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Gardner, 2005

Gene regulation

Transcription 
factor (TF)

Transcription factors (TFs) are proteins that dynamically read and interpret
the static genetic instructions in the DNA



Transcriptional network

Gene Regulatory Network
Genetic network

TF Cooperative Network

Transcriptional Factor

Target Gene

Physical Interaction

Genetic Interaction

Cooperative Interaction

Basic building blocks for gene regulatory network
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Background---GRN
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Biological GRN
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Activation or repression
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Saccharomyces Gene Regulatory Network

What we want?



11



12

How to？
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Feasibility: Microarray technology
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DNA Microarrays

• Experiment design

• Noise reduction

• Normalization

• …

• Data analysis

 Time series (e.g. cell cycle)
 Single time point (e.g. steady state)
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Time Course Data
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Basic idea

Goal: Infer structure and function of GRN from expression data

Mathematical Model
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Outline
• Gene regulatory network modeling 

– Co-expression

– Boolean networks

– Bayesian models

– Differential equations

• Gene regulatory network inference
– GRNInfer

– GNTInfer

– GNMInfer

– A detailed example
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Only mRNA can be measured!
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Gene regulatory network model

Time series

x2

x1

x4

x3

_
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+
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?

Gene network

Model can not explicitly represents proteins and metabolites because 
only RNA can be measured
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Gene Expression Matrix

Given an experiment with m genes and n assays we produce a 
matrix X where:

xij = expression level of the ith gene in the jth assay.

gi = Transcriptional
response of the ith gene 

aj = Expression profile of the jth assay



Correlation

• Gene expression

x1 = (0.2, 2.4, 1.5, …)
x2 = (0.8, 2.2, 1.5, …)
x3 = (4.3, 0.1, 7.5, …)
…
sim(x1, x2) = 0.62
sim(x1, x3) = -0.58
…

Gasch et al., 2000

1 2

43

Similarity scale:
1 -1
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Goals of Clustering

• Clustering genes:
– Classify genes by their transcriptional response and get an idea 

of how groups of genes are regulated.

– Potentially infer functions of unknown genes.

– Construct relevance network (Co-regulation)

• Clustering assays:
– Classify diseased versus normal samples by their expression 

profile.

– Track the expression levels at different stages in the cell.

– Study the impact of external stimuli.
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Clustering Genes

X

n assays

m 
genes

m 
genes

m genes

similarity matrix

clustered
genes based
on similarity



Local 
Clustering 
algorithm 
identifies 
further 

(reasonable) 
types of 

expression 
relationships

Simultaneous

Traditional
Global 

Correlation

(Algorithm adapted 
from local sequence 

alignment)

Time-
Shifted

Inverted

[Qian et al]
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Boolean Networks

• Genes are assumed to be ON or OFF.

• At any given time, combining the gene states 
gives a gene activity pattern (GAP).

• Given a GAP at time t, a deterministic function 
(a set of logical rules) provides the GAP at 
time t +1.

• GAPs can be classified into attractor and 
transient states.
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Boolean Network

x2

x1

x1 x3

x2 x3

or not nand

t

t+1

t 0 1 2 3 4

x1 1 1 0 1 1

x2 1 0 0 0 0

x3 1 0 1 1 0

transient attractors

t 0 1 2 3 4

x1 1

x2 1

x3 1

ON

OFF
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Issues with Boolean Networks

• Gene trajectories are continuous and modeling 
them as ON/OFF might be inadequate. 

• A deterministic set of logical rules forces a very 
stringent model. 
– It doesn’t allow for external input.
– Very susceptible to noise.

• Probability Boolean Networks aims at fixing some 
of these issues by combining multiple sets of 
rules.
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Bayesian Networks

• A gene regulatory network is represented by directed 
acyclic graph:
– Vertices correspond to genes.

– Edges correspond to direct influence or interaction.

• For each gene xi, a conditional distribution 
p(xi | ancestors(xi) ) is defined.

• The graph and the conditional distributions, uniquely 
specify the joint probability distribution.
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Bayesian Network Example

x5

x3x4

x1 x2 Conditional distributions:
p(x1), p(x2), p(x3| x2), 
p(x4| x1,x2), p(x5| x4)

p(X) = p(x1) p(x2| x1) p(x3| x1,x2) p(x4| x1,x2, x3) p(x5| x1,x2, x3,x4) 
p(X) = p(x1) p(x2) p(x3| x2) p(x4| x1,x2) p(x5| x4)
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Learning Bayesian Models

• Using gene expression data, the goal is to find the 

Bayesian network that best matches the data.

• Recovering optimal conditional probability distributions 

when the graph is known is “easy”. 

• Recovering the structure of the graph is NP-hard.
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Issues with Bayesian Models

• Computationally intensive. 

• Requires lots of data.

• Does not allow for feedback loops which play an 

important role (Network Motifs).

• Does not make use of the temporal aspect of the data. 

• Dynamical Bayesian Networks aim at solving some of 

these issues but they require even more data. 
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Differential Equation Model
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Linearization

• Typically uses linear differential equations to 
model the gene trajectories:
dxi(t) / dt = a0 + ai,1 x1(t)+ ai,2 x2(t)+ … + ai,n xn(t) + u(t)

• Reasons for that choice:
– lower number of parameters implies that we are less 

likely to over fit the data

– sufficient to model complex interactions between the 
genes
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Issues with Differential Equations

• Even under the simplest linear model, there are m(m+1) 
unknown parameters to estimate:

• m(m-1) directional effects

• m self effects

• m constant effects

• Number of data points is m and we typically have that n <<
m (few time-points).

• Extra constraints must be incorporated into the model such 
as:

• Sparse structure of the network

• Other prior information
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Outline

• Gene network modeling
– Co-expression 

– Boolean networks

– Bayesian models

– Differential equations
• Gene regulatory network inference

– GRNInfer

– GNTInfer

– GNMInfer
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ODE model
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Noise

We add gaussian noise to model errors.
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Network Inference

a0,i a1,i a2,i a3,i a4,i

x1 .431 -.248 0 0 0

x2 0 0 0 -.473 .374

x3 -.427 .376 0 -.241 0

x4 0 .435 0 -.315 -.437

x2

x1

x4

x3

_

_
+

+ _

_

+
_
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GRNInfer (Gene Regulatory Network reconstruction tool)

• A single dataset consists of relatively few time points (less than 20) 
but a large number of genes (in thousands)

• Multiple Gene expression datasets are generated by different groups 
worldwide are increasingly accumulated on many species

• Combining and further exploiting multiple datasets in an integrative 
and systematic manner, the scarcity of data can be greatly alleviated.

• A more accurate reconstruction of GN can be expected.
• Simply arranging multiple time-course datasets into a single time-

course dataset is Inappropriate for GN inference due to data 
normalization issues and lack of temporal relationships among 
datasets.

• A biological gene network is expected to be sparse
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GRNInfer scheme
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General solution of a single dataset
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Infer a linear model

• Curse of dimension: #of experiments <<#of 
variables m(20)<<n(6000)  

• Inference problem is undetermined
• How to recover J? (Infinitely many possible 

solutionsmany network architecture fit 
the data)

• Find one possible solution as a particular 
solution (SVD Singular Value 
Decomposition)



Singular Value Decomposition

XT 
mx n =  Um x n En x n V T n x n     (m<<n)

=

uk = eigenassay

ek = 
singular

value

vk = eigengene

gene
expression

matrix
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• SVD solution is the particular solution in the least square 
meaning

• General solution: affine space

• Y denotes all degrees of the freedom can be used to optimize 
some extra criterion

• For example the sparsity of J Maximize the number of  zeros 
in J

• Impose J=0  i. e.  
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Optimization model
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Decomposition Algorithm
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Simulated examples

Without Noise With Noise
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Heat-Shock Response for Yeast
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Yeast Cell Cycle (4 datasets)
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Arabidopsis (9 Datasets)
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The advantage of multiple datasets
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Consistent structure
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GNTInfer(Gene Network reconstruction tool with compound Targets)

• Include other available information derived 
from expression profile and from published 
literature so as to recover gene regulations in a 
more robust and reliable manner.

• Incorporate external inputs or perturbations 
into the formulation so that molecular targets 
(genes) can be identified in a systematic way.
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考虑外部环境影响

灰箱模型，
部分调控关

系已知

与外界环境
交互
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预测化合物的靶基因(compound Targets)

• 考虑外部输入或者扰动对基因调控网络的影
响，用系统的方式识别他们的靶点基因

• 可以考虑的外部因素：

• 环境因素：温度、压力

• 药物或化合物

• 非编码RNA

• 基因敲除

• 其它
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Identify compound Targets



• 引入控制项

• P 代表 s 个外部扰动对各个基因的影响

• 已知X, C, 求矩阵 J, P

58

数学表达
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E. Coli SOS Pathway
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集成先验信息

1. 基因调控网络中的维度问题

2. 大量的关于基因调控网络的异源数据

3. 集成大量的先验信息有助于缓解数据稀缺状况

4. 同时使得得到的调控网络更加精确。



Protein 
Interaction

Co-expression

ChIP-chip

Regulatory motif
Literature data

Linear Programming  
based Integration

Small Molecules

Gene Regulatory    
Network

Multiple Time-course Expression Data

Sparse Structure

Integrating prior



染色体免疫共沉淀技术（Chromatin 
Immunoprecipitation，ChIP）

62

染色体免疫共沉淀在过去十年已经成为表观遗传信息研究的主要方
法，确定转录因子及其结合位点



实验方法预测蛋白相互作用



Motif 数据

64



• 无向(Undirected): 仅仅知道有无调控关系。
例如蛋白质相互作用数据以及共表达数据

• 有向无符号(Directed and un-signed). 知道有

方向的调控关系，但是不知道是激活还是
压制作用。例如ChIP-chip 数据和motif 出现
数据

• 有向有符号(Directed and signed). 知道有方

向的调控关系，同时知道是激活还是压制
作用，但是没有调控的强度数据，例如文
献中记录的调控关系

先验信息分类

65
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集成先验信息的线性规划模型

有很多对网络结构推断有价值的的先验信息，例如从数据
库或文献中得到的基因间调控数据，这些信息可通过添加
线性规划的约束来提高所得到的聚合网络的精度。

硬约束：已知信息较为精确，希望在推断的网络中体现
软约束：噪声较大的信息，在推断的网络中出现与否取决于其他数据的相容性
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GNMInfer(Gene Network reconstruction tool with Modular structure)

• Primary literature and information in databases for well-studied 
organisms such as E. coli and S. cerevisiae indicated the complex 
network takes network motifs and modules as its basic building 
block.

• Introducing the assumption is a cellular system is composed of 
locally interacting biological modules.

• Integrate the bottom-up and top-down reconstruction strategies.
• Initially perform a network modules identification. Then the 

modular gene regulatory network inferred from multiple 
microarray datasets To relieve the curse of dimension.

• To ensure sparse network in a structured way.
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Top-down methodology

• Inferring a regulatory network without a priori knowledge

• TOP-DOWN APPROACH: the architecture of the network is inferred (or 
reverse engineered) based on the observed response of the system to a 
series of experimental perturbations. 

• In engineering sciences: system identification
1. typical use: large scale modeling from high throughput data 
(genomic/proteomic/metabolomic)
2. main use: gene networks, any kind of complex network (metabolic, 
signalling pathways, protein activity, etc.)
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Bottom-up methodology

• Mathematical model was obtained from already available knowledge of the 
mechanisms of action/interaction between to or more components

• BOTTOM-UP APPROACH: model built from a priori biological information

• Advantages:
1. readily testable comparing simulation vs experiments
2. allows to model known pathways
3. allows to pass from qualitative to quantitative analysis

• Drawbacks
1. can model only known molecular processes
2. does not allow to discover new pathways
3. less applicable to poorly characterized networks 
4. useful mainly for small/medium scale systems
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Network motifs
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Network Modules

• Topological module: most of the genes are likely to be 
related to the genes in the same module rather than the 
genes in different modules. (Clustering on the expression 
data to find the co-regulations relationships)

• Functional module: most of the genes are likely to have 
similar function related to the genes in the same module 
rather than the genes in different modules. (Clustering 
the gene annotation data to find the similar function 
relationships)
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Flowchart of GNMInfer

Modules integration

Module identification

Multiple time course dataset

Gene annotation



An Example: Circadian rhythm

• Circadian rhythm is fundamentally important in 
physiological processes of mammals.



Why gene regulatory network
• The 20,000 dissociated neurons consisting of a pair of the 

mammalian uprachiasmatic nuclei (SCN) display autonomous 
rhythms in electrophysiological activities. This indicates that 
the oscillator mechanism resides within individual cells 

• Recent observations revealed that a large number of genes 
undergo circadian oscillation in their expression levels. 

• Furthermore, extensive studies have identified that a set of 
key circadian genes utilize the transcriptional-translational 
auto-regulatory loop to generate molecular oscillations of the 
“central clock”.  



Gene expression data

• The laboratory cultured cells from SCN
• Perturbation: Forskolin stimuli can reset the clock of 

the cells by phase advance and phase delay. 
• Four time-series microarray
1. Control, 0-36 hour, 14 time points; 
2. CT6, 0-90 hour, drug is applied at 18 hour, 16 time points; 
3. CT14, 0-90 hour, drug is applied at 27 hour, 14 time points;
4. CT22,0-90 hour, drug is applied at 32 hour, 12 time points.
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Candidate gene list

• Key circadian genes: 18 well-studied clock 
genes

• Circadian-related genes: 22 genes having 
protein interactions and phosphorylations 
relationships with the 18 key circadian genes.

• Oscillatory gene list:  55 genes are identified 
to see whether typical oscillations exist or not 
in gene expression data.



Prior information
• 14 physical protein interactions

• 40 phosphorylation interactions 

• Cis-regulatory element: 134 transcriptional 
regulatory interactions by linking the 
transcription factor with their target promoter 
region in the gene level

• Protein-drug interaction: the significantly 
induced and or repressed genes are identified 
as the potential target of the drug folskolin. 



Prior information



Network inference

• 276 predicted regulatory relationships among 
80 circadian related genes.

• 138 new regulatory relationships that are not 
in the prior information (73 activations and 65 
repressions)

(a) brand new regulatory relationships

(b) signs and weights for those functional 
relationships in the prior information.



Inferred network



Four important hubs 
• Dsipi (regulate 17 target genes): A transcription 

factor protecting T-cells from IL2 deprivation-
induced

• RGD621665 (regulate 20 target genes):  a 
regulator of G-protein signaling

• RGD1307813 (regulate 8 target genes): related to 
endoplasmic reticulum,cell redox homeostasis, 
and protein folding. 

• RGD1310899_predicted (regulate 29 target 
genes) 
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Enriched motifs

• Transcription-translation feedback loops are 
important in driving circadian rhythm. For 
example, Bmal1 and Clock proteins form a 
complex that positively regulates the 
transcription of Per and Cry family genes.

• z-score and p-value are used to assess the 
statistical significance of the certain motif in 
our predicted network against 1000 
randomized networks



Enriched feedback motifs (p-value<1e-10)

A

A B

A B

C

A B

C

A B

C

(a)

(b)

(c)

(d)

(e)

Occur 27 times

Occur 38 times

Occur 20 times

Occur 229 times

Occur 345 times



Conclusion

• Network study enables a system-wide 
overview on the gene regulation in 
mechanism of circadian rhythm.

• Our method theoretically ensures the 
derivation of the most consistent network 
with all available information.

• Data integration strategy improves the 
reliability of the inferred gene regulatory 
network.
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