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Gene Regulatory Network Inference

In Systems Biology Framework

Yong Wang
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Gene regulation

(@) . V...
external influences -, Gardner, 2005
(drug interactions, metabolite feedback) 'Y

cell membrane

.j' : !1'.1-— () . i
JL’ / -".‘Iz Transcription
factor (TF) %

. genes : :
Transcription factors (TFs) are proteins that dynamically read and interpret

the static genetic instructions in the DNA
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Basic building blocks for gene regulatory network

‘ Transcriptional Factor

Bl Target Gene

Gene Regulatory Network

==l Physical Interaction
== s Genetic Interaction

Cooperative Interaction

(=

Transcriptional network

Genetic network

TF Cooperative Network




N ZhARGroup

Background---

messenger PROTEIN SYSTEMS



- ARG

Biological GRN
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drug interactions ~ '/
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Activation or repression

complete transcript (S)
X ey
DNA (N) @ ;

transcribed sequence

N+P = NP = N+P+S

(b)
N+A+P & NA+P & NAP = NA+P+S NR+P &2 N+R+P2 NP+R—=N+P+R+S
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Network Inference, Analysis
and Control

Bioreactor
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e 2GS

DNA Microarrays

e Experiment design
* Noise reduction

 Normalization

Time series (e.g. cell cycle)
Single time point (e.g. steady state)
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Time Course Data

4 gene trajectories

T T T T T T T T

expression level

0 2 4 6 8 10 12 14 16 18 20
time
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Basic idea

Goal: Infer structure and function of GRN from expression data

1) Apply diverse treatments 2) Measure RNA 3) Learn model Model of
to cells expression for parameters .
transcription
each treatment .
regulation

Learning
Algorithm

EEER
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Outline

 Gene regulatory network modeling

— Co-expression

— Boolean networks

— Bayesian models

— Differential equations

e Gene regulatory network inference
— GRNInfer
— GNTlInfer
— GNMlInfer
— A detailed example

17
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Only mRNA can be measured!

}j\m mﬁ% RNA transcripts
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Gene regulatory network model

Model can not explicitly represents proteins and metabolites because
only RNA can be measured

4 gene trajectories

expression level

o] 5 10 15 20
time

Time series Gene network =



Gene Expression Matrix

Given an experiment with m genes and n assays we produce a

matrix X where:

X;; = expression level of the i™" gene in the j™ assay.

X =1 ra

( 11 X4 Lin \
Lij Lin
\ Iml -+ [Ty Lmn )

g; = Transcriptional
response of the i gene

a, = Expression profile of the j™ assay

20



Correlation

&

* (Gene expression

x, = (0.2, 2.4, 15, ...

: x,=(0.8,2.2,15, ...)
) X3=(43,01,75,...) ) \/
éih(xl, X,) = 0.62 :( 3 | 4 ):

sim(Xy, X3) = -0.58

Similariti scale:
Gasch et al., 2000 1 -1
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Goals of Clustering

e Clustering genes:

— Classify genes by their transcriptional response and get an idea
of how groups of genes are regulated.

— Potentially infer functions of unknown genes.
— Construct relevance network (Co-regulation)

e Clustering assays:

— Classify diseased versus normal samples by their expression
profile.

— Track the expression levels at different stages in the cell.
— Study the impact of external stimuli.

22



Clustering Genes

similarity matrix

clustered
genes —) m=) genes based
ggﬂes on similarity

N aSSays m genes
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Simultaneous
Traditional

Global
Correlation

Time-
Shifted

Inverted

Expression ratio
A b io=nowas

Expression ratio
N - o - N w 5

Expression ratio
O M S o 2N ow s

0 1 2 3 4 5 6 7 8 9

Time

Clustering
algorithm
identifies

further
(reasonable)
types of
expression
relationships

(Algorithm adapted
from local sequence

alignment)

[Qian et al]
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Boolean Networks

® Chie S ZRANGroup

Genes are assumed to be ON or OFF.

At any given time, combining the gene states
gives a gene activity pattern (GAP).

Given a GAP at time t, a deterministic function
(a set of logical rules) provides the GAP at
time t +1.

GAPs can be classified into attractor and
transient states.

25
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Issues with Boolean Networks

 Gene trajectories are continuous and modeling
them as ON/OFF might be inadequate.

* A deterministic set of logical rules forces a very
stringent model.
— |t doesn’t allow for external input.
— Very susceptible to noise.

* Probability Boolean Networks aims at fixing some

of these issues by combining multiple sets of
rules.

27



Bayesian Networks

A gene regulatory network is represented by directed
acyclic graph:
— Vertices correspond to genes.

— Edges correspond to direct influence or interaction.

* For each gene x, a conditional distribution
p(x. | ancestors(x,) ) is defined.

e The graph and the conditional distributions, uniquely
specify the joint probability distribution.

28
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Bayesian Network Example

@ @ Conditional distributions:
P(X1), P(X3), P(Xs| Xy),

P(X4| X1 X5), P(X5| X,)

P(X) = p(Xy) P(X5| X1) P(X3| X1 X5) P(X4| X X5 X3) P(Xs5| X1 X5 X3 X,)
P(X) = p(Xy) P(X2) P(X3| X2) P(X4| X1 X5) P(X5| X,4)

29
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Learning Bayesian Models

* Using gene expression data, the goal is to find the
Bayesian network that best matches the data.

* Recovering optimal conditional probability distributions
when the graph is known is “easy’.

e Recovering the structure of the graph is NP-hard.

30



Issues with Bayesian Models

Computationally intensive.
Requires lots of data.

Does not allow for feedback loops which play an
important role (Network Motifs).

Does not make use of the temporal aspect of the data.

Dynamical Bayesian Networks aim at solving some of

these issues but they require even more data.

31



Differential Equation Model

g9one X ; = mRNA concentration
i X, = protein concentration
v
MRNA X, =K, (X)) - 71X,
Y X;=KX; - 1hX;

. protein
K, . K> >0, production rate constants
T Y V> (0, degradation rate constants

9 n
f(x,)=-— , 6 >0 threshold
| : . 9 4+ Y”
) X, —= A

32



Linearization £ |

e Typically uses to
model the gene trajectories:
dx(t) / dt =ay +a; ; X, (t)+ a,, X, (t)+ ... +a; , x,(t) + u(t)

* Reasons for that choice:

— lower number of parameters implies that we are less
likely to over fit the data

— sufficient to model complex interactions between the
genes

33
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Issues with Differential Equations

e Even under the simplest linear model, there are m(m+1)
unknown parameters to estimate:
e m(m-1) directional effects
* m self effects
* m constant effects
e Number of data points is m and we typically have that n <<
m (few time-points).
e Extra constraints must be incorporated into the model such
as:

e Sparse structure of the network
e Other prior information

34
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Outline

 Gene network modeling

— Co-expression

— Boolean networks

— Bayesian models

— Differential equations

e Gene regulatory network inference
— GRNInfer
— GNTInfer
— GNMinfer

— A detailed example

36



ODE model

promoters—

RNAs —

Network model a
18 Influence
function
dx;
dt
Output
Input RNA Transcription

concentrations Rate

dX,/dt = f,(X,,...) =a, X, + ag Xg + ag Xg + a;, X12




expression level

Noise

4 gene trajectories

4 gene trajectories with gaussian noise

T T T

expression level

0 1 1 1

0 5 10 15 20 0
time

We add gaussian noise to model errors.

10 15 20
time

38
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expression level

Network Inference

4 gene trajectories with gaussian noise

\
\
: 7
0 \ /f/ —— x1n ||
\f f.f —— X2n
02+ / —— X3n |
X # £ x4n
0 H 1 1 1
0 S 10 15 20
time

Ao,i Ay i as az i Ay,
X4 431 -.248 0] 0] 0]
X, 0 0 0 -.473 .374
X3 -.427 .376 0] -.241 0]
X, O 435 0 -.315 -.437
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G R N I nfe I (Gene Regulatory Network reconstruction tool)

e Asingle dataset consists of relatively few time points (less than 20)
but a large number of genes (in thousands)

 Multiple Gene expression datasets are generated by different groups
worldwide are increasingly accumulated on many species

e Combining and further exploiting multiple datasets in an integrative
and systematic manner, the scarcity of data can be greatly alleviated.

e A more accurate reconstruction of GN can be expected.

 Simply arranging multiple time-course datasets into a single time-
course dataset is Inappropriate for GN inference due to data
normalization issues and lack of temporal relationships among
datasets.

A biological gene network is expected to be sparse

40
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General solution of a single dataset

z(t) = f(z(t))

$

#(t) = Jz(t) £ b(t), t=1t1,....tm

$

X=JX+B

42
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Infer a linear model

Curse of dimension: #of experiments <<#of
variables m(20)<<n(6000)

=>» Inference problem is undetermined

How to recover J? (Infinitely many possible
solutions=» many network architecture fit
the data)

Find one possible solution as a particular
solution (SVD Singular Value
Decomposition)

JanXnXm — AnXm — BnXm

43
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Singular Value Decomposition

! — T
X mxn Umxn Enxn \ axn  (M<<n)
= eigengene
smgular
value
gene o
expression "k elgenassay
matrix

j—(X - BUE-WT
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e SVD solution is the particular solution in the least square
meaning

~

J = argmin||JX + B — X||>

e General solution: affine space

Y11 Y12 -+ y1y 0.0 --- 0.0
J=J+YVv?i Yy — 921 Y22 yo; 0.0 ... 00
 Ynl Yn2 o Ym 0.0 -+ 0.0

* Y denotes all degrees of the freedom can be used to optimize
some extra criterion

e For example the sparsity of J =»Maximize the number of zeros
inJ

* ImposeJ=0=> i.e. — —YVT

45
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The general solution represents all of the possi-
ble networks that are consistent with the single
microarray dataset, depending on arbitrary Y.

We will find the most consistent network struc-
ture J = (J;j)nxn forall k =1,..., N, with con-
sideration of sparse structure

Optimization model

N n n
min > > > [w¥)Ji5 — J,LJ] + AlJij]]
Y.J k=1i=1j=1

46
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Decomposition Algorithm

STEP-0O: Initialization. Obtain all of the par-
ticular solution J* by SVD, and «w*. Set initial
value J,;(0) = O, Y;’;?(O) — O and ij(O) = Jk,
and positive A, e. Set g = 1.

STEP-1: Set JF(g) = JF(g — 1) + Y*(@) VL
and solve y,fg-(q) at iteration ¢g by LP with J(g—

1) fixed, i.e. solve Y*(q) = (¥f(@))mx=m Of
the following subproblem for £ = 1,..., N with

J(q — 1) given (yf(q) = 0 if j > i)

min i i |Jij(q—1)—ij(Q)|

STEP-2: Solving J;;(q) at iteration g by LP
with all of yfj(q) given, i.e. solve J(g) of the
following problem with all of Jk(g) fixed.

N n mn
min > > S [wWfJ;(@) — J5 @] + AT ()]
JCD) =1 i=1 j=1 47
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10020
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43480 76610 52680
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The advantage of multiple datasets

16000
14000 | \
~— =
12000
. —+—One dataset
e 10000 |
) —&— Two datasets
—
= Three datasets
N 8000
2 Four datasets
&
=
L+ : -
2 6000 | —#—Five datasets
4000
- s & —a
2000 | e
— — %
N *
O L L 1 1 ]
0. 005 0. 05 0.1 0.2 0.5

Noise level
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Consistent structure
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G NTI nfe r(Gene Network reconstruction tool with compound Targets)

* Include other derived
from expression profile and from published
literature so as to recover gene regulations in a
more robust and reliable manner.

e [ncorporate external inputs or perturbations
into the formulation so that molecular targets
(genes) can be identified in a systematic way.

54
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N & 480988 E E (compound Targets)

o 5 REHMAR S N B DB IFEIEFII_JQ%E/J
e, 2R S J7 sGRAAATT A AL m B R

A] DL fE 1 A ER R 2% -
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ldentify compound Targets

Treat cells with Obtain expression  Filter profile using Identify
drug compound profile identified network genetic
mediators of

drug activity

B+
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X=J X+P C+e

X (1)1 , X (m),C(l),,"' 1C(t) — Jnxn’ans
X(t)eR",C(t)eR” m << n

o P s MHMERILBINT A R S
« THIX, C, REEPE . {X }

X =[J,P]
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E. Coli SOS Pathway

- ARG

recA lexA ssb recF dinl umuDC rpoD rpoH rpoS Perturbation
recA -0.0682 0.1149 0.0599 -0.0095 -0.0431 0.0000 0.0173 -0.0104 a.0000 0.1739
lexA 0.0009 -0.1098 0.0232 -0.0197 0.0061 0.0000 0.0082 0.0384 0.0000 0.0418
ssb -0.0181 0.0188 -0.0141 0.0279 0.0020 -0.0192 0.0018 0.0000 0.0000 0.0187
recF -0.0424 0.0015 0.0539 -0.0863 0.0000 -0.0090 -0.0005 0.0398 0.0000 0.0731
dinl 0.0268 0.0239 0.0538 0.0000 -0.0827 0.0769 0.0177 0.0000 0.0000 0.0689
umuDC 0.0000 0.0000 -0.0527 0.0247 0.0280 -0.0705 0.0000 0.0083 0.0000 0.0531
rpoD -0.0525 0.0237 0.0145 0.0009 0.0059 0.0000 -0.0211 0.0336 0.0000 0.0578
rpoH -0.0256 -0.0143 0.0000 -0.0111 0.0000 0.0335 0.0127 -0.0032 0.0000 0.0195
rposS 0.0000 a.0000 0.0000 0.0000 0.0000 0.0000 0.0101 0.0091 -0.0274 0.0304

(a) Predicted network structure

calt

2]

recA

Joxd ssh

recf

dipl ugulC rpal

rpall  rpaS

(b) Predicted perturbation

29
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FEAREEILITEFR/AR (Chromatin

Immunoprecipitation, ChlP)
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Box 1| Uncovering protein interactions

Al

Experimental methods

a

Reporter gene

Yeast two-hybrid

Computational methods

C

Gene fusion

sp1 <O
Sp2 C}—l_>--[_l‘,

sp3 <TH O
Sp¢ O+ T
Sps < -

:

1oy

Genomic context

Affinity column

Affinity purifications

Spl
Sp2

2P

Sp3
Spd —
Sp5

Spé

Co-evolution



S 1 ANCEECEAEATE A T A A c A
Site 2 ANNCEECE AR A T A A c A
Swed| T A € T A T A A A A A
Stes| T A C T A T A A A A A
SteS| T € € A A A A T T O
Se6l ¢ A A € T A T C T T c
Se?7|ECEATATCNT. ' 2 ¢ T T c
St |ECEECEENCENCINETE A C A T C
1 2 3 4 5 6 7 8 9 10 1 12 13 14
Source binding sites
b
B R M W A W H R W B M
Consensus sequence
€ Position frequency matrix (PFM)
1 2 3 4 5 6 7 8 9 10 11 12 13 14
A TEOE & 4w O man 7 B4 3 5E 4 BZE 0 WOl 4
c 3 0 4 8 0 L] 0 3 0 ¢ 0 0 2 4
¢iBZ8 3 BoN o BOoN 0 NOE o 1 0 g 8 NS O
T B3R 1 ol o0 s 1 4 2 B2 4 o8 o B 0
d Position weight matrix (PWM) N
A[-193 079 079 -1.93 045 150 079 045 107 079 000 -1.63 -1.93 0.79
C|045-193 079 1.68 -1.93 -163 -1.93 045 -1.93 -1.93 -1.93 -163 000 079
G | 000 045 -183 -1.93 -1.93 -163 -1.93 -1.93 066 -1.93 130 168 107 -1.93
T |015 066 163 -1.08 1.07 066 070 000 0.00 0.79 -1.93 -1.03 -0.66 -1.93
@ Site scoring

10‘45 -066 0790 168 045 -066 0.79 045 -066 079 0.00 168 -066 079
izi v & @ A I A N T A T C |
L =5.23, 78% of maximum

Position

Nature Reviews | Genetics
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HIRZ X M SR A IHMERRISBRE S, Fln AL
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MR 2R R E SRR S MERIREE

N+S

minYl,Yz,...,YN,L yyywk | LIJ |+;t Zl Lij |

k=L i=1 j=1 (i, J){(i, j)IK;;=00r Uy =0}
s.t. L, >0 iIf K;>0 1I,jef{l2,..,n}

L; <0 If Ki <0 , je{l2,...,n}

L, =0 if E;=0 1,je{l2..,n}
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G N M I nfe r(Gene Network reconstruction tool with Modular structure)

Primary literature and information in databases for well-studied
organisms such as E. coli and S. cerevisiae indicated the complex
network takes network motifs and modules as its basic building

block.

Introducing the assumption is a cellular system is composed of
locally interacting biological modules.

Integrate the bottom-up and top-down reconstruction strategies.

Initially perform a network modules identification. Then the
modular gene regulatory network inferred from multiple
microarray datasets To relieve the curse of dimension.

To ensure sparse network in a structured way.

67
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Top-down methodology

Inferring a regulatory network without a priori knowledge

TOP-DOWN APPROACH: the architecture of the network is inferred (or
reverse engineered) based on the observed response of the system to a

series of experimental perturbations.

In engineering sciences: system identification

1. typical use: large scale modeling from high throughput data
(genomic/proteomic/metabolomic)

2. main use: gene networks, any kind of complex network (metabolic,
signalling pathways, protein activity, etc.)

68
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Bottom-up methodology

Mathematical model was obtained from already available knowledge of the
mechanisms of action/interaction between to or more components

BOTTOM-UP APPROACH: model built from a priori biological information

Advantages:

1. readily testable comparing simulation vs experiments
2. allows to model known pathways

3. allows to pass from qualitative to quantitative analysis

Drawbacks

1. can model only known molecular processes

2. does not allow to discover new pathways

3. less applicable to poorly characterized networks
4. useful mainly for small/medium scale systems

69



Network motifs
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Network Modules

most of the genes are likely to be
related to the genes in the same module rather than the
genes in different modules. (Clustering on the expression
data to find the co-regulations relationships)

most of the genes are likely to have
similar function related to the genes in the same module
rather than the genes in different modules. (Clustering
the gene annotation data to find the similar function
relationships)

71



Gene annotation

Module identification

Multiple time course dataset

72



An Example: Circadian rhythm

e Circadian rhythm is fundamentally important in
physiological processes of mammals.

Immunity
Blood pressure

Cell multiplication
Bone metabolism

CIRCADIAN RHYTHMS

A A LA 24/ NI A AT R RS B . SORRIE L 4. RORBI IR, Rl
JH, SisEe, SEE, BRARAENRSHT N R B . NAEEThAE, 22
SATAZAE ). 4. TR S A ] OB T .
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Why gene regulatory network

e The 20,000 dissociated neurons consisting of a pair of the
mammalian uprachiasmatic nuclei (SCN) display autonomous
rhythms in electrophysiological activities. This indicates that
the oscillator mechanism resides within individual cells

e Recent observations revealed that a large number of genes

undergo circadian oscillation in their expression levels.

 Furthermore, extensive studies have identified that a set of

key circadian genes utilize the transcriptional-translational

auto-regulatory loop to generate molecular oscillations of the
“central clock”.
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Gene expression data

The laboratory cultured cells from SCN

Perturbation: Forskolin stimuli can reset the clock of
the cells by phase advance and phase delay.

Four time-series microarray

. Control, 0-36 hour, 14 time points;

. CT6, 0-90 hour, drug is applied at 18 hour, 16 time points;
. CT14, 0-90 hour, drug is applied at 27 hour, 14 time points;
. CT22,0-90 hour, drug is applied at 32 hour, 12 time points.
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Candidate gene list

Key circadian genes: 18 well-studied clock
genes

Circadian-related genes: 22 genes having
protein interactions and phosphorylations
relationships with the 18 key circadian genes.

Oscillatory gene list: 55 genes are identified
to see whether typical oscillations exist or not
in gene expression data.
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Prior information

14 physical protein interactions
40 phosphorylation interactions

Cis-regulatory element: 134 transcriptional
regulatory interactions by linking the
transcription factor with their target promoter
region in the gene level

Protein-drug interaction: the significantly
induced and or repressed genes are identified
as the potential target of the drug folskolin.



Prior information
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Network inference

e 276 predicted regulatory relationships among
80 circadian related genes.

138 new regulatory relationships that are not
in the prior information (73 activations and 65
repressions)

(a) brand new regulatory relationships

(b) signs and weights for those functional
relationships in the prior information.
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Four important hubs

Dsipi (regulate 17 target genes): A transcription
factor protecting T-cells from IL2 deprivation-
induced

RGD621665 (regulate 20 target genes): a
regulator of G-protein signaling

RGD1307813 (regulate 8 target genes): related to
endoplasmic reticulum,cell redox homeostasis,
and protein folding.

RGD1310899 predicted (regulate 29 target
genes)
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Enriched motifs

* Transcription-translation feedback loops are
important in driving circadian rhythm. For
example, Bmall and Clock proteins form a
complex that positively regulates the
transcription of Per and Cry family genes.

e z-score and p-value are used to assess the

statistical significance of the certain motif in
our predicted network against 1000
randomized networks
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DREAM

Dialog on Reverse Engineering Assessment and
Methods

Annual workshop for evaluation of algorithms
Last workshop had 40 teams participating

Simulated mRNA expression profiles produced
from an ODE model, including

— All single-gene deletion mutants, grown the same way

— Time course of mMRNA expression after change in
growth conditions
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B Synthetic gene expression data i C Network inference
Steady state and time series .7 method
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performance assessment

A In silico gene networks D Predicted networks
A Target network B Network prediction C Null model
G2 i
G4 100 a9 — G5 | v 100
G2 — G3 |V
G2 — G1 |V
75 G10— G7 |V 75
G2 — G6 |@
G9 = G8 — G7 |V =
G7 R G2 — G7 |@ 2
X 50 G2— G4 |@ x 50
G5 & G9 — G4 |V g
G3 — G4 |V
O £ $
G8 G10 25 s * 25
Precision .
S e Pvalue = 453-10°

o 0.5 1 vipetal Random predictions

91



$ i N 2HANGrous
Follow-up analysis

@article{madar2010dream3, title={{DREAM3: Network Inference Using Dynamic
Context Likelihood of Relatedness and the Inferelator}}, author={Madar, A. and
Greenfield, A. and Vanden-Eijnden, E. and Bonneau, R.}, journal={PLoS ONE},
volume={5}, number={3}, pages={e9803}, year={2010} }

@article{scheinine2009inferring, title={{Inferring gene networks: dream or
nightmare?}}, author={Scheinine, A. and Mentzen, W.I. and Fotia, G. and Pieroni, E.
and Maggio, F. and Mancosu, G. and de La Fuente, A.}, journal={Annals of the New
York Academy of Sciences}, volume={1158}, number={The Challenges of Systems
Biology Community Efforts to Harness Biological Complexity}, pages={287--301},
year={2009}, publisher={John Wiley \& Sons} }

@article{marbach2010revealing, title={{Revealing strengths and weaknesses of
methods for gene network inference}}, author={Marbach, D. and Prill, R.J. and
Schaffter, T. and Mattiussi, C. and Floreano, D. and Stolovitzky, G.},
journal={Proceedings of the National Academy of Sciences}, volume={107},
number={14}, pages={6286}, year={2010}, publisher={National Acad Sciences} }

@article{10.1371/journal.pone.0012912, author = {Pinna, Andrea AND Soranzo,
Nicola AND de la Fuente, Alberto}, journal = {PLoS ONE}, publisher ={Public Library
of Science}, title = {From Knockouts to Networks: Establishing Direct Cause-Effect
Relationships through Graph Analysis}, year ={2010}, month ={10}, volume ={5}}
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General conclusion

* Negative: reliable network inference from
gene expression data remains an unsolved
problem.

e Positive: the results indicate potential ways of
network reconstruction improvements.
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Detalled lessons learned

The success is more related to the details of
implementation than the choice of general
methodology.

Integration steady state data and time series
data helps.

Simpler method perform in general better
than advanced, theoretically motivated
approaches.

Knock out data is useful
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Motivation

 We maximally utilize the information in the limited
gene expression data by categorizing the data into
three types and developing three methods accordingly
for information mining.

 We propose a path consistency algorithm based on
conditional mutual information to differentiate the
direct and indirect regulatory interactions.

* We integrate three methods into a pipeline by

considering their complementarities and high accuracy
can be expected.

95



& R - AR Group o

Three types of data

 Type one is the steady-state gene expression
profile of knock-out or knockdown
experiments.

* Type two is the steady state gene expression
profile after multi-factorial perturbations.

 Type three is the time-series data after multi-
factorial perturbations.
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Knockout data

The idea is natural to identify if a gene x;is a
target of gene x; by comparing the expression
level of x; when x; is knocked out or knocked
down to the wild-type expression of x..

T-test: T= (x;*0- (X, Wt x,W+ ...+ x"*)/N)/0
Fold change: F= x;*°/(x, "W+ x,"+ ...+ x**)/N)

Combine the two scores together
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Steady state data

e Difficulty I: the non-linear relationships due to
time-delay and other complicated factors.
Strategy: a mutual information based
framework

e Difficulty II: the causal relationships

Strategy: path consistency algorithm based on
conditional mutual information
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Entropy

Entropy (self-information)

H(p) =H(X)=-> p(x)log, p(x)

Xey

— the amount of information in a random variable

— average uncertainty of a random variable

— the average length of the message needed to transmit an outcome of
that variable

— Properties
e H(X)>0( H(X)=Q providing no new information)
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Mutual Information

H(X,Y)
e Mutual Information >
1(X;Y)=H(X)=H(X |Y)=H(Y)=H(Y|X)
P(X,y)
= I
=2 Pl ) H(X) HY)

— the reduction in uncertainty of one random variable due to knowing
about another

— the amount of information one random variable contains about another
— measure of independence

e two variables are independent 1(X;Y)=0

e grows according to ...

— the degree of dependence
— the entropy of the variables
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Conditional Mutual Information by
Gaussian Kernel Estimator

e Assume N samples for Z, with i=1,...,N
N

1 1 1 T
P(Z;) _N;(Zﬂ)nlz c™ exp(_E(Zj -Z;) C (Zj ~Z;))

H(Z)=—%Zln(P<zi»

where Z; is an n-dimensional vector of sample-i, and C is the
covariance matrix of Z.

Then, we can estimate conditional mutual information based
on this equation for H:

(j not equal i for N-1)

I(X,Y|Z)=H(X,Z)+H(,Z)-H(Z)-H(X,Y,Z)
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H(X)
_Conditio_nal mutual H(Y)
information H(X,Y)
X Z
H(X, Z)
____x e H(X,Y,Z) =
Z—XY |00 01 10 11
0 025 0 0 0
1 0 025 025 025
I(X;Y)
I(X;Y|Z)

= —plz = 0)log2p(x = 0) — p(z = 1)
logap(x = 1) = 1 bit,

= 1 bit, H(Z) ~ 0.8113 bit,

= —p(zy = 00)logzp(zy = 00) — p(zy = 01)
logap(zy = 01)
— p(zy = 10)logop(zy = 10) — p(zy = 11)
logop(zy = 11)

= 2 bils,

= 1.5 bits, H(Y, Z) = 1.5 bits,

— plzyz = 000)logp(xyz =

— plzyz = 001)logp(xyz = 001

— p(xyz = 010)logep(zyz = 010

— p(zyz = 10)logp(zyz = 101

000)
)
)
— p(zyz = 011)logp(zyz = 011)
)
)
— p(zyz = 110)logp(xyz = 110)

)

)
)
)
— p(zyz = 100)logp(xyz = 100
)
)
)

— plzyz = 111)logp(zyz = 111
= 2 bits,
= H(X)+ H(Y) - H(X,Y) = 0 bit,
=H(X,Z)+H(Y,Z)-H(Z)-H(X,Y,Z)
~ (.1887 bit. 1oz
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Path Consistency Algorithm

Step 1. Find a complete undirected subgraph (clique)
with m nodes.

Step 2. Calculate the zeroth-order conditional mutual
information (for example mutual information of gene
X and Y) and delete the edges that are independent.

Step 3. Calculate the first-order conditional mutual
information (for example mutual information of gene
X and Y conditioning Z) and delete the edges that are
independent.

Step 4. Calculate the higher order conditional mutual
information and terminate when there is no edges
can be deleted.
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Time series data

 We use the ordinary differential equation
model to capture the dynamic relationship
among genes

dX
—=JX +PC
dt
N n n+s
: k .
My 2 p¥ ZZZO" | L; — Ly |+ A Zl L; |
k=1 i=] j=] (1.)){(i.))Ky=0 or U;=0}
i, L;>0 if K;>0 i, je{l2,...n

L; <0 if K; <0 1ije{l2,...n
L;=0 if E; =0 ije{l2,...n;
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Network Inference pipeline

D, (knockout and knockdown data)

D, (steady state data)

D, (time series data).

M, (combination of fold change and t-test)

M, (path consistency algorithm based on conditional
mutual information)

M, (ODE modeling of time series data).

P(D|M)=P(D,,D,,D,|M,,M,,M,)=P(D, | M,,M,,M,)P(D,
I D11M11M21M3)P(D3 I D11D2;M11M21M3)=P(D1 I M1)P(D2|
M,) P(D,| D,,D,,M,,M,,M,)
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Knockoutand
knockdown data
D1

\/_

" Combinationof
fold change and t-
test method




Advantages

Conditional mutual information is useful to reveal the
hidden nonlinear relationships among genes.

ODE model with prior information can predict the
combinatorial regulations.

Path consistency algorithm can remove the indirect
regulations.

Maximally utilizing information in the available data,
emphasizing the knock-out and knock-down data, and
differentiating the direct and indirect regulatory
Interactions.
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Application: GRN for cell
reprogramming

Differentiation and Transcription factor induced cell
development reprogramming
Embryonic
stem cells
Pluripotent State | Differentiated Sate Pluripotent State Il

—_—

Question 1: Is the pluripotent state | identical with pluripotent state Il ?
Question 2: How to use the high-throughput data to standardize iPSCs?
Question 3: What's the regulatory mechanism underlying cell reprogramming?
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Network study for cell reprogramming

Somatic Early-passage Middle- Late-passage
cell hiPSC passage hiPSC hiPSC

W o0 0 >@®
Genome

Transcriptome
Epigenome Y./I @
Proteome

Interactome

hESC

Active subnetworks
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Public Time course data

Data: The expression data is from [1] and measure
throughout reprogramming of MEF to IPSC. Total RNA was
extracted at day O (no Dox), day 2, 5, 8, 11, 16 and 21 (with
Dox) and day 30 (Dox-independent secondary iPS).
Therefore the data we used for network inference is time
series data of 13,877 genes at 8 time points.
Observations: Temporal analysis of this time course data
already revealed that reprogramming is a multi-step
process that is characterized by initiation, maturation, and
stabilization phases.

[1] Payman Samavarchi-Tehrani, et al., Functional Genomics Reveals a BMP-
Driven Mesenchymal-to-Epithelial Transition in the Initiation of Somatic Cell
Reprogramming, Cell Stem Cell, Vol. 7, No. 1, 2010, Pages 64-77



Preliminary result

Differential
genes

Zhanna et al. CCC2012, 2012
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Take home message

©x
K]

 Network study enables a system-wide overview
on the gene regulation in mechanism of
circadian rhythm.

e Data integration strategy improves the
reliability of the inferred gene regulatory
network.



