

出物信息等

高通量技术

吴凌云

中国科学院数学与系统科学研究院

http://zhangroup.aporc.org Chinese Academy of Sciences

ZHANGroup OR

- "Microarray" has become a general term, there are many types now
 - DNA microarrays
 - Protein microarrays
 - Transfection microarrays
 - Tissue microarray

• We'll be discussing **cDNA** microarrays

DNA Microarray

NGroup OF

- A grid of DNA spots (probes) on a substrate used to detect complementary sequences
- The DNA spots can be deposited by
 - piezoelectric (ink jet style)
 - Pen
 - Photolithography光刻法(Affymetrix)
- The substrate can be plastic, glass, silicon (Affymetrix)
- RNA/DNA of interest is labelled & hybridizes with the array
- Hybridization with probes is detected optically.

- What is measured depends on the chip design and the laboratory protocol:
 - Expression
 - Measure mRNA expression levels (usually polyadenylated mRNA)
 - Re-sequencing
 - Detect changes in genomic regions of interest
 - Tiling
 - Tiles probes over an entire genome for various applications (novel transcripts, ChIP, epigenetic modifications)
 - SNP
 - Detect which known SNPs are in the tested DNA
 - ?...

Expression Arrays

ZHANGroup OR

- Gene Expression
- <u>mRNA levels</u> in a cell
- mRNA levels <u>averaged over a population of cells</u> in a sample
- <u>relative</u> mRNA levels averaged over populations of cells in <u>multiple samples</u>
- relative mRNA <u>hybridization readings</u> averaged over populations of cells in multiple samples
- <u>some</u> relative mRNA hybridization readings averaged over populations of cells in multiple samples

• "some"

- In a comparison of Affymetrix vs spotted arrays, 10% of probesets yielded very different results.
- "In the small number of cases in which platforms yielded discrepant results, qRT-PCR generally did not confirm either set of data, suggesting that sequence-specific effects may make expression predictions difficult to make using any technique."*
- It appears that <u>some</u> transcripts just can't be detected accurately by these techniques.

* Independence and reproducibility across microarray platforms., Quackenbush et al. Nat Methods. 2005 May;2(5):337-44

Why "multiple samples"

- "multiple samples"
 - We can only really depend on between-sample fold change for Microarrays not absolute values or within sample comparisons (>1.3-2.0 fold change, in general)

ANGroup

- The level of a given mRNA is positively correlated with the expression of the associated protein.
 - Higher mRNA levels mean higher protein expression, lower mRNA means lower protein expression
- Other factors:
 - Protein degradation, mRNA degradation, polyadenylation, codon preference, translation rates, alternative splicing, translation lag...
- This is relatively obvious, but worth emphasizing

Affymetrix Expression Arrays

ZHANGroup OB

- DAT file:
 - Raw (TIFF) optical image of the hybridized chip
- CDF File (Chip Description File):
 - Provided by Affy, describes layout of chip
- CEL File:
 - Processed DAT file (intensity/position values)
- CHP File:
 - Experiment results created from CEL and CDF files
- TXT File:
 - Probeset expression values with annotation (CHP file in text format)
- EXP File
 - Small text file of Experiment details (time, name, etc)
- RPT File
 - Generated by Affy software, report of QC info

Affymetrix Data Flow

Terminology

- A chip consists of a number of **probesets**.
- Probesets are intended to measure expression for a specific mRNA
- Each probeset is complementary to a <u>target sequence</u> which is derived from one or more mRNA sequences
- Probesets consist of 25mer probe pairs selected from the target sequence: one Perfect Match (PM) and one Mismatch (MM) for each chosen target position.
- Each chip has a corresponding <u>Chip Description File (CDF)</u> which (among other things) describes probe locations and probeset groupings on the chip.

- How are taget sequences and probes chosen?
 - Target sequences are selected from the 3' end of the transcript
 - Probes should be unique in genome (unless probesets are *intended* to cross hybridize)
 - Probes should not hybridize to other sequences in fragmented cDNA
 - Thermodynamic properties of probes
 - See Affymetrix docs for more details

Affymetrix Probeset Names

- Probeset identifiers beginning with AFFX are affy internal, not generally used for analysis
- Suffixes are meaningful, for example:
 - _at : hybridizes to unique antisense transcript for this chip
 - _s_at: all probes cross hybridize to a specified set of sequences
 - _a_at: all probes cross hybridize to a specified gene family
 - _x_at: at least some probes cross hybridize with other target sequences for this chip
 - _r_at: rules dropped (my favorite!)
 - and many more...
- See the Affymetrix document "Data Analysis Fundamentals" for details

🍪 🕀 💮

Target Sequences and Probes

ZHANGroup

Example:

- 1415771_at:
 - Description: Mus musculus nucleolin mRNA, complete cds
 - LocusLink: AF318184.1 (NT sequence is 2412 bp long)
 - Target Sequence is 129 bp long

11 probe pairs tiling the target sequence

Perfect Match and Mismatch

Target

tttccagacagactcctatggtgacttctctggaat

Perfect match

ZHANGroup OR

ctgtctgaggat**a**ccactgaagaga

ctgtctgaggat**t**ccactgaagaga

Mismatch

Probe pair

Affymetrix Chip Pseudo-image

1415771_at on MOE430A

3

*image created using dChip software

1415771_at on MOE430A

1415771_at on MOE430A

Probe pair

Intensity to Expression

- Now we have thousands of intensity values associated with probes, grouped into probesets.
- How do you transform intensity to expression values?
 - Algorithms
 - MAS5
 - Affymetrix proprietary method
 - RMA/GCRMA
 - Irizarry, Bolstad
 - ..many others
- Often called "normalization"

- All techniques do the following:
 - Background adjustment
 - Scaling
 - Aggregation
- The goal is to remove non-biological elements of the signal

MAS5

- Standard Affymetrix analysis, best documented in: <u>http://www.affymetrix.com/support/technical</u> /whitepapers/sadd_whitepaper.pdf
- MAS5 results can't be *exactly* reproduced based on this document, though the affy package in Bioconductor comes close.
- MAS5 C++ source code released by Affy under GPL in 2005

MAS5 Model

- Measured Value = N + P + S
 - -N = Noise
 - P = Probe effects (non-specific hybridization)
 - -S = Signal

MAS5: Background & Noise

Zone Values

- For purposes of calculating background values, the array is split up into K rectangular zones Z_k (k = 1, ..., K, default K = 16).
- Control cells and masked cells are not used in the calculation.
- The cells are ranked and the lowest 2% is chosen as the background b for that zone (bZ_k) .
- The standard deviation of the lowest 2% cell intensities is calculated as an estimate of the background variability n for each zone (nZ_k) .

ZHANGroup

$$b(x,y) = \frac{1}{\sum_{k=1}^{K} w_k(x,y)} \sum_{k=1}^{K} w_k(x,y) bZ_k \qquad w_k(x,y) = \frac{1}{d_k^2(x,y) + smooth}$$

•From http://www.affymetrix.com/support/technical/whitepapers/sadd_whitepaper.pdf

MAS5: Adjusted Intensity

ZHANGroup 98

 $A(x, y) = \max(I'(x, y) - b(x, y), NoiseFrac*n(x, y))$ where $I'(x, y) = \max(I'(x, y), 0.5)$

A = Intensity minus background, the final value should be > noise.

- A: adjusted intensity
- I: measured intensity
- b: background

NoiseFrac: default 0.5 (another fudge factor)

```
And the value should always be >=0.5 (log issues) (fudge factor)
```

•From http://www.affymetrix.com/support/technical/whitepapers/sadd_whitepaper.pdf

Because Sometimes MM > PM

$$\begin{split} SB_{i} &= T_{bi} \left(\log_{2}(PM_{i,j}) - \log_{2}(MM_{i,j}) : j = 1, \dots, n_{i} \right) \\ IM_{i,j} &= \begin{cases} MM_{i,j}, & MM_{i,j} < PM_{i,j} \\ \frac{PM_{i,j}}{2^{(SB_{i})}}, & MM_{i,j} \ge PM_{i,j} \text{ and } SB_{i} > \text{contrast} \tau \\ \frac{PM_{i,j}}{2^{\left(\frac{COMTRAT}{1+\left(\frac{COMTRAT}{SCAUT} - SB_{i}\right)}\right)}}, & MM_{i,j} \ge PM_{i,j} \text{ and } SB_{i} \le \text{contrast} \tau \end{split}$$

default *contrast* τ =0.03 default *scale* τ = 10

•From http://www.affymetrix.com/support/technical/whitepapers/sadd_whitepaper.pdf

ZHANGroup

MADIS

MAS5: Signal

Value for each probe:

$$V_{i,j} = \max(PM_{i,j} - IM_{i,j}, d) \quad \text{default } \delta = 2^{(-20)}$$

ZHANGroup OR

$$PV_{i,j} = \log_2(V_{i,j}), j = 1, ..., n_i$$

Modified mean of probe values:

 $SignalLogValue_i = T_{bi}(PV_{i,1},...,PV_{i,n_i})$

Scaling Factor (Sc default 500) $sf = \frac{Sc}{TrimMean(2^{SignalLogValue_i}, 0.02, 0.98)}$

Signal (nf=1)

 $ReportedValue(i) = nf * sf * 2 (SignalLogValue_i)$

 T_{bi} = Tukey Biweight (mean estimate, resistant to outliers) TrimMean = Mean less top and bottom 2%

•From http://www.affymetrix.com/support/technical/whitepapers/sadd_whitepaper.pdf

😻 🗗 🐠 🦳

MAS5: p-value and calls

- First calculate discriminant for each probe pair: R=(PM-MM)/(PM+MM)
- Wilcoxon one sided ranked test used to compare R vs tau value and determine p-value
- Present/Marginal/Absent calls are thresholded from p-value above and
 - Present =< alpha1</p>
 - alpha1 < Marginal < alpha2</p>
 - Alpha2 <= Absent</p>
- Default: alpha1=0.04, alpha2=0.06, tau=0.015

۵ 🖓 🛞

MAS5: Summary

ZHANGroup OF

- Good
 - Usable with single chips (though replicated preferable)
 - Gives a p-value for expression data
- Bad:
 - Lots of fudge factors in the algorithm
 - Not *exactly* reproducible based upon documentation (source now available)
- Misc
 - Most commonly used processing method for Affy chips
 - Highly dependent on Mismatch probes

RMA

- Robust Multichip Analysis
- Used with groups of chips (>3), more chips are better
- Assumes all chips have same background, distribution of values: do they?
- Does not use the MM probes as (PM-MM*) leads to high variance
 - This means that **half** the probes on the chip are excluded, yet it still gives good results!
- Ignoring MM decreases accuracy, increases precision (reproducibility).

RMA Model

$$\begin{aligned} \mathcal{Y}_{ij} &= \mathcal{M} + \mathcal{A}_i + \beta_j + \mathcal{E}_{ij} \\ \text{where} \quad \mathcal{Y}_{ij} = \log_2 N \big(B \big(\mathcal{P} \mathcal{M}_{ij} \big) \big) \\ \alpha_i \text{ is a probe-effect } i = 1, \dots, I \\ \beta_j \text{ is chip-effect } (m + \beta_j \text{ is log2 gene} \\ \text{expression on array } j) = 1, \dots, J \end{aligned}$$

From a presentation by Ben Bolstad

http://bioinformatics.ca/workshop_pages/genomics/lectures2004/16

RMA Background

$$E\left(S \mid O = o\right) = a + b \frac{\phi\left(\frac{a}{b}\right) - \phi\left(\frac{o-a}{b}\right)}{\Phi\left(\frac{a}{b}\right) - \Phi\left(\frac{o-a}{b}\right) - 1}$$
$$a = o - \mu - \sigma^{2}\alpha, b = \sigma$$

This provides background correction

From a presentation by Ben Bolstad http://bioinformatics.ca/workshop_pages/genomics/lectures2004/16

RMA: Quantile Normalization & Scaling

- Fit all the chips to the same distribution
- Scale the chips so that they have the same mean.

ZHANGroup

From a presentation by Ben Bolstad

http://bioinformatics.ca/workshop_pages/genomics/lectures2004/16

RMA: Estimate Expression

- Assumption that these log transformed, background corrected expression values follow a linear model,
- Linear Model is estimated by using a "median polish" algorithm
- Generates a model based on chip, probe and a constant

GCRMA: Background Adjustment

Sequence specificity of brightness in the PM probes.

- Good:
 - Results are log₂
 - GCRMA: Adjusts for probe sequence effects
 - Rigidly model based: defines model then tries to fit experimental data to the model. Fewer fudge factors than MAS5

ZHANGroup OR

- Bad
 - Does not provide "calls" as MAS5 does
- Misc
 - The input is a group of samples that have same distribution of intensities.
 - Requires multiple samples

<u>3' Arrays</u>

1 gene --- 1 or 2 probesets

Probes from 600 bps near 3' end

Probeset has 11 PM, 11 MM probes 54,000 probesets

Average16 probes per RefSeq gene

<u>Exon Arrays</u>

1 gene --- many probesets

Probes from each putative exon

Probeset has 4 PM probes

1.4 Million probesets, 6 M features

Average147 probes per RefSeq gene

Exon Array Probesets Classified by Annotational Confidence

- Core probesets target exons supported by RefSeq mRNAs.
- Extended probesets target exons supported by ESTs or partial mRNAs.
- Full probesets target exons supported purely by computational predictions.

Probe Selection for Gene-Level Expression

ANGroup OF

- Most full and extended probes are not suitable for estimating gene-level expression
 - Probes may target false exon predictions
- Even some core probes may not be suitable
 - Bad probes with low affinity, or cross-hybridize
 - Probes targeting differentially spliced exons
- Probe selection
 - Selecting a suitably large subset of good probes targeting constitutively spliced regions of the gene
 - Use only to selected probes to estimate gene expression

Resolution (spacing between probes):

35 bp spacing = 10 bp GAP between adjacent probes (whole human genome array-14)

20 bp spacing = 5 bp OVERLAP between adjacent probes (ENCODE array-1)

5 bp spacing = 20 bp OVERLAP between adjacent probes (30% of human genome array-98)

Probes can be made as sense or anti-sense;Labeling assay can be 'strand-specific' or not.

Applications of Tiling Array

NGroup OR

- Small (including mi-RNA) and long RNA profiling/transcript discovery
- ChIP-chip:
 - Transcription Factors
 - Histone Modifications
 - DNA Methylation

Masses of Amino Acid Residues

MADIS

ZHANGroup

Aspartate

Leucine

- Peptides tend to fragment along the backbone.
- Fragments can also loose neutral chemical groups like NH_3 and H_2O .

Breaking Protein into Peptides and Peptides into Fragment Ions

- Proteases, e.g. trypsin, break protein into *peptides*.
- A Tandem Mass Spectrometer further breaks the peptides down into *fragment ions* and measures the mass of each piece.
- Mass Spectrometer accelerates the fragmented ions; heavier ions accelerate slower than lighter ones.
- Mass Spectrometer measure mass/charge ratio of an ion.

Matrix-Assisted Laser Desorption/Ionization (MALDI)

ZHANGroup

Figure 2. The soft laser desorption process.

From lectures by Vineet Bafna (UCSD)

Tandem Mass-Spectrometry

3

MADIS

Protein

Extract

Proteolytic

Fragments

Protein Identification by Tandem Mass Spectrometry

Tandem Mass Spectrum

- Tandem Mass Spectrometry (MS/MS): mainly generates partial N- and C-terminal peptides
- Spectrum consists of different ion types because peptides can be broken in several places.
- Chemical noise often complicates the spectrum.
- Represented in 2-D: mass/charge axis vs. intensity axis

De Novo vs. Database Search

De Novo vs. Database Search: A Paradox

- The database of all peptides is huge $\approx O(20^n)$.
- The database of all known peptides is much smaller $\approx O(10^8)$.
- However, *de novo* algorithms can be much *faster*, even though their search space is much *larger*!
- A database search scans all peptides in the *database of all known peptides* search space to find best one.
- De novo eliminates the need to scan *database of all peptides* by modeling the problem as a graph search.

Theoretical Spectrum

ZHANGroup

MADIS

Theoretical Spectrum (cont'd)

ZHANGroup

MADIS

De novo Peptide Sequencing

Why Not Sequence De Novo?

ZHANGroup 98

• *De novo* sequencing is still not very accurate!

Algorithm	Amino Acid Accuracy	Whole Peptide Accuracy
Lutefisk (Taylor and Johnson, 1997).	0.566	0.189
SHERENGA (Dancik et. al., 1999).	0.690	0.289
Peaks (Ma et al., 2003).	0.673	0.246
PepNovo (Frank and Pevzner, 2005).	0.727	0.296

 Less than 30% of the peptides sequenced were completely correct!

Pros and Cons of de novo Sequencing

ZHANGroup OR

- Advantage:
 - Gets the sequences that are not necessarily in the database.
 - An additional similarity search step using these sequences may identify the related proteins in the database.
- Disadvantage:
 - Requires higher quality data.
 - Often contains errors.

MS/MS Database Search

Database search in mass-spectrometry has been very successful in identification of **already known** proteins.

Experimental spectrum can be compared with theoretical spectra of database peptides to find the best fit.

SEQUEST (Yates et al., 1995)

But reliable algorithms for identification of modified peptides is a much more difficult problem.

Limitations of Proteomics

- Experimental limitations:
 - Large-scale protein analysis difficult because:
 - Proteins are fragile
 - They can exist in multiple isoforms
 - There is no protein equivalent of PCR for amplification of a small sample

Limitations of Proteomics

NGroup OR

- Data Analysis Limitations:
 - Data contains a lot of noise that is difficult to separate from actual signal. This results in wastage of computing resources on searching for unlikely spectra.
 - Database searches for matching spectra only give scores, leaving manual intervention necessary for eliminating false positives