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Transcriptional Regulatory Network
Inference

Yong Wang

http://zhangroup.aporc.org
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Outline

» Background: Definition of TRN inference
 Inferring TRN from sequence’s perspective.

 Inferring TRN from gene expression’s perspective
(Method: Inferelator)

 Inferring TRN from transcription complexes’
perspective (Method: TRNInfer)



Transcription in higher eukaryotes

Gene Expression
1. Chromatin structure

2. Initiation of
transcription

3. Processing of the
transcript

4. Transport to the
cytoplasm

MRNA translation

A\ 4 6. mMRNA stability
co-activator Transcription
complex inifiation Complex 7 Protein activity stability

Transcription
@ Initiation
. P | TFBS
Cis-Regulatory vkl First exon  Intron Exon Intron Exon Intron Exon
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A transcription factor(sometimes called a sequence-specific DNA-binding factor) is
aprotein that binds to specific DNA sequences, thereby controlling the flow
(or transcription) of genetic information from DNA to mRNA

transcription factors

of eukaryotic cells

1 Activator proteins bind to pieces of .
DNA called enhancers. Their binding Lo
causes the DNA to bend, bringing P n‘mte —
them near a gene promoter, even wa,d“"g_:m"’m =l
thoughd'neynaybeﬂ'\wsandsof ) and Insulators can be dozens o even
rundreds of base pairs long

T from binding to the promoter, if a

2 pghermnpbmfacwrptm-s protein called CTCF (named for ‘
join the activator proteins, forming the sequence CCCTC, which ocaurs
in all insulators) binds to it

4 Aninsulator can stop the enhancers /"(

ﬂmeadditionof
ptothec
prevents CTCF
tothemsulator

turnmg rtcff al
(CCCTC-bndmg factor)  enhancersto bnw%-epru'noter

3Tf;r|saﬁxmnoornpiexmaleslteas;er‘e
polymerase to attach to
ptu'nota'arﬂstartvansaimg

RNA polymerase




Transcriptional Regulation
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B Activation

.The transcription factor TATA bindin 8:0 v :
protein (blue) bound to DNA (red). Image
by David S. Goodsell based on the crystal v
structure 1cdw from the Protein Data Bank. AD
' BD
A defining feature of transcription factors is that they Promoter Reporter

contain one or more DNA-binding domains(DBDSs)
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Structure
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Schematic diagram of the amino acid sequence (amino terminus to the left and

carboxylic acid terminus to the right) of a prototypical transcription factor that

contains

(1) a DNA-binding domain (DBD), which attach to specific sequences of DNA
(enhancer or promoter sequences) adjacent to regulated genes.

(2) signal sensing domain (SSD), which senses external signals and in
response transmit these signals to the rest of the transcription complex,
resulting in up or down regulation of gene expression. An optional domain
(e.g., a ligand binding domain). Operator DNA

DNA-binding
domain

(3) a transactivation domain (TAD), which contain binding
sites for other proteins such as transcription coregulators.
These binding sites are frequently referred to as

Regulatory

activation functions (AFs). domain

Tetramerization region
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Trans-activating domain

p33 TADI
p53 TAD2
MLL

E2A

Rtg3
CREB
CREBuB6
Gli3

Gald

Oafl
Pip2

Pdrl

Pdr3

Annotated 9aaTAD
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TESD
DIEQ
DIMD
LLDF
TLDF
KILN
AILA
DVVQ
DVYN
LEDY
FEDY
DLYS
DLYH

LWKL
WETE
FVLK
SMMF
SLVT
DLSS
ELKK
YLNS
YLED
DFLV
DLLF
ILWS
TLWN

Peptide - KIX interaction (NMR data)
LSPEETESDLWKLPE
QAMDDLMLSPDDIEQWFTEDPGPD
DCGNILPSDIMDEVLKNTP
PVGTDKELSDLLDESMMFPLPVT
E2A homolog
RREILSRRPSYRKILNDLSSDAP
CREB-mutant binding to KIX
TAD homology to CREB/KIX
Pdrl and Oafl homolog
DLEDYDFLV

Oafl homolog

EDLYSILWSDWY

Pdrl homolog

Nine-amino-acid transactivation domain (9aaTAD)
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DNA-binding domain

Family InterPro Pfam SCOP
basic-helix-loop-helix43!] IPRO01092 Pfam PF00010 SCOP 47460
basic-leucine zipper (bZIP)44l IPRO04827 Pfam PF00170 SCOP 57959

C-terminal effector domain of the bipartite
response regulators

GCC box SCOP 54175
helix-turn-helix4°!

IPRO0O1789 Pfam PFO0072 SCOP 46894

homeodomain proteins - bind to homeobox

DNA sequences, which in turn encode other

transcription factors. Homeodomain proteins /PRO09057 Pfam PFO0046 SCOP 46689
play critical roles in the regulation of

development. 14l

lambda repressor-like IPRO10982 SCOP 47413
srf-like (serum response factor) IPRO02100 Pfam PF00319 SCOP 55455
paired box!*’]

winged helix IPR013196 Pfam PF08279 SCOP 46785
zinc fingers!“8!

* multi-domain Cys,His, zinc fingers!42l IPRO07087 Pfam PFO0096 SCOP 57667
* Zn,/Cys, SCOP 57701

* Zn,/Cysg nuclear receptor zinc finger IPRO01628 Pfam PF00105 SCOP 57716
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Some facts

e There are approximately 2600 proteins in the human
genome that contain DNA-binding domains, and
most of these are presumed to function as
transcription factors.

e 10% of genes in the genome code for transcription
factors, which makes this family the single largest
family of human proteins.

 the combinatorial use of a subset of the
approximately 2000 human transcription factors
easily accounts for the unique regulation of each
gene in the human genome during development.
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Regulatory mechanism

e stabilize or block the binding of RNA polymerase to DNA
e catalyze the acetylation or deacetylation of histone proteins. The

transcription factor can either do this directly or recruit other proteins
with this catalytic activity. Many transcription factors use one or the other
of two opposing mechanisms to regulate transcription:13]

— histone acetyltransferase (HAT) activity — acetylates histone proteins,
which weakens the association of DNA with histones, which make the
DNA more accessible to transcription, thereby up-regulating
transcription

— histone deacetylase (HDAC) activity — deacetylates histone proteins,
which strengthens the association of DNA with histones, which make
the DNA less accessible to transcription, thereby down-regulating
transcription

e recruit coactivator or corepressor proteins to the transcription factor DNA
complex
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Transcriptional Regulation: output
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Perspective I: Cis-regulatory elements

Learning problems:

 Understand which regulators
control which target genes

Binding site/motif

CCG__CCG « Discover motifs representing

: | - regulatory elements

fjgc CC < e Scan motif for potential regulatory
N4 SCAN 4 A Interactions



Perspective Il1: Target gene expression

Learning problems:

 Understand which regulators
control which target genes NONININY

Nuclear membrane
-

-
Ribosome -

(translation).. - -

-
’ -
- «
- 4 .

EEHESREEEE Genome-wide
aiiiitaetanals MRNA transcript
SRR data (c.0.
SRHAHE ISR microarrays)

Correlate the expression of
transcription factor with the
target gene

Select the TF sets to explain 4~
the data
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Perspective Ill: Transcriptional complex

Learning problems:

Understand which TF complex
control which target genes

\JAVYAYAY

Nuclear membrane
Rbosore _ -

(tamsltics)

Estimate the TF complex activity
Correlate the expression of target e
genes with TF complex activity ¢— — BRI M RNA transcript
Select the TF complex to explain BRI data (e.9.

the data BEREEEEaY MiCrOarrays)

PSRRI Genome-wide




GRN and TRN ?

 Gene regulatory networks (GRN): indirect

gene-gene interactions (genetic
interactions)

Metabolic space

Metabolite 1T—Metabolite 2




GRN and TRN ?

e Transcription regulatory networks (TRN):
direct interactions between TFs and
genes (physical interactions)

{a) Basic unit (b) Motife
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Transcription factor K \N
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(c) Moduloe (d) Tranacrptional regulstery netework




GRN and TRN ?

e GRN:

MRNA x(t) 2 mRNA x(t): indirect interactions

* TRN:

Protein a(t) 2 mRNA x(t): direct interaction
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Outline

« Background: Definition of TRN inference)
 Inferring TRN from sequence’s perspective.

 Inferring TRN from gene expression’s perspective
(Method: Inferelator)

 Inferring TRN from transcription complexes’
perspective (Method: TRNInfer)
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F binding sites discovery

— Cluster genes by expression profile,
annotation, ... to find potentially coregulated
genes

— Find overrepresented motifs in promoter
sequences of similar genes (algorithms: MEME,
Consensus, Gibbs sampler, AlignACE, ...)

cdc28 Eltrt




TFBS and PWM?

» Transcription factor binding sites (TFBSs) are
usually slightly variable in their sequences.

» A positional weight matrix (PWM) specifies the
probability that you will see a given base at each
Index position of the motif.
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Pos| 1| 2 |34 5|6 | /7|89 ]10|11 |12 |13 |14 ]| 15
A 118 8 |51 4 |1 |29 7| 7| 7]10]1)39|1]1]6
C |8] 3 |3] 9334 ]21|15|14), 0] 0] 1]43/39]18
G |13] 31 (34| 9 | 8 |10|11 |15/19| 4 (44| 3 | 0 | 1 | 6
T | 7] 4 (1424|433 | 7|96 421 ]3| 2] 5|16

Con|N| G |G| T|C|A|N|N|N|]T]|]G]A]C]C]|N
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¢ Histone tails

Histones

Purify DNA ¢

End repair and l
adapter ligation
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Sequencing on NGS platforms

Isolation of cells of the immune response

* Use the correct number of cells: 1 x 10° to 10 x 10°
» Collect biological replicates of cells

= Choose an appropriate control for antibody specificity

(knockout or RNAi knockdown)

Fragmentation by sonication or
MNase treatment

« Shear chromatin to a size range of ~150-300 bp
« Sonicate chromatin extracts for non-histone proteins
* Sonication conditions should be determined
empirically for each cell type
= Treat chromatin extracts with MNase for analysis of
histone madifications

* Do not overdigest chromatin

ChIP analysis of histone modifications,
transcription factors or epigenetic regulators

* Select antibody: monoclonal versus polyclonal
* Choose reference control (Input or IgG)

* Perform ChIP with established protocols

* Purify DNA

Library construction

» Do end repair and adapter ligation
* Perform PCR using primers compatible with
sequencing platform

* Avoid overamplifying DNA

Sequencing

* Determine sequencing depth on the basis of the
prevalence of binding throughout the genome: more
sequencing tags may be needed for diffuse signals
(such as H3K27me3)

* Perform single-end or paired-end sequencing

S o ZRANGroup !

ChIP-Seq is a powerful tool with which to
investigate protein-DNA interactions on a
global scale. It is important that the
appropriate controls for antibody specificity
be determined before ChlP-Seq is begun.
After isolation of the ideal number of cells,
chromatin is sheared into an ideal size range
by sonication or enzymatic means
(micrococcal nuclease (MNase)). Next, high-
guality antibodies are used for ChlP to enrich
for factor-occupied DNA sequences. After
purification of ChlP-enriched DNA, a library is
constructed to allow sequencing on next-
generation sequencing (NGS) platforms.
Library construction typically includes end-
repair, the addition of single adenosine
residues, adaptor ligation and PCR with
primers compatible with the sequencing
platform. After cluster generation, single- or
paired-end sequencing is performed on next-
generation sequencing platforms. RNAI,
RNA-mediated interference; bp, base pairs.

ChIP-Seq: technical considerations for obtaining high-

quality data Benjamin L Kidder, Gangging Hu & Keji Zhao,Nature
Immunology 12, 918-922 (2011)
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NGOk E

acggcagggTGACCc

aGGGCAtcgTGACCc
cGGTCGccaGGACCt
tGGTCAgQgcTGGTCt
aGGTGGceecTGACCe
CTGTCCctcTGACCc

aGGCTAcgaTGACGt

. cagggagtgTGACCc
42.
43.
44.
45.
46.

gagcatgggTGACCa
aGGTCAtaacgattt
gGAACAgttTGACCc
CGGTGAcctTGACCc
gGGGCAaagTGACTg

—

Calculation of PWM

Position frequency matrix (PFM)
(also known as raw count matrix)

Given N sequence fragments of fixed length, one
can assemble a position frequency matrix
(number of times a particular nucleotide appears
at a given position). A normalized PFM, in which
each column adds up to a total of one, is a matrix
of probabilities for observing each nucleotide at

each position. l

Position weight matrix (PWM)
(also known as position-specific scoring matrix)

PFM should be converted to log-scale for efficient
computational analysis. To eliminate null values before
log-conversion, and to correct for small samples of
binding sites, a sampling correction, known as
pseudocounts, is added to each cell of the PFM.



Position Weight Matrix

Converting a PFM into a PWM

A 18 8 5 4 1 29 7 I 7 0 1 39 1 1 6
C 8 3 3 9 33 4 21 15 | 14 0 0 1 43 | 39 |18
G 13 | 31 | 34 9 8 10 11 15 19 4 44 3 0 1 6
T l4 4 4 24 4 3 I 9 6 42 1 3 2 5 |16
o +m
For each matrix bli BV
: | N++/N
element do: w(b, i) = log, i )=|092 N
p(b) p(b)
A 058 | -0.44 | -098 | -1.21 | 229 | 1.22 | -0.60 | -0.60 | -0.60 | -2.96 | -2.29 | 1.62 | -2.29 | -2.29 -0.72
¢ 044 | -1.49 | -1.49 | -030 | 139 | -121 [ 078 | 034 | 025 | -296 | -2.96 | -2.29 | 1.76 | 1.62 0.46
G 016 | 1.31 | 144 | -030 | -0.44 | -0.17 | -0.06 | 0.34 | 065 | -1.21 | 1.79 | -1.49 | -2.96 | -2.29 -0.64
T 060 | -1.21 | -1.21 | 096 | -1.21 | -1.49 | -0.60 | -0.30 | -0.78 | 1.73 | -2.29 | -1.49 | -1.84 | -0.98 0.23
fb,i — raw count (PFM matrix element) of nucleotide b in column i
N - number of sequences used to create PFM (= column sum)
JIN and VN - pseudocounts (correction for small sample size)

4
p(b) - background frequency of nucleotide b, this one usually defaults to 0.25

Hertz GZ, Stormo GD. Bioinformatics (1999)



TABLE 4.1. Several Databases of TF Binding Sites

Databases

Websites

DBSD

E. coli TFBSs
TRRD

TRED
AtProbe
AtcisDB
PRODORIC
JASPAR
TRANSFAC

http:/ /rulai.cshl.org /dbsd

http: / /bayesweb.wadsworth.org /binding_sites

http: / /www .bionet.nsc.ru/bgrs /thesis /5

http:/ /rulai.cshl.edu

http:/ /rulai.cshl.edu/cgi-bin/atprobe /atprobe.pl

http: / /arabidopsis.med.ohio-state.edu /AtcisDB

http: / /prodoric.tu-bs.de

http: //jaspar.genereg.net

http: //www.gene-regulation.com/pub /databases.html
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Scoring putative transcriptional regulation by scanning the
promoter with PWM

GGGTCAGCATGGCCA

ZRANGrowp o

0.58

-0.44

-0.98

-1.21

-2.29

1.22

-0.60

-0.60

-0.60

-2.96

-2.29

1.62

-2.29

-2.29

-0.72

-0.44

-1.49

-1.49

-0.30

1.39

-1.21

0.78

0.34

0.25

-2.96

-2.96

-2.29

1.76

1.62

0.46

0.16

1.31

1.44

-0.30

-0.44

-0.17

-0.06

0.34

0.65

-1.21

1.79

-1.49

-2.96

-2.29

-0.64

H4H[®|O]|>

-0.60

-1.21

-1.21

0.96

-1.21

-1.49

-0.60

-0.30

-0.78

1.73

-2.29

-1.49

-1.84

-0.98

0.23

m
Absolute score of the site § = Zw(b, i) =11.57

=1

Row
Sum

Max

0.58

1.31

1.44

0.96

1.39

1.22

0.78

0.34

0.65

1.73

1.79

1.62

1.76

1.62

17.20

Min

-0.60

-1.49

-1.49

-1.21

-2.29

-1.49

-0.60

-0.60

-0.78

-2.96

-2.96

-2.29

-2.96

-2.29

-24.02

relative score =

Absolute _score — Minimum _ score

Maximum _ score — Minimum _ score

1157 —(-24.02)
- 17.20—(

—24.02)

=0.86
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A consensus logo
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* A consensus logo for the LexA-binding motif of
several Gram-positive species.
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Binding sites database

Name

RegTransBase

RegulonDB
PRODORIC

TRANSFAC

TRED

DBSD

HOCOMOCO

Organisms
Prokaryotes

Escherichia coli

Prokaryotes

Mammals

Human,
Mouse, Rat

Drosophila
species

Human

Source

Expert/literatur
e curation

Expert curation
Expert curation

Expert/literatur
e curation

Computer
predictions,
manual
curation

Literature/Expe
rt curation

Literature/Expe
rt curation

Access

Public

Public
Public

Private

Public

Public

Public

ZRANGroup bi

URL

=

E =

T



TABLE 4.2. Some Software for Searching TF Binding Sites

Program Description

Matlnspector Utilizes a large library of matrix descriptions for TFBSs to locate matches in
DNA sequences

MATCH Uses a library of mononucleotide or dinucleotide weight matrixes from
TRANSFAC 3.5 for searching potential TFBSs

YMF Does an enumerative search to find the motifs with the highest z scores

MotifSampler  Uses Gibbs sampling to find the PWM that represents the motif by modeling
the background with a higher-order Markov model

PhyloScan Uses evidence from matching sites found in cross-species to identify TFBSs

ANN-Spec Uses an artificial neural network and a Gibbs sampling method to model the
specificity of a DNA-binding protein

CONSENSUS  Searches for the PWM with the maximum information content

Weeder Enumerates all the oligos of (or up to) a given length and determines their
occurrences with possible substitutions in the input sequences

AlignACE Uses Gibbs sampling algorithm to find a series of motifs as PWMs that are
overrepresented in the input sequences

MEME Uses EM algorithm to optimizes the E value of a statistic related to the
information content of the motif

GLAM Uses a Gibbs sampling-based algorithm that optimizes the alignment width

and obtains the best possible gapless multiple alignment

- ARG



TABLE 4.3. Databases of Promoters and TSSs

Databases Websites
SCPD http:/ /rulai.cshl.edu /SCPD

CEPDB http: / /rulai.cshl.edu/cgi-bin/CEPDB
LSPD http:/ /rulai.cshl.edu/LSPD

PlantProm DB
EPD
CSHLmpd
MPromDb
OMGProm
HemoPDB
OPD

HPD
DCPD
TiProD
DBTSS

http: / /mendel.cs.rhul.ac.uk /mendel.php?topic=plantprom
http://www.epd.isb-sib.ch

http:/ /rulai.cshl.edu/CSHLmpd2

http: / /bioinformatics.med.ohio-state.edu /MPromDb

http: / /bioinformatics.med.ohio-state.edu/OMGProm

http: / /bioinformatics.med.ohio-state.edu/HemoPDB

http: //www.opd.tau.ac.il /

http: / /zlab.bu.edu/mfrith/HPD.html

http: / /www-biology.ucsd.edu/labs/Kadonaga/DCPD.htm
http: / /tiprod.cbi.pku.edu.cn:8080 /index.html

http:/ /dbtss.hgc.jp/




Outline

Background: Definition of TRN inference
Inferring TRN from sequence’s perspective.

Inferring TRN from gene expression’s perspective
(Method: Inferelator)

Inferring TRN from transcription complexes’
perspective (Method: TRNInfer)
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Inferring transcriptional networks

From microarray data alone

regulators

promoters
Gene expression data X

TRN J

+ x1
+ x2
+ x3
x4
] 15 2
time

Target gene expression



Structure learning

— Learn structure of “regulatory network”, “regulatory
modules”, etc.

— Fit interpretable model to training data

— Many computational and statistical challenges; often used
for qualitative hypotheses rather than prediction

a

a

E—
—=

Interpretable
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A list of relevant computational methods

Name

GRAM
SAMBA

ReMoDiscovery

COGRIM

» Inferelator

Description

Searches for co-bound genes with a strict cutoff.
Then relaxes cutoft for genes that co-express with
the original set.

Discretizes expression and binding data into gene
properties. Algorithm then looks for genes with
statistically significant common property sets.

Stringent and relaxed two step procedure that
combined motif, expression, and ChIP-chip data.

Uses a Bayesian network to model expression level
as a function of transcription factor expression and
binding.

Uses biclustering to group co-expressed genes and
then machine learning to infer regulatory influence
from RNA and protein expression levels.

Reference

Bar-Joseph et al, 2003

Tanay et al, 2003

Lemmens et al. 2006

Chen et al, 2007

Bonneau et al. 2006
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Differential Equation Models

e Attempt to reconstruct the dynamical system that
produced the gene expression data
— Reduce dimensionality of the data

— Approximate dynamics
 Modeled using ordinary differential equations

— Restrict model complexity

 Example system : The Inferelator
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Dimensionality Reduction

e Regulators (genes and environment)
— Limited to transcription factors
— Factors with correlated profiles are merged

* Genes
— Clustered based on putative coregulation

— Used cMonkey to form biclusters across genes and
conditions [Bonneau, 2006]
e Correlated expression
e Shared regulatory sequence motifs

(Bonneau, et al, Genome Biology, 2006)



S . ZRANGroup b

Model Detalls

e Expression of y (gene or bicluster mean) is influenced
by the expression of N regulators:

X = (X1, X2, ..., Xn)

dy
T— y+g(pZ)

Z=(z[X],z,[X]...zp[ X])

(Bonneau, et al, Genome Biology, 2006)



Model Detalls

dy

TE ==Y+ g( ﬁ'Z) Z = (Z1[X], Z‘_D[X] o ZP[X])

Choice of Squashing Function
JE4i 5% (Squashing Function)

. BZ if min(y)< BZ <max(y)
g(ﬁ.Z)=1+e_ﬁ'Z g([)’Z)=< max(y): ifﬂZ>max(y)
bmin(y): iffZ <min(y)

(Bonneau, et al, Genome Biology, 2006)
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Model Detalls

dy
Tdt y+9g(peZ)

Z = (z[X], 2| X] ... p| X])

Choice of Z: PL = Bx, + fox, + B, min(x,,x,)

AND OR XOR
@ © _ o _
[=] | o | o |
o o o |
o o | | | o | | |
0.0 0.4 0.8 0.0 0.4 0.8 0.0 0.4 0.8
X1 X1 X1
Coefficients 8
AND OR XOR
min(X/,X2) | -1 -2
Xl 0 | |
X2 0 | |

(Bonneau, et al, Genome Biology, 2006)



Model Detalls

(Y _yig(pez)

dt
Steady state
Y =g(feZss)
Time course

P
Yms1 — Y f
T m'Z m + U =g(2ﬁjzmj) fOT' m =1,29---:F_1
b Jj=1

(Bonneau, et al, Genome Biology, 2006)
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Model Learning with LASSO

e LASSO, ak.a. L1 shrinkage

(a,ﬁ)zar%’rgm '

(Bonneau, et al, Genome Biology, 2006)



Results

Mn/Fe transport

Cobalt transport

The inferred regulatory network of
Halobacterium NRC-1

Regulators are indicated as circles

Target gene biclusters are indicated by
rectangles



Y,
N e

A Predictive Model for N
Transcriptional Control of Physiology In
a Free Living Cell

Richard Bonneau et. al. Cell, Vol 131, 1354-1365, 28 Dec. 2007
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On the cover: Brightly colored blooms of halophlic (##:) organisms in

the salt flats of the South San Francisco Bay (photograph by Michael
Melford, courtesy Getty Images) serve as a vibrant backdropss) for a
segment of a predictive environmental and gene regulatory circuit
determined for one of this ecosystem&apos;s principal inhabitants,
the archaeongtt4:4m) Halobacterium salinarium NRC-1(—#rmg s, — i
Nk R R s ). This organism possesses a number of fascinating
adaptations for life in hypersaline (##) environments including the
production of membrane pigments @ b4+ ¢%) that mediate light-
driven energy production and flotation devices called gas vesicles for
vertical mobility in search of favorable oxic regimes (@#4). While the
availability of unique adaptations is important, the integrated
regulation of these and many other core physiological processes (s
w12 is vital for survival in this dynamic environment.
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In this issue, Bonneau et al. report a systems level regulatory circuit
for the transcriptional control of 80% of all genes in this organism.
This regulatory model accurately predicts the transcriptional
changes that occur when Halobacterium is challenged with new
environmental and genetic perturbations. Significantly, this study
supports the claim that fundamental properties of biological
systems and their environments should enable the rapid
construction of highly accurate, predictive models of global gene
regulation for both traditional model systems and for many more
currently uncharacterized organisms.
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Faculty of 1000 Biology

 "This paper represents an exceptionally
important milestone in the field..."
Evaluated by Faculty of 1000 Biology member
Charles Auffray (Centre National de la

Recherche Scientifique (CNRS) - UMR 7091,
France)

“Faculty of 1000 Biology™fl7r 20021 H, R¥EEERTIHRE#XK
PR, FRAE T IR R AR PeE RS, H TR
RN D 388 3156 A0 i IRAE A8 B 72 A



% R — - ZHANGroup o

Other comments

 Research Highlight by Nature Reviews
Microbiology 6, 92 (February 2008)

e Bio-IT World's Systems Biology newsletter.(In
the closing days to 2007, a really nice piece of
systems biology work was published in the

journal Cell )



Why this paper

Cell publish computational biology work
From Institute for Systems Biology, Seattle

The ISB founder, also the founder of systems
biology Lee Hood is one of the co-authors.

To taste the flavor of systems biology
(network+perturbation+data integration)



What they studied

* Alargely uncharacterized organisms
e Easy to be cultured

 The environment significantly influences the
dynamic expression



e ZRARGrowp o

Methodology

e Experiments:

1. Microarray data: Total 413 experiments (Time-course and steady state, 8
environment effects perturbation, combinatorial perturbation. 33 gene
deletion and GTF overexpression)

266 experiments in training set

147 new experiments
2. ChlP-chip data
http://baliga.systemsbiology.net/egrin.php

e Computational prediction

1. Protein structure prediction

2. Function annotation algorithm

3. Biclustering algorithm (Data integration and dimensionality reduction)
4. Transcriptional regulatory network inference
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Outline

« Background: Definition of TRN inference
 Inferring TRN from sequence’s perspective.

 Inferring TRN from gene expression’s perspective
(Method: Inferelator)

 Inferring TRN from transcription complexes’
perspective (Method: TRNInfer)



Motivation

 TF activity level cannot be measured directly by
microarray due to post-translational
modifications

 Most existing algorithms has an implicit
assumption that TFAs are proportional to their
MRNA levels (like the previous example)

 TF generally regulates a gene with many
collaborators (rranscription complex)
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Post-translational modifications

Phosphorylation cascades
are involved in many
signalling pathways

Various modifications regulate
microtubule function

N

O

Plasma-membrane
proteins can carry
N-glycans

The histone code
controls many
nuclear processes

P
P
P)
B
(P
oL Wb >
--
P) (P

Plasma-membrane proteins
can be linked to the membrane
by a GPl anchor

Polyubiquitylation
can induce protein
degradation

Nuclear and cytoplasmic

proteins can carry O-glycans

Cellular post-translational
modifications

This schematic figure shows the
location and role of a selection of
some of the most important of
more than 200 types of post-
translational modification (PTM).
PTMs are found on all types of
protein, from nuclear
transcription factors to metabolic
enzymes, structural proteins and
plasma membrane receptors.
PTMs affect the physicochemical
properties of proteins, which
provides a mechanism for the
dynamic regulation of molecular
self-assembly and catalytic
processes through the reversible
molecular recognition of proteins,
nucleic acids, metabolites,
carbohydrates and phospholipids.
Ac, acetyl group; GPI,
glycosylphosphatidylinositol; Me,
methyl group; P, phosphoryl
group; Ub, ubiquitin.
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TF Activity

Use TF-TG relation benefit the regulatory network
identification

TF expression level is not a good measure of the TF activity.
The activated protein level of a TF, rather than its expression
level, is what controls gene expression.

The activity of a transcription factor is regulated according to
the cell’s need, largely through signal transduction. It may not
be directly observed, but can be reflected by the genes it
regulates.



T ARG

Inferring transcriptional networks

regulators

promoters

Gene expression data X

TRN J TF activity level A



Framework for TRNinfer

-

T

Wang et al. Bioinformatics, 2007
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Transcription Regulatory network

* The general form

The transcription processes can be represented by differential
equations with gene expression and TFAs:

z(t) = f(a(t)) — Kx(t) (1)
where =(t) = (z1(t),--,zm(t))" is gene expression level (RNA),
a(t) = (ay1(t), -+, ac(t)) denotes TF activity level (Protein).

e The linear form
the linear form of (1) 1s

#(t) = Ja(t) + b(t) (2)

where J = [Jijlmxe = O0f(a)/Oa is an m x ¢ Jacobian matrix or
connectivity matrix.
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L7
Approximating TF activity

e TFsand many cooperative proteins regulate a gene by a
transcription complex (TC).

e TF activity depends on TC.
« ATC is formed by a series of biochemical reactions:

Ao+ Ay + Ay =1 A

Co-regulators

PR,

& -

1C Transcription

E ‘ Gene

DNA
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Approximating TF activity

» According to the law of mass action,

the governing equations of the above reactions are given by

d

;t* — —kjaoajas +k_1a fori=0,1,2.
da

— kianaiao — k_1a

at lLdpala2 1

e TF activity can be given

0 = koagaiay X kyxoriTy

a . TF activity X . gene expression



LP model

For all L datasets, J should be as consistent as possible with all datasets,
which can be achieved by

L
. ke k
meZm — JAR| + 2| (10)
k=1
where the first term is to minimize the error between real data and the

reconstructed model, whereas the second term is the sparsity term which
forces J sparse by using Lji norm.
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Experimental results

 In the budding yeast S. cerevisiae, ChlP-chip
experiments have been utilized to elucidate the
binding interactions between 6270 genes and 113
preselected TFs.

* By checking yeast protein complexes in MIPS, we
found 26 TFs In transcriptional protein complexes.

 Among these 26 TFs, some are related to yeast cell
cycle and some are related to polyphosphate
metabolism In S. cerevisiae



-
Yeast cell cycle data

e There are 11 TFs that are known to be related to cell-cycle
regulation, among which 5 TFs are in 4 different TCs.

e Exceptthese 5 TFs, we selected 8 genes that are closely related to
cell cycle based on the information in YEASTRACT
(http://www.yeastract.com/index.php).

e According to the gene expression data from Spellman et al., we
generated 4 datasets with the number of time points as 18, 17, 24,
and 14 respectively.

Table 3: TFs related to veast cell cycle and their TCs.

TF's TCs protein members
T MBP1 510.190.70 MBP1 SWI6
MCM1 510.190.120 ARGS2 ARGS1 ARGS0 MCM1
STB1 510.190.150 STB2 STB1 RPD3 SIN3
SWI4 510.190.60 SWI4 SWI6G

SWI6 510.190.60 SWI4 SWIG




The inferred yeast cell cycle transcriptional regulatory network.
The red arrows in the figure indicate repression while the blue
arrows indicate activation.



The comparison results of LP method based on transcription complexes
(LP TC), LP method based on only mRNA levels of TFs (LP mRNA) and
SVD method based on mRNA levels of TFs (SVD mRNA). (a) on yeast
cell cycle data set; (b) on yeast polyphosphate metabolism data set.
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Yeast cell cycle data

 We can check the periodicity of the activity levels of the TFs (or TCs)
because it is believed that the activities of TFs related to cell cycle
tend to be periodic. This fact can be confirmed by Fisher's g-test.

Table 3. The P-values of the periodicity for some TFs related with

cell cycle

TFs Experiment conditions Expression Activity
MBPI alpha0mm-alphall9min 0.525 0.003
SWi4 alpha0mm-alphall9min 0.0064 0.00019
SWI6 alphaOmmn-alphal19min 0.367 0.00019
SWIi4 edel 510min—cdel 5290min 0.132 0.01

SWie6 edel 510min—ede 1 5290min 0.024 0.01
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Experimental results
---Polyphosphate metabolism data

 Among the TFs related to polyphosphate metabolism verified

by the ChIP experiments, there are 14 TFs in 9 different TCs.

* (Gene expression data: Ogawa N, DeRisi J, Brown PO (2000).

e Among the genes in this dataset, some genes of those with

change of 2 fold up or down In at least two time points of the
expression levels are believed to be closely related to
polyphosphate metabolism.

 Insuch a way, totally 64 genes (including 14 TFs) form a test

data



Polyphosphate metabolism data

Table 4: TFs related to polyphosphate metabolism and their TCs.

TFs TCs protein members
RTG1 510.190.130 RTG3 RTG1

RTG3 510.190.130 RTG3 RTG1
MET4 510.190.160.30 MET32 MET28 MET4
MET31  510.190.160.20 MET28 MET4 MET31
LEU3 510.190.210 LEU3

HAP5 510.160 HAP3 HAP2 HAP4 HAPS
HAP4 510.160 HAP3 HAP2 HAP4 HAPS
HAP3 510.160 HAP3 HAP2 HAP4 HAP5
GCR2 510.190.90 GCR2 GCRI1
GCRI1 510.190.90 GCR2 GCRI1

GALA4 510.190.80 GAL3 GALSO GALA4
CBF1 510.190.160.10 MET28 CBF1 MET4
ARGS0 510.190.120 ARGS1 ARGS0 MCM1
ARGSI1 510.190.120 ARGS1 ARGS0 MCM1




Transcriptional regulatory network for polyphosphate metabolism. The red
arrows in the figure indicate repression while the blue arrows indicate activation.
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Take-home messages

Looking at the same transcriptional regulatory interactions
from different perspectives.

For inferring a TRN, one must first determine which genes or
proteins are TFs.

Furthermore, it is also very difficult to measure the protein
concentration levels of TFs and determine their regulatory
effects on gene transcription.

The interactions or cooperations between multiple TFs and
their coregulators is a big challenge

We develop TRNinfer for inferring transcriptional networks by
using transcription complexes.
http://zhangroup.aporc.org/ResourceBioinformatics




