mark [26], where the network with n = 128 nodes are
divided into four 32 nodes communities. Edges are estab-
lished with different probabilities according to belong to
the same community or not. Every node owns average
⟨kin⟩ links with nodes in its own group and ⟨kout⟩ links
with the rest of the network. According to the establish
mechanism, the community structure will fuzzier and thus
when ⟨kout⟩ increases, it is more difficult to identify them
correctly. Hence, the significance of communities will tend
to be weaker and the value of F index will also decrease.
The comparison results of F value corresponding to all
five optimization algorithms are shown in Fig.2(a) when
µ = 0.3. It can be observed that the index F has a great
performance on GN benchmark: when ⟨kout⟩ approaching
0, the community structure is quite strong and all corre-
sponding ⟨F ⟩ value is close to 1; while when the network is
fuzzy enough, the corresponding ⟨F ⟩ value of all algorith-
m is low, extremely for Modularity optimization method
and Label propagation method, only near 0.2-0.3.

Moreover, by comparing five algorithms, we find in
Fig.2(a) that the ⟨F ⟩ values corresponding to Hofman
& Wiggins method is largest, and the Label propagation
method is the lowest. This may because Label propaga-
tion method emphasize the simplicity of calculation too
much while ignoring the accuracy of results. Further-
more, the ⟨F ⟩ values between Modularity optimization
method and Label propagation method are similar when
⟨kout⟩ becomes lower. This result is similar as Ref [10] and
[27], which verifies the inner correlation between these t-
wo methods. These observations are no evidence of overall
superiority of one method over another, but an example
of how to compare the significance and use the different
partitioning algorithms on a given network.

Furthermore, when ⟨kout⟩ increases, the topology be-
comes fuzzier and the sizes of communities will become
more and more smaller correspondingly. At the same
time, as the width parameter µ increases, the significance
will favor tighter communities with fewer elements. We
test the Hofman & Wiggins method and Label propaga-
tion method in Fig.2(b), the value of ⟨F ⟩ corresponding to
µ = 0.3 will be larger than µ = 0.1 for all two examples.
As a conclusion, we argue that when the corresponding
⟨F ⟩ is smaller than 0.3 on average(⟨kout⟩ ≈ 4), it is not
safe to say there exists significant community structure for
a given network.
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(a)

(b)

Fig. 2: The experimental results of significance ⟨F ⟩ on GN
benchmark network and each point in curves is obtained by
testing 100 times. (a) For all five optimization methods, ⟨F ⟩
decreases with increasing of ⟨kout⟩. For a given network, when
⟨F ⟩ is larger than 0.3 on average(⟨kout⟩ ≈ 4), one can say there
exit significant community structure. (b)The value of ⟨F ⟩ cor-
responding to µ = 0.3 will be larger than µ = 0.1 for the Hof-
man & Wiggins method and Label propagation method. This
implies as the width parameter µ increases, the significance
favors tighter communities with fewer elements.

5 Discussion. – It is unreasonable to analyze the
community structure only using the topology information
with considering the significance. In this paper, we present
a novel framework calculating the significance of commu-
nity structure revealed by multiple optimization functions.
As part of the future work, it is necessary to take a deep-
er look into how different similarity measures impact the
results of this method. Additionally, this framework can
be easily extended to a weighted, directed and overlap-
ping form, which only needs to modify the formation of
the quality function Q. In conclusion, this method has a
great performance and deserves more attention from us.
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