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Gene Regulatory Network Inference

In Systems Biology Framework
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Central dogma of molecular biology
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Gene regulation
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Basic building blocks for gene regulatory network

‘ Transcriptional Factor

(=

Transcriptional network

Bl Target Gene

Genetic network

TF Cooperative Network

Gene Regulatory Network

==l Physical Interaction

== upp Genetic Interaction

Cooperative Interaction
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~ Biological GRN

metabolite .feedback A O
drug interactions
(external influences)
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transcription translation folding
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signaling signaling
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translation
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Activation or repression

complete tra ns.crlpt ()
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transcribed sequence

N+P = NP = N+P+S

(b)
_Os | @ /
N+A+P & NA+P & NAP — NA+P+5 NR+P 2 N+R+P 2 NP+R—=N+P+R+5



hat we want?
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Network Inference, Analysis
and Control
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DNA Microarrays

e Experiment design
» Noise reduction

 Normalization

Time series (e.g. cell cycle)
Single time point (e.g. steady state)

14
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Time Course Data

4 gene trajectories
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Basic Idea
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Goal: Infer structure and function of GRN from expression data

1) Apply diverse treatments 2) Measure RNA 3) Learn model
to cells expression for parameters
each treatment

Knock e —

o> - - |
ﬁ | - | Learr:nng
Algorithm

Overexpress | =jim— e

R — e

Mathematical Model

Model of
transcription
regulation
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Outline

 Gene regulatory network modeling

— Co-expression

— Boolean networks

— Bayesian models

— Differential equations

 Gene regulatory network inference
— GRNInfer
— GNTlInfer
— GNMlInfer
— A detailed example

17
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Gene regulatory network model

Model can not explicitly represents proteins and metabolites because
only RNA can be measured

4 gene trajectories

-t -t

expression level

1 1 1
o} 5 10 15 20
time

Time series Gene network
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Gene Expression Matrix

Given an experiment with m genes and n assays we produce a
matrix X where:
X;; = expression level of the i™" gene in the j™ assay.

( 11 X4 T1in \
: g; = Transcriptional
X = il ce e £Lij ce e Lin - +h
response of the I'" gene
\ Iml coo | Ty oo Tmn }

a, = Expression profile of the j* assay

20
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Correlation

* Gene expression

x,=(0.2,2.4,15, .

= ; \/ 2 ;
2)
: x,=(0.8,2.2,15, ...)
) X3=(43,01,75,...) ) \/
;i.m(xl, X,) = 0.62 :< 3 ) £ 4 ):

sim(Xy, X3) = -0.58

. Similarity scale;:
Gasch et al., 2000 1 * -1
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Goals of Clustering

e Clustering genes:

— Classify genes by their transcriptional response and get an idea
of how groups of genes are regulated.

— Potentially infer functions of unknown genes.
— Construct relevance network (Co-regulation)

e Clustering assays:

— Classify diseased versus normal samples by their expression
profile.

— Track the expression levels at different stages in the cell.
— Study the impact of external stimuli.

22
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Clustering Genes

similarity matrix

clustered
genes -—) mm) genes based
gg{,‘,es on similarity

N asSSays m genes
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Simultaneous
Traditional

Global
Correlation

Time-
Shifted

Inverted

Expression ratio
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Expression ratio
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Expression ratio
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Clustering
algorithm
identifies

further
(reasonable)
types of
expression
relationships

(Algorithm adapted

from local sequence
alignment)

[Qian et al]
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Boolean Networks = D
T

e Genes are assumed to be ON or OFF.

e At any given time, combining the gene states
gives a gene activity pattern (GAP).

e Given a GAP at time t, a deterministic function
(a set of logical rules) provides the GAP at
time t +1.

e GAPs can be classified into attractor and
transient states.

25



Boolean Network
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transient attractors
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Issues with Boolean Networks

 Gene trajectories are continuous and modeling
them as ON/OFF might be inadequate.

* A deterministic set of logical rules forces a very
stringent model.

— |t doesn’t allow for external input.
— Very susceptible to noise.

* Probability Boolean Networks aims at fixing some
of these issues by combining multiple sets of
rules.

27



Bayesian Networks

A gene regulatory network is represented by directed
acyclic graph:
— Vertices correspond to genes.

— Edges correspond to direct influence or interaction.

* For each gene x,, a conditional distribution
p(x; | ancestors(x,) ) is defined.

 The graph and the conditional distributions, uniquely
specify the joint probability distribution.

28
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Bayesian Network Example

@ @ Conditional distributions:
P(X1), P(X,), P(X5| Xy),

P(X4| X1 X5), P(Xs| X,)

P(X) = pP(Xy) P(Xy| X1) P(X3| Xg X5) P(X4| X1 Xo X3) P(Xs| X1 X5 X3 Xy)
P(X) = pP(Xy) P(Xy) P(X3| X5) P(X4| X1 X5) P(Xs| X4)

29
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Learning Bayesian Models

* Using gene expression data, the goal is to find the
Bayesian network that best matches the data.

 Recovering optimal conditional probability distributions
when the graph is known is “easy’.

e Recovering the structure of the graph is NP-hard.

30



Issues with Bayesian Models

e Computationally intensive.
 Requires lots of data.

 Does not allow for feedback loops which play an
important role (Network Motifs).

 Does not make use of the temporal aspect of the data.

 Dynamical Bayesian Networks aim at solving some of
these issues but they require even more data.

31



Differential Equation Model

. —> 91 X ; = mRNA concentration
A l X, = protein concentration
i MRNA X =K,/ (X)) - %X,
X>=KrX; =YX,

. protein

K;, K> (0, production rate constants

T . Y;. V> = 0, degradation rate constants
Jx;)
9 fl
J(x;) == — , 6 >0 threshold
0 0 X, —> 6 -+ X5

32



Linearization

Typically uses to
model the gene trajectories:
dx(t) / dt = ay +a; ; X (t)+ @, X, (t)+ ... +a; %, (t) + u(t)

Reasons for that choice:

— lower number of parameters implies that we are less
likely to over fit the data

— sufficient to model complex interactions between the
genes

33



Issues with Differential Equations

 Even under the simplest linear model, there are m(m+1)
unknown parameters to estimate:
* m(m-1) directional effects
* m self effects
* m constant effects
 Number of data points is m and we typically have that n <<
m (few time-points).
e Extra constraints must be incorporated into the model such

as.
e Sparse structure of the network
e Other prior information

34
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Outline

 Gene network modeling
— Co-expression
— Boolean networks
— Bayesian models
— Differential equations

e Gene regulatory network inference
— GRNInfer
— GNTInfer
— GNMlInfer

36



ODE model

promoters—-

RNAs —

Network model a
8 Influence
function
X, \‘

/* o N Xﬁ I dX]

Xg—P» dt

X12 / Output
Input RNA Transcription
concentrations Rate

dX,/dt = f,(X;,...) = @, X; + ag Xg + ag Xg + a5, Xy,




Noise

4 gene trajectories 4 gene trajectories with gaussian noise

expression level
expression level

0 1 Il 1
0 5 10 15 20 0 5 10 15 20

time time

We add gaussian noise to model errors. 38
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ao,i Ay i as i az,i Ay i
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X, 0 0 0 -.473 .374
X, |-.427 376 0 -241 O
X, O .435 0 -.315 -.437
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G R N I nfe r (Gene Regulatory Network reconstruction tool)

A single dataset consists of relatively few time points (less than 20)
but a large number of genes (in thousands)

Multiple Gene expression datasets are generated by different groups
worldwide are increasingly accumulated on many species

Combining and further exploiting multiple datasets in an integrative
and systematic manner, the scarcity of data can be greatly alleviated.

A more accurate reconstruction of GN can be expected.

Simply arranging multiple time-course datasets into a single time-
course dataset is Inappropriate for GN inference due to data
normalization issues and lack of temporal relationships among
datasets.

A biological gene network is expected to be sparse

40
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Infer a linear model

e Curse of dimension: #of experiments <<#of
variables m(20)<<n(6000)

e =>|nference problem is undetermined

e How to recover J? (Infinitely many possible
solutions=» many network architecture fit
the data)

 Find one possible solution as a particular
solution (SVD Singular Value
Decomposition)

JanXnXm — AnXm — BnXm

43
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Singular Value Decomposition

T — T
X mxn Umxn Enxn \ nxn (m<<n)
C= V, = elgengene
singular
value
gene .
expression u, = elgenassay
matrix

j=(X-BUE-WT
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SVD solution is the particular solution in the least square
meaning

J = argmin||JX + B — X||>

General solution: affine space

Y denotes all degrees of the freedom can be used to optimize
some extra criterion

For example the sparsity of J =»Maximize the number of zeros
inJ

45

Impose J=0 => i.e. — —YVT



T he general solution represents all of the possi-
ble networks that are consistent with the single
microarray dataset, depending on arbitrary Y.

We will find the most consistent network struc-
ture J = (J;j)nxn forall k =1,..., N, with con-
sideration of sparse structure

Optimization model

_ .""-."5 noon - ke
min > 2wt — JGl+ Al

e

k=1i=1 j=1
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Decomposition Algorithm

STEP-0O: Initialization. Obtain all of the par-
ticular solution J* by SVD, and «w*. Set initial
value J;;(0) = 0, YA(0) = 0 and Jf(0) = J¥,
and positive A\, €. Set g = 1.

STEP-1: Set JF(q) = JF(qg — 1) + YFr(@) V!
and solve yz’-‘;—(q) at iteration ¢ by LP with J(g —

1) fixed, i.e. solve Y*(q) = (wf;(@))mx=m Of
the following subproblem for £ = 1,..., N with

J(q — 1) given (yf5(q) = 0 if j > 1)

min S 3 |J(q — 1) — JE (@)

Y*(@) /=1 j=1

STEP-2: Solving Jij(q) at iteration g by LP
with all of yF (g) given, i.e. solve J(g) of the
following problem with all of Jk(g) fixed.

N n "
min > 37 >7 W () — TE@| + AT ()]
J(D =1 i=1 =1
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Simulated examples

—2za(t) + &1(t),
—za(t) + £a(t),
—3z4(t) + &3(t), i i

e e With Noise 4
= 2z (t) + &5(t),
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Yeast Cell Cycle (4 datasets

ATEE:
20880
ATIG N\
Gdp2s J

ATdo
03e80

ATiC
28180

ATdo
02710
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The advantage of multiple datasets

16000
14000 | \
- ~— .
12000 F
L —+—(ne dataset
e 10000 F
z —&— Two datasets
[
= Three datasets
. BOOO
2 Four datasets
i
—
:-:I *
2 /000 —#—Five datasets
4000
— .__—————. u
2000 ‘______-——f*’
x_.—-—'—'_'_'_* £ 3 * *
[} 1 1 1 1 1
0. 005 0. 05 0.1 0.2 0. b

Noise level
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Consistent structure
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G NTI nfe r(Gene Network reconstruction tool with compound Targets)

* Include other derived
from expression profile and from published
literature so as to recover gene regulations in a
more robust and reliable manner.

* Incorporate external inputs or perturbations
into the formulation so that molecular targets
(genes) can be identified in a systematic way.

54
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ldentify compound Targets

Treat cells with Obtain expression Filter profile using Identify
drug compound profile identified network genetic
mediators of
drug activity

-:\.l‘l‘\x
\
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X=J X+P C+e

X@,---, X(m),CA),,---,.C(t) = I, R,
X)) eR",C(t)eR® m<<n

xS
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X =[J,P]
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"Lﬁﬂliﬁﬁr,\/n/m?i'vli (Chromatin

Immunoprecipitation, ChIP)
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Box 1 | Uncovering protein interactions

Experimental methods
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Computational methods
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G N M I nfe r(Gene Network reconstruction tool with Modular structure)

Primary literature and information in databases for well-studied
organisms such as E. coli and S. cerevisiae indicated the complex
network takes network motifs and modules as its basic building

block.

Introducing the assumption is a cellular system is composed of
locally interacting biological modules.

Integrate the bottom-up and top-down reconstruction strategies.

Initially perform a network modules identification. Then the
modular gene regulatory network inferred from multiple
microarray datasets To relieve the curse of dimension.

To ensure sparse network in a structured way.
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Top-down methodology

Inferring a regulatory network without a priori knowledge

TOP-DOWN APPROACH: the architecture of the network is inferred (or
reverse engineered) based on the observed response of the system to a

series of experimental perturbations.

In engineering sciences: system identification

1. typical use: large scale modeling from high throughput data
(genomic/proteomic/metabolomic)

2. main use: gene networks, any kind of complex network (metabolic,
signalling pathways, protein activity, etc.)
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Bottom-up methodology

Mathematical model was obtained from already available knowledge of the
mechanisms of action/interaction between to or more components

BOTTOM-UP APPROACH: model built from a priori biological information

Advantages:

1. readily testable comparing simulation vs experiments
2. allows to model known pathways

3. allows to pass from qualitative to quantitative analysis

Drawbacks

1. can model only known molecular processes

2. does not allow to discover new pathways

3. less applicable to poorly characterized networks
4. useful mainly for small/medium scale systems

69
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Network Modules

most of the genes are likely to be
related to the genes in the same module rather than the
genes in different modules. (Clustering on the expression
data to find the co-regulations relationships)

most of the genes are likely to have
similar function related to the genes in the same module
rather than the genes in different modules. (Clustering
the gene annotation data to find the similar function
relationships)
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Gene annotation

Module identification

Multiple time course dataset
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An Example: Circadian rhythm

e Circadian rhythm is fundamentally important in
physiological processes of mammals.

Way of life synchronisers
hl-l‘._lq_ =,
:&F}i"m_h_ Pineal gland

L] b 1™
Mzlatonin

Ienmn ity
Blood pressure
Cell multiplication

Enng matabolism
CIRCADIAN RHYTHMS
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Why gene regulatory network

e The 20,000 dissociated neurons consisting of a pair of the
mammalian uprachiasmatic nuclei (SCN) display autonomous
rhythms in electrophysiological activities. This indicates that
the oscillator mechanism resides within individual cells

e Recent observations revealed that a large number of genes

undergo circadian oscillation in their expression levels.

e Furthermore, extensive studies have identified that a set of

key circadian genes utilize the transcriptional-translational

auto-regulatory loop to generate molecular oscillations of the
“central clock”.
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Gene expression data

The laboratory cultured cells from SCN

Perturbation: Forskolin stimuli can reset the clock of
the cells by phase advance and phase delay.

Four time-series microarray

. Control, 0-36 hour, 14 time points;

. CT6, 0-90 hour, drug is applied at 18 hour, 16 time points;
. CT14, 0-90 hour, drug is applied at 27 hour, 14 time points;
. CT22,0-90 hour, drug is applied at 32 hour, 12 time points.
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Candidate gene list

Key circadian genes: 18 well-studied clock
genes

Circadian-related genes: 22 genes having
protein interactions and phosphorylations
relationships with the 18 key circadian genes.

Oscillatory gene list: 55 genes are identified
to see whether typical oscillations exist or not
in gene expression data.



Prior information

e 14 physical protein interactions
* 40 phosphorylation interactions
e Cis-regulatory element: 134 transcriptional

regulatory interactions by linking the
transcription factor with their target promoter
region in the gene level

* Protein-drug interaction: the significantly

induced and or repressed genes are identified
as the potential target of the drug folskolin.



Prior information
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Network inference

e 276 predicted regulatory relationships among
80 circadian related genes.

e 138 new regulatory relationships that are not
in the prior information (73 activations and 65
repressions)

(a) brand new regulatory relationships

(b) signs and weights for those functional
relationships in the prior information.
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Four important hubs

Dsipi (regulate 17 target genes): A transcription
factor protecting T-cells from IL2 deprivation-
induced

RGD621665 (regulate 20 target genes): a
regulator of G-protein signaling

RGD1307813 (regulate 8 target genes): related to
endoplasmic reticulum,cell redox homeostasis,
and protein folding.

RGD1310899 predicted (regulate 29 target
genes)
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Enriched motifs

e Transcription-translation feedback loops are
important in driving circadian rhythm. For
example, Bmall and Clock proteins form a
complex that positively regulates the
transcription of Per and Cry family genes.

e z-score and p-value are used to assess the

statistical significance of the certain motif in
our predicted network against 1000
randomized networks
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Conclusion

 Network study enables a system-wide
overview on the gene regulation in
mechanism of circadian rhythm.

e Our method theoretically ensures the
derivation of the most consistent network
with all available information.

e Data integration strategy improves the
reliability of the inferred gene regulatory
network.
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